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LINEAR SYSTEMS’ STABILIZATION BY USING DYNAMIC
COMPENSATION

Florin STRATULAT!

Sistemele automate sunt proiectate asfel incdt sa asigure satisfacerea unor
indici de performantd ai regimului dinamic §i stationar. In acest articol este
prezentatd o procedurd de stabilizare a unui sistem liniar multivariabil prin
compensare dinamicd. Proiectarea compensatorului dinamic stabilizator (CDS) este
realizatd in doud variante: CDS cu estimator de stare de tip Kalman (unitar) si
CDS cu estimator de stare de tip Luenberger (minimal). Validarea solutiilor
obtinute este realizatd prin simulare in Matlab-Simulink, prezentdnd atdt programul
Matlab cdt si rezultatul simularii.

The automatic systems are projected so that they should ensure the fulfillment
of some performance indexes of the stationary and dynamical regime. In this article
is presented a stabilization procedure of a multivariable linear system by using
dynamical compensation. The projection of the stabilizer dynamic compensatory
(SDC) is realized in two ways: SDC with Kalman (unitary) state estimator and SDC
with state estimator of Luenberger (minimal) type. The validation of the solutions
obtained is realized by Matlab-Simulink simulation, by presenting both the Matlab
program and the simulation’s result.

Keywords: controllability, observability, control law, allocability, state
estimators, stabilizability, detectability, stabilizer dynamic
compensatory.

1. Introduction

In this work are presented ways of designing some dynamic compensatory
in the purpose of the multivariable linear systems’ stabilization. The stabilization
problem by dynamic compensation (the elementary synthesis) embraces two
distinct problems namely: the determination of a control law by feedback after
state and implementation of this one by using a state estimator [1].

Problem formulation. We consider the multivariable linear system
(continuous or discreet)

x'=Ax+Bu , xeR" x(0)=x, (D)
y=Cx
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Determine a compensatory system
Xe=AcXxe +Bey , X eRnC,xc(o):xco (2)

u=Fx.+G.y

which, by processing of the measured dimension y of the system (A,B,C), a
command U provides so that, the resulted system (in closed-loop) from the
connection of the two systems (Fig.1) should be intern asymptotic stable.

[¥o
—NJ (A, B, )
xeR"

L ~J(Ac. B Fe ,.Go)|

x eR™

Ixco

Fig. 1. Block diagram of connection of the two systems

The resulted system (in closed circuit) is characterized by the relation

XR =ARXR , Xg €R"™"c xp(0)=xpg, 3)
where A= A+BG.C BE, 4)
K B.C A,

By reformulating the stabilization problem by dynamic compensation, we

have: “being given the system (1) (continuous or discrete-time), design a

compensatory system (2) that, by processing the measured dimension Y, provides

a command U so that the system (in free regime) (3), resulted from the connection
of the two systems, should be intern asymptotic stable [2], viz.

Cc s if teR (5)

G(AR)C{UI(O),ifteZ

The compensatory is called stabilizer dynamic compensatory (SDC).
Solution of the problem. The necessary conditions so that the problem of

stabilization by dynamic compensation should have solution are:

1) the pair (A,B) can be stabilized

2) the pair (C,A) is detectable
In the first stage we design a control law U = Fx so that
(o ,if teR (6)
U,(0), ifeZ
In the second stage we build a stable state estimator. The assembly formed by the
control law and the state estimator necessary for the implementation of this one
constitute a linear compensatory.

o (A +BF)C{
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Separation principle. If the pair (C,A) is detectable then the synthesis
general problem of a governing algorithm for the system (A,B,C) may be
separated in two independent problems namely:

1) the determination of a control law by feedback after state, u = Fx and
2) the construction of a stable state estimator for the implementation of the
control law u = Fx.
If one wish that: c(AR)=A, @)

then the necessary conditions for solving the allocation problem by dynamic
compensation become:

1) the pair (A,B) is controllable and

2) the pair (C,A) is observable

We present now the fundamental result given by the Theorem 1.

Theorem 1. The problem of the eigenvalues (poles) allocation by dynamic
compensation has a solution if and only if the system (A,B,C) is controllable and
observable. In this case an efficient solution has the dimension v=n in case of the
Kalman estimator or v=n-p in case of the Luenberger estimator [1].

