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COMBINED QUADRIC ERROR METRIC AND LIFTING
SCHEME MULTIVARIATE MODEL SIMPLIFICATION

Teodor Cioacă1, Bogdan Dumitrescu2, Mihai-Sorin Stupariu3

The quadric error metric incremental simplification process in-
volves two stages: cost computation and vertex estimation. In this work,
we replace the latter through the use of a lifting scheme prediction-update
stage. Since the initial simplification algorithm implies the fusion of neigh-
boring vertices and their associated matrices, we propose the inclusion of
a similar mechanism in the update stage of the lifting scheme. For this
purpose, we explore two possible choices for the redistribution weights of the
quadric error matrices. The quality of the data downsampled in this fashion
is assessed by tracking the evolution of the normalized root mean squared
error.

Keywords: multivariate lifting scheme, quadric error metric, predict-update

1. Introduction

A common issue arising in the interpretation process of high density dig-
itized models is the barrier data richness itself poses. Typical laser scanners
can produce highly redundant point clouds where only the high frequency de-
tails are directly observable. One solution to this problem is the so-called
incremental simplification [1]. In this approach, the vertices of the model are
sequentially removed according to a cost heuristic designed to minimize the
approximation error. However, the resulting, coarser approximations do not
compensate for the loss of information in a way that guarantees the preserva-
tion of any properties of the initial model. Wavelet multiresolution analysis
(WMRA) can be viewed as an alternative simplification method that is con-
structed such that it preserves the mean of the signal associated with the input
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model. The second generation wavelet transform, introduced by Sweldens [2],
can be constructed to meet this goal through the lifting scheme design.

As a follow-up to the work by Cioaca et al. [3, 4], we aim to combine the
feature identification capabilities of the quadric error metric, introduced by
Garland and Heckbert [5] with the antialiasing and variance reduction prop-
erties of a lifting scheme design, proposed by Jansen in [6]. Chronologically,
wavelet analysis was constructed starting from mesh subdivision operators.
In this sense, Valette and Prost [7] generalized a face subdivision scheme
for triangle meshes, while Bertram [8] conceived a hybrid, edge-collapse and
predictor-corrector wavelet downsampling method. Zhao and Sun [10] pro-
posed a matrix-valued subdivision as an extension of the scalar-valued subdi-
vision. In this work, the requirement to use an inverse subdivision operator is
no longer present, as we make use of a lifting design capable of downsampling
arbitrary graphs with manifold connectivity. We refer the interested reader to
the survey of Shuman et al. [11] where fundamental signal processing opera-
tions are generalized to the multidimensional graph setting in both vertex and
spectral domains.

The remainder of this work is organized as follows. In section 2 we
describe the construction of the generalized quadric error metric and its role
in establishing an even-odd node partition. Then, a different mathematical
derivation of the one-dimensional lifting scheme design proposed by Jansen is
presented in section 3. The graph extension of this scheme follows in section
4, while numerical experiments and conclusions are provided in sections 5 and
6.

2. Generalized quadric error metric

We briefly review the construction of the generalized quadric error metric,
first detailed by Garland and Heckbert [5]. The purpose of this representation
is to facilitate computing the squared distances from any point to the support
plane of a triangle, regardless of the dimensionality of the space where these
entities are embedded in. That is, if v1,v2,v3 ∈ Rn are column vectors cor-
responding to the vertices of a triangle and p ∈ Rn is an arbitrary point, we
are interested in how the squared distance from p to the ∆(v1,v2,v3) triangle
can be expressed. The support plane of ∆(v1,v2,v3) is uniquely determined
by two linearly independent vectors. Moreover, one can attempt and con-
struct an orthonormal frame such that two of its basis vectors are contained
within this plane. This process only implies applying the first two steps of the
Gram-Schmidt algorithm, i.e.:

ê1 =
v2 − v1

‖v2 − v1‖
, (1)

and

ê2 =
v3 − v1 − ((v3 − v1)ᵀê1) ê1

‖v3 − v1 − ((v3 − v1)ᵀê1) ê1‖
. (2)
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The Gram-Schmidt algorithm can be used to completely recover the remaining
n−2 basis vectors. Assuming only that one can uniquely identify these vectors,
the expression of p− v1 in this basis is written as:

p− v1 =
n∑

i=1

((p− v1)ᵀêi) êi. (3)

Consequently,

‖p− v1‖2 =
n∑

i=1

((p− v1)ᵀêi)
2. (4)