We consider the continuous linear system:

0100 00
700103710 {1000}
000 1| 0 of 0001
1 000 0 1

Design a stabilizer dynamic compensatory knowing that:
—1+; .
A:{—l,—l, I—Jﬁ},/\esﬂ:{—l,—l,—lij} and 5o =(1xj)

2

2. Verifying the necessary conditions

2.1. The controllability matrix of the pair (A,B) is
0
R=[B: AB: A’B: A’B]=ctrb(A,B)=|,

0
0 1: 0 0

and we notice that rank R =4 =n and so (A,B) is controllable (and, obviously, the

system (A,B,C) is controllable).

2.2. The observability matrix of the pair (C,A) :

(= =

1
0 0i ..
0

1 0 00

C 0001
Q=o0bsv(A,C) = A = o 100
' CA? 1 000

CA® 0010
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AsS rank Q =4 =n, the pair (C,A) is observable ( (A, B, C) is observable).
3. Projection of the control law

u=Fx (computing the stabilizing reaction F).
3.1. We notice that : n =4, m = 2 and p = 2. We choose the pair f, =0, , and

g=[0 1]T and we calculate the new pair :

0100 0
0010 0
Ap, =A+BF=A=| = = = |.b=Bg=|
1000 1

3.2. We calculate the controllability matrix :
R, =I[b : Ab: A’®: A’b]= ctrb(A; , b)

or RAFO =

-0 O O
(= = =]

3.3. We calculate R,) —R, =R, .

3.4. qT:eER—AlF “[l 0 0 0] (the last line from p-1 )

0 AFO

35 T :—qT Xa (AFO)
in which : X (s) = (s +1)? (s> +s+1) = s* +3s> +4s? +3s+1. It results :
fT=—[1 0 0 o][A%*+3A%+4A% +3A+14]
viz. : fT=[-2 -3 -4 -3]
Observation. We notice that the pair (Af,.b) is a controllable realization and

we may apply the fast procedure in order to design the reaction f7:
T
f :[aoo_a a _aln ’a‘2o_a2n ’a‘3o_a3n]

on °> "lo
where: Xo(s)=s*—1 and Xy(s)=s* +3s% +4s2 +3s+1
We obtain: T =[-2 -3 —4 -3]
3.6. We calculate the reaction F : FoF, +gfT :{ o0 0 0 0 }

-2 -3 -4 -3
The validation of the design: The characteristic polynomial of the resulting
system is : X, (s) =det[s] - (A + BF)]
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0 1 0 0
But: 0 0 1 o |=controllable companion ,resulting :
A+BF =
0 0 0 1
-1 -3 -4 -3

X =24 4303 + 402 430+ 1= Xnew-
So, the designing of the F reaction is correct.

4. The state estimator projection

4.1. The first solution: Kalman (unitary) estimator. Due to the fact that the pair
(C,A) is controllable, we have:
4.1.1. By dualling the pair (C,A) we obtain :

S = O O
— O O O
>

0
0
0
1

S o = O
S

4.1.2. We choose the pair g —, ,and g=[0 117 and we compute the new pair

0
Ap =A"+BF,=A"and ||
0 b = B g =
0
1
4.1.3. We calculate the controllability matrix corresponding to the pair (A | b) :

0 0 0
1 0
0 1
1 0 0
4.1.4. We calculate the inverse -1 by using the MATLAB instruction:

Fo

S O =

o . 0
Rpa, =[bi Ab A%bi A’b]=ctrb(Af, .b)= o

(=]

00 01
R —inv®a )|l © 0O
=1nv =

A, Av’7lo 1 0 0

0010

4.1.5. We calculate : T_ . Tp-1 _ -1 _

q —enRAFO—[O 00 1]RAF0_[0 01 0]

4.1.6. We calculate the reaction £ : fT=—qT X (Af)
o

in which : Xn(s)=(s+1)°(s* +25+2) =5" +45° + 75> + 65 +2
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. T 4 3 2
It results : tT=-[0 0 1 O[A} +4A} +7AF +6AE, +21,]
ViZ.: tT=[-7 -6 -3 —4]

4.1.7. We calculate the reaction F':

~7 -6 -3 -4
The validation of F* projection : the characteristic polynomial of the resulted

0 0 0 0
F*:F0+ng:{ }

pair is : Xi(s)=det[sI-(A"+B F )]
viz.: Xe(s)=s*+4s> +7s2 + 65+ 2= Nesu(s)
the designing being correctly.
0 -7
4.1.8. It is noted : 0 -6
* T -
L=(F) =
0 -3
0 —4
4.1.8. We calculate the parameters of the full estimator dimension :
010 -7 0 7 0 0
0 1 -6 0 6 1 0
J=A+LC= ,H=-L= ,M=B=
000 -2 0 3 00
1 0 0 -4 0 4 01

K=I4;,N=0,P=0.
4.2. The second solution: minimal estimator.

4.2.1. The matrix C being epic we produce the nonsingular transform:
-1

0010 [0 0 1 0

~-1 .
01 00 01 00

T= o L =1!
C 1 0 0 O 1 0 0 O
00 0 1 10 0 0 1

4.2.2. By applying the transform of coordinates ;T4 we obtain the equivalent
system on state :

0 0: 0 1 00
A |10t oo 10
A=TAT = 7 ,B=TB=
0 1: 0 0 00
0 0: 1 0] 01
. . Joo0i1 o0
c=ct'=|”
0 0:0 1

and from here it results :

A 00 [0 1], o], Joo
o2 o o2 o o1 o
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g [0 0], o1
o7 o o
4.2.3. The pair (A,,A;) is observable and by dualling we obtain the pair

Rty . 0 1 0 0
(A,B): A*:AIT: ,B*:AZT:
0 0 1 0

4.2.4. We choose the pair (F,,g) : F,=0,, and g :Lﬂ

and we compute the pair (Af,.b) Af, =A"+B'F,=A" > p _Bg :{ﬂ

4.2.5. We calculate the controllability matrix :
01
R, =[b Apb]=ctrb(Af, .b) :L }

0
426. -1 _
RA _RAF
4.2.7. We calculate: qT:egR;lF [ o]

o

4.2.8.: We calculate T =—qT X, (Ap ) » With Xn(s)=s? +2s+2
obtaining £T =1 O][Aéo +2Ap +21,] OF fT=[-2 -2].
Observation. The pair (A , b) is a controllable realization and so:

fT = [aoo - a’on s a’lo - a’ln]

where )(o(s):s2 and)(n(s):s2 +2s+2
resulting: fT=[-2 -2]
4.2.9. We calculate F =F,+gf! = {_ 2 - 2}
0
4.2.10. We put: L=@EyT=| 2
-2 0

and we calculate the parameters of the Luenberger estimator:

0 -2
J=A1+LA2= 1 )

-4 1
H=A3+LA4-JL=
e

0 0
M=B1+LB2= 1 0
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0 0 1 0

| 101 |=L| |2 0
K=T - N=T - P=0

0|70 o L | |2 0

0 0 0 1

5. Projection of the stabilizer dynamic compensatory

We distinguish two solutions (depending on the state estimator’s type used for the
implementation of the control law by reaction after state y =Fx) :

5.1. SDC with Kalman estimator

We calculate the parameters of the compensatory:

0 1 0o -7 0 7
Ac=tamrk=| O 0 O gy mEn<| O
0 0 0 -2 ¢ 0 3
-1 -3 -4 -7 0 4
FC:FK:[O 0 0 O}andGc:FN:O.
-2 -3 -4 -3

5.2. SDC with Luenberger estimator.

The parameters of the compensatory are obtained like this :

0 -2 -4 1
AC:J+MFK:1 5 'B,=H+MFN=

- -2 0
0 o0 0 0
F.=FK = and —FN= .
¢ {—4 —3} Ge -16 -3

6. Projection validation by MATLAB simulation.

6.1. SDC with Kalman estimator. In order to be able to verify by
MATLAB simulation the designed system it is necessary the computing of the
matrix A, (of the closed circuit system):
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01 0 0: 0 0 0 0
001 0: O 0 0 0
_[A+BG.C BE] | 0001 0 0 0 0
R{BCC Ac} 1000 =2 =3 -4 -3
Ag = .
00 0 7: O 1 0o -7
00 0 6: 0 0 1 -6
00 0 3: 0 0 0o -2
000 4 -1 -3 —4 -7]