Due to the way the êi vectors were constructed, equation (4) reveals the
squared distance from p to the support plane of ê1 and ê2. The sum of the
squared lengths of all components that p − v1 has when projected onto the
n−2 remaining basis vectors is exactly the expression of this squared distance,
i.e. the left-hand side of the following equation:

‖p− v1‖2 − ((p− v1)ᵀê1)2 − ((p− v1)ᵀê2)2 =
n∑

i=3

((p− v1)ᵀêi)
2. (5)

The squared distance expressed in equation (5) can be rewritten as:

d(p,∆(v1,v2,v3))2 =

(
p
1

)ᵀ [
A b
bᵀ c

](
p
1

)
, (6)

where

A = I− ê1ê
ᵀ
1 − ê2ê

ᵀ
2, (7)

b = (vᵀ
1ê1)ê1 + (vᵀ

1ê2)ê2 − v1, (8)

c = vᵀ
1v1 − (vᵀ

1ê1)2 − (vᵀ
1ê2)2. (9)

By denoting Q(∆(v1,v2,v3)) =

[
A b
bᵀ c

]
, one can algebraically express the

sum of squared distances from p to the support planes of a set of triangles,
(∆i(v1,v2,v3))i=1,N , as:

∑
i=1,N

d(p,∆i(v1,v2,v3))2 =

(
p
1

)ᵀ
∑

i=1,N

Q (∆i(v1,v2,v3))


(
p
1

)
. (10)

In the original incremental simplification algorithm from [5], the set of faces
in the one-ring neighborhood of each vertex is used to compute an associated
matrix:

Q(v) =
∑

∆k∈N1
f (v)

Q(∆k), (11)

where N1
f (v) represents the set of all triangles incident at v. Whenever two

vertices, va and vb, are fused into a new vertex, w, as a result of a collapse
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operation, the local geometric information that was characterized by the neigh-
borhoods of these vertices is preserved by setting Q(w)← Q(va) + Q(vb).

The matrix terms from equation (11) describe quadrics in the sense that
all isosurfaces obtained from varying point p in equation (10) are quadrics.
The term quadric error metric is thus justified since these matrices offer a
means of estimating an error measure from an arbitrary position p to a local
patch around any vertex v. As described in [4], this metric also allows for the
introduction of a cost function associated to each vertex:

cost(v) =

(
v
1

)ᵀ
 ∑

vi∈N1
v(v)

Q(vi)

(v
1

)
, (12)

where N1
v(v) denotes the direct neighbors of v, or the one-ring vertex set.

We now consider the case of a triangular manifold M = (V,E, F ), where
V is the set of vertices or nodes, E is the set of edges and F the set of faces of
this manifold. Through the introduction of the cost function in equation (12),
the elements of V can be ordered ascendingly according to their importance.
Next, a lazy wavelet partitioning scheme, detailed in [4], is employed to label
vertices as either even or odd. This process is straightforward and requires
starting with a set of unlabelled vertices. Initially, this set contains all vertices.
Then, in an iterative manner, the least important unlabelled vertex is selected
and tagged as odd, while all of its one-ring neighbors are tagged as even. This
process is repeated until all vertices are labelled, i.e. V = VO ∪ VE, where VO
and VE are the resulted odd and even vertex subsets.

Removing the VO subset leads to a direct simplification algorithm that
heuristically preserves the more salient features of the initial model assuming
the holes left after the removal of the odd samples are filled in order to preserve
manifold connectivity. If one instead wishes to interpret the entire mesh or
graph as a signal, then some initial properties of this signal are lost if no com-
pensation mechanism is used. A common example is to preserve the average
of the signal, which can be intuitively interpreted as a means of redistributing
the lost information amongst the neighbors of a removed graph node.

3. Lifting scheme

In this section we discuss in more detail our proposition for extending
the lifting scheme design to the graph set-up. For a more in-depth analysis of
the theory and applications of the lifting scheme we refer the reader to [9].

Introducing wavelet constructs on graphs requires first reviewing the the-
ory in the one-dimensional case. In general, wavelets are the building blocks
of hierarchical function space approximations, i.e. L2(R) � . . . � Vn � Vn−1 �
. . . � V1 � V0 � . . . � {0}. Let Vj be a function space approximation at level
j. We are interested in examining the connections between two consecutive
approximations, Vj+1 and Vj. Let Φj =

[
. . . φj,k . . .