By usig the MATLAB instruction:

v=c(Ag)=cig(Ag)={-1,-1,-0.5+j0.866,—1,—1,— 1 £ j}
which means that 6(A;) =AU A, and so the designing of SDC is correct.
The simulation of the designed system, in free regime,

T xp(0)=xg,

with xp =[1 111111 1]T is presented (and the program MATLAB) in
(0]

XR :AR'XR, XRER

fig. 1a,b. We notice that the designed system is stable.

6.2. CDS with Luenberger estimator. In this case the size of the
designed system is reduced, ng =6, obtaining:

P rasp9241eng.m - C:\MATLABR11 \work'rasp9241eng. - |EI|5|

a=[0 1 00O00O0O0Q;001000O0O0;00010000; 1=
1 -2 -3 -4 -3;0007010-;0006001-6;
u} ooo-2:x0004 -1 -3 -4 =7]:

b=[1 ;0 0:0 0O;0 Q:0 0O;0O 020 1]

c=[1 Ooo0ooo:;:0000000 1]:;

d=[0 0; 1:

®*O0=[1 111111 1]"':

t=0:.1:10;

u=zeroz(101,2);

v=lzimia,b,c,d,u, L, =x0);

plotic, v, 'k'),grid

title (' FREE REZPCHIE'] ,

gtext (' t[sec] '), gtext('yvit] ') -

o oooo
B e

o oo oo
o oo wo

Fig. la
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+# Figure MNo. 1 o ] |

File Edit Tools Window Help
lDesda yaA /|20

yit) FREE RESPONSE
& : : : : : : : : :

1] 1 2 3 4 g G 7 g gt[sechi

Fig. 1b
[0 1.0 0 0 0]
00 1 0: 0 0/Ryysing the MATLAB instruction:
0O 00 : 0 0
AR = .
15 0 0 -31 -4 -3
-4 0 0 1: 0 -2
-2 00 0 1 -2

v=0(AR)=cig(Ag)={-1,—1,-0.5+ j0.866,— 1+ j}
viz. 6(Ay)=AUA, , fact that confirms the correctness of the SDC designing.

In fig.2a,b are presented the MATLAB program and the graphic representation of
the response in free regime of the system obtained by designing, for the initial

condition xR, :[1 1111 1]T. So, the designed system is stable.

est, 2
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MATLAB Editor/Debugger _1Oj x|
File Edit “ew Debug Tools ‘Wwindow Help

DEH| 20 (&2 Q%
2 42 2 43 | Stack: | =

Fi rasp9241Zeng.m - C:yMATLABR 11 work' rasp ;|g|5|
a=[0 1000000 1 000;000100;
-i5 00 -3 -4 -3;-4 0010 -2;-2 0001 -2]:
b=zeros (6,2
c=eye (6]
d=zeros(6,2);
*x0=[1 111 11]"':
¥=initialia,b,c,d,x0);
plot (=) ,grid
title ('FREE RESPCHNZE'),
grext('tsec] '), grexc('yvitl ")
gtext ('ylit]'),gtext{'ya(t) '), grext('vilt]"]
gtext ('yd(t] '), gtext ("ya (L) "), gtext ('yalt] "]

@ rasp9241 2e...|
Fig. 2a

# [Figure No. 1 10l x|

File Edit Tools Window Help

DeEda@ xNA A/ 2P0
i) FREE RESPONSE

J : :

100 t[sec] 120

7. Conclusions

The stabilization problem by dynamic compensation (the elementary
synthesis) embraces two distinct problems namely: the determination of a control
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law by feedback after state and implementation of this one by using a state
estimator (Kalman or Luenberger estimator).

As one may notice from the simulations for the validation of the
stabilizing dynamic compensatory’s projection the free response of the resulting
system is stable and therefore the projection is efficient.

The original contributions of the autor are: the computer aided designing
of the SDC and the computer aided analysis of the system behaviour by using
Matlab program.
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