]
be the row vector of
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basis functions that generate Vj. Then a function fj+1 ∈ Vj+1 cannot be rep-
resented by using only the basis functions in Vj, but it can be expressed as a
combination of the basis functions of the Vj+1 space, that is

fj+1 = Φj+1sj+1, (13)

where sj+1 is an infinite column vector of scaling coefficients. The complemen-
tary basis or wavelet functions, ψj,k, that generate the orthogonal subspace,
Wj, with Vj+1 = Vj ⊕Wj, correspond to the lost details. One can hence write

fj+1 = Φj+1sj+1 = Φjsj + Ψjwj, (14)

where Ψj =
[
. . . ψj,k . . .

]
and wj is the infinite column vector of wavelet coeffi-

cients. Equation (14) hints at the intent behind Swelden’s [2] second generation
wavelet: ”building blocks that can decorrelate data”.

Having introduced these function space entities, we can review the mech-
anism behind the lifting scheme. The first operation involved in a lifting step
has already been discussed in section 2 in the context of multivariate graph
nodes. The same reasoning can be applied to the set of scaling coefficients at
level j + 1. The vector of scaling coefficients can then be reindexed such that

sj+1 =

[
sj+1,o

sj+1,e

]
, (15)

where the o and e subscripts stand for odd and even coefficients, respectively.
At this point it must be noted that the even-odd splitting of the scaling coeffi-
cients is assumed to be the result of an operation suitable for one-dimensional
signals. Although one can write equivalent 2-dimensional quadratic error met-
ric matrix to those in equation (12), for the remainder of this section we can
assume the splitting to have already been performed using a known criterion.
Besides this partitioning operation, the other two that make up the lifting
scheme are the predict,

wj = sj+1,o −Pjsj+1,e, (16)

and the update
sj = sj+1,e + Ujwj, (17)

with Pj ∈ Rno×ne being a sparse prediction matrix, Uj ∈ Rne×no being a sparse
update matrix and no and ne being the number of odd and even coefficients,
respectively. The prediction stage simply exploits the signal redundancy by
assuming that the odd coefficients can be estimated as linear combinations of
their spatial neighbors. If only the even coefficients are used to approximate the
functions in Vj+1, then the lost details are compensated for by redistributing
them among these remaining coefficients via the update matrix.

We propose investigating the relation between the scaling and wavelet
basis functions from two consecutive levels are related. Rewriting equation
(14) in matrix form we obtain[

Φj+1,o Φj+1,e

] [sj+1,o

sj+1,e

]
=
[
Ψj Φj

] [wj

sj

]
, (18)
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and, expanding the scaling and wavelet coefficients on the right-hand side using
equations (16) and (17), we arrive to[

Φj+1,o Φj+1,e

] [sj+1,o

sj+1,e

]
=
[
Ψj Φj

] [ sj+1,o −Pjsj+1,e

(I−UjPj)sj+1,e + Ujsj+1,o

]
. (19)

Equation (19) must hold for any combination of the level j + 1 lifting coef-
ficients. Hence, let sj+1,e = δk, i.e. the Kronecker vector at index k, with
k ∈ 1, ne, i.e. δk,i = 0,∀k 6= i and δk,k = 1. Also, let sj+1,o = 0. Evaluating
both sides of equation (19), we arrive to

Φj+1,eδk = −ΨjPjδk + Φjδk − ΦjUjPjδk, (20)

or, since this equation holds for any k ∈ 1, ne, a more direct formulation can
be written as

Φj+1,e = −ΨjPj + Φj − ΦjUjPj. (21)

By setting sj+1,e = 0 and sj+1,o = δk, with k ∈ 1, no, we find that

Φj+1,oδk = Ψjδk + ΦjUjδk, (22)

or

Φj+1,o = Ψj + ΦjUj. (23)

Right-multiplying both sides of equation (23) by Pj and adding the result to
equation (21) we obtain:

Φj = Φj+1,e + Φj+1,oPj, (24)

and then

Ψj = Φj+1,o(I−PjUj)− Φj+1,eUj. (25)

Let ςj =
∫∞
−∞Φᵀ

j (t)dt. Then integrating equation (24) yields:

ςj = ςj+1,e + Pᵀ
j ςj+1,o. (26)

Since the integral of the wavelet functions is zero, integrating equation (25)
leads to:

0 = ςj+1,o −Uᵀ
j

(
Pᵀ

j ςj+1,o + ςj+1,e

)
= ςj+1,o −Uᵀ

j ςj. (27)

The column vectors of Uj can be retrieved in a one-by-one fashion from equa-
tion (27). If ujk is the kth column vector, then

ςj+1,ok = uᵀ
jk
ςj. (28)

Jansen [6] suggests choosing the minimum norm solution of this equation as it
leads to increased numerical stability, as experimentally demonstrated in [3].
Thus

ujk = ςj+1,ok

ςj
‖ςj‖2

, (29)

a solution that can be easily derived using any suitable optimization method
such as Lagrange multipliers.
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4. Wavelets on graphs

The one-dimensional lifting scheme can be extended to functions defined
on manifolds. Let M be a 2-dimensional manifold and F : M → Rd a multi-
variate function defined over this manifold. Since F = (f1, . . . , fd) can be
viewed as a tuple of d individual square-integrable functions, fi : M → R,
then each of these functions can be represented using a set of basis functions
also defined on the manifold. One can generalize equation (13) as

Fj+1 = Φj+1Sj+1, (30)

is a matrix whose columns are the sj+1i scaling coefficient vectors of fij+1
. The

theory from the one-dimensional case does not require further changes except
for working with scaling and wavelet matrices.

As described in section 2, the generalized quadric error metric provides an
efficient mechanism for splitting the mesh vertices into odd and even subsets.
The prediction stage only involves predicting the odd nodes from their one-
ring neighbors. For most purposes, as detailed in [3], the Fujiwara Laplacian
[12] is an efficient prediction operator that delivers low approximation errors.
Hence, if vj+1,o is an odd vertex, its corresponding wavelet coefficient vector
is retrieved from equation (16) as

wj,vj+1,o
= sj+1,vj+1,o

−
∑

vj+1,ei
∈N1(vj+1,o)

pj,vj+1,o
(vj+1,ei)sj+1,vj+1,ei

, (31)

where the prediction weights correspond to the Fujiwara Laplacian operator,
i.e.

pj,vj+1,o
(vj+1,ei) =

‖sj+1,vj+1,o
− sj+1,vj+1,ei

‖−1∑
vj+1,ek

∈N1(vj+1,o)

‖sj+1,vj+1,o
− sj+1,vj+1,ek

‖−1
. (32)

Since the purpose of the wavelet decomposition is to construct hierar-
chical approximations, Vk(M), of the square-integrable function space L2(M),
one needs to find a set of generating scaling functions for Vk(M). One op-
tion is to choose ϕi∈1,k such that

∫
M
ϕi = 1. Computing manifold integrals in

equations (26) and (27), we arrive to the same formula fo the update weights.
Thus, for any vj+1,ei ∈ N1(vj+1,o), equation (17) is equivalent to

svj,ei
= svj+1,ei

+
∑

vj+1,ol
∈N1(vj+1,ei

)∩VO,j+1

uj,vj+1,ei
(vj+1,ol)wj,vj+1,ol

. (33)

So far, the details that are contained in the removed odd samples are stored
in the wavelet coefficients and the remaining even samples are updated to
preserve the mean of the original signal. Nevertheless, the question concerning
the fate of the information contained within the quadric error matrices of the
odd samples is still unanswered. The immediate choice is distributing the
matrix corresponding to an odd sample, Q(vj+1,o), among its even neighbors.
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Thus, each even matrix is updated as described by the following equation

Q(vj,ei) = Q(vj+1,ei)+
∑

vj+1,ol
∈N1(vj+1,ei

)∩VO,j+1

ωj,vj+1,ei
(vj+1,ol)Q(vj+1,ol), (34)

where ωj,vj+1,ei
(vj+1,ol) is the redistribution weight describing the influence of

vj+1,ol on its even neighbor, vj+1,ei . We propose two alternative choices for
these weights:
• using inverse distance weights (IDW) [13], i.e.

ωj,vj+1,ei
(vj+1,ol) =

‖sj+1,ei − sj+1,ol‖p∑
vj+1,ek

∈N1(vj+1,ol
)∩VE,j+1

‖sj+1,ek − sj+1,ol‖
p , (35)

where p is a negative integer exponent. For p = −1, the redistribution
weights coincide with the prediction weights as defined in equation (32).
Thus the update equation (34) for the even quadric error matrices resem-
bles the integral update equation (26). Although other valid choices for
the value of p are possible, this is also the one that minimizes the norm
of the wavelet coefficients.
• using the update weights (UW), i.e.

ωj,vj+1,ei
(vj+1,ol) =

uj,vj+1,ei
(vj+1,ol)∑

vj+1,ek
∈N1

v(vj+1,ol
) uj,vj+1,ek

(vj+1,ol)
, (36)

since these weights already describe a means for compensating detail loss
in a manner resembling equation (17).

5. Discussion and numerical experiments

We propose examining the approximation quality of this lifting scheme
design by computing the root mean square error (abbreviated as RMSE) of
the even scaling coefficients. The evolution of this error is inversely propor-
tional to the level of resolution if the notation used throughout this paper is
maintained. However, the smaller the values, the better the filter design of
the lifting scheme. Since there are two possible choices for the quadric error
matrix redistribution weights (IDW and UW, respectively), the difference in
approximation quality between these two strategies is further explored. In
this respect, we have selected three LiDAR scans of various terrain regions.
The first is a fragment of the Great Smoky Mountains (available through the
http://www.opentopography.org portal) having a density of approximately
2.23 points per square meter and a total amount of 280,000 points (figure 1).

The remaining two sets are fragments of the Romanian Carpathian Moun-
tains: one from the Fundata region (figure 2), having a density of 20 points per
square meter, and a point count of 9 million, the other from the Iezer Moun-
tains (figure 3), having a density of 5 points per square meter and a point
count of 11.5 million). All sets contain, besides the geometric coordinates of
the points, vegetation related attributes stored in separate scalar channels:
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Fig. 1. Smoky data set subjected to a sequence of 12 analysis
steps. The columns, in left to right order: the original mesh,
lowest resolution using IDW and using UW, respectively. The
bottom row is a temperature colormap generated using equation
(12).

one for the vegetation class (an integer between 0 and 20) and one for the
vegetation height (an integer between 0 and 255).

Fig. 2. Fundata data set subjected to a sequence of 12 analysis
steps. The meaning of each row and column is given in figure 1.

The numerical experiments were carried out by downsampling the initial
sets by repeatedly applying the analysis equations (31) and (33) twelve times.
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Fig. 3. Iezer data set subjected to a sequence of 12 analysis
steps. The meaning of each row and column is given in figure 1.

Table 1. RMSE evolution during 12 successive analy-
sis/simplification steps.

Level
Smoky Fundata Iezer

IDW UW IDW UW IDW UW
12 0.0997648 0.0997648 0.0425317 0.0425317 0.0521839 0.0521839
11 0.246961 0.255929 0.103035 0.104011 0.131526 0.133092
10 0.463553 0.469643 0.185778 0.186109 0.249424 0.254507
9 0.749602 0.766483 0.297856 0.296403 0.430857 0.443759
8 1.15003 1.17577 0.463349 0.463635 0.721715 0.738768
7 1.84325 1.7946 0.730597 0.735497 1.15317 1.16666
6 2.68166 2.57539 1.15276 1.17955 1.70032 1.72003
5 3.71708 8 3.52738 1.81591 1.84962 2.34638 2.34925
4 4.9983 9 4.96675 2.721 2.78489 3.03661 3.03775
3 6.72188 6.70461 3.9207 3.95601 3.80415 3.82299
2 8.44014 8.4718 5.36374 5.44715 4.67153 4.69569
1 10.6596 11.0502 7.15283 7.27347 5.71604 5.77769

The RMSE value at level j was computed as

RMSEj =
1

|Vj|

√∑
v∈Vj

‖sj,v − sorig,v‖, (37)

where j ∈ 1, 12 and sorig,v denotes the scaling vector of v at the highest level
of resolution (i.e. the original mesh). The results of using both the IDW and
UW weights are summed in table 1, where the RMSEj values are presented
for all three data sets.
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6. Conclusions

In this work we explored the hypothesis of coupling the quadric error
metric feature-preserving simplification mechanism with a second generation
lifting scheme. This design, extended from the one-dimensional scenario, was
used to downsample dense LiDAR meshes containing both geometry and veg-
etation attribute information. Instead of summing quadric error matrices, as
required during the fusion of two vertices, the removal of odd vertex samples
was followed by the redistribution of their corresponding matrices among the
remaining even samples. Two redistribution weight designs were proposed, one
based on the inverse distance (IDW) and the other on the update filter (UW).
We have experimentally determined the inverse distance weights to produce
better approximations and, consequently, to be the more suitable quadric error
matrix redistribution mechanism.

Possible future work directions may involve smoothing and denoising ap-
plications as well as clustering and classification based on the wavelet coefficient
distribution.
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