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In this paper we describe the local Ricci and Bianchi identities for an h-
normal N -linear connection DT(N) on the dual 1-jet space J**(T,M). To reach
this aim, we firstly give the expressions of the local distinguished (d-) adapted
components of torsion and curvature tensors produced by DI'(N), and then we
analyze their attached local Ricci identities. The derived deflection d-tensor iden-
tities are also presented. Finally, we expose the local expressions of the Bianchi
identities (in the particular case of an h-normal N-linear connection of Cartan
type), which geometrically connect the local torsion and curvature d-tensors of the
linear connection DI'(N).
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1. Introduction

According to Olver’s opinion [23], we consider that the 1-jet spaces and their
duals are natural houses for the study of classical and quantum field theories. For
such a reason, the differential geometry of 1-jet spaces was intensively studied, in a
contravariant approach, by a lot of authors: Saunders [30], Asanov [1], Neagu and
Udriste (see [20], [21], [22]), and many others.

In the last decades, numerous physicists and geometers were preoccupied by
the development of that so-called the covariant Hamiltonian geometry of physical
fields, which is a multi-parameter, or multi-time, extension of the classical Hamil-
tonian formulation from Mechanics. In such a perspective, we point out that the
covariant Hamiltonian geometry of physical fields appears in the literature of spe-
cialty in three distinct variants: (1) » the multisymplectic geometry — developed
by Gotay, Isenberg, Marsden, Montgomery and their co-workers (see [10], [9]) on a
finite-dimensional multisymplectic phase space; (2) » the polysymplectic geometry
— elaborated by Giachetta, Mangiarotti and Sardanashvily (see [7], [8]), which em-
phasizes the relations between the equations of first order Lagrangian field theory on
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fiber bundles and the covariant Hamilton equations on a finite-dimensional polysym-
plectic phase space; (3) » the De Donder-Weyl Hamiltonian geometry — studied
by Kanatchikov (see [11], [12], [13]) as opposed to the conventional field-theoretical
Hamiltonian formalism, which requires the space + time decomposition and leads
to the picture of a field as a mechanical system with infinitely degrees of freedom.

From a geometrical point of view, following the ideas initially stated by Asanov
[1], a multi-time Lagrange contravariant geometry on 1-jet spaces (in the sense of
d-linear connections, d-torsions and d-curvatures) was recently developed by Neagu
and Udrigte in [20], [21] and [22]. This 1-jet geometrical theory is a natural multi-
time extension of the classical Lagrangian geometry on tangent bundles, initiated
and developed by Miron and Anastasiei [15].

On the other hand, suggested by the field theoretical extension of the ba-
sic structures of classical Analytical Mechanics within the framework of the De
Donder-Weyl covariant Hamiltonian formulation, the geometrical studies of Miron
[14], Atanasiu [3], [2] and others led to the development of the Hamilton geometry
on cotangent bundles, which is synthesized in the book [16]. Note that the Miron-
Atanasiu Hamiltonian geometrical ideas from cotangent bundles represent the point
start for the development of the jet covariant Riemann-Hamilton geometry depend-
ing on polymomenta, which is presented in the Atanasiu-Neagu papers [4] and [5].
In this paper we are going on the jet multi-time Hamiltonian geometrical studies
from [4] and [5].

2. Components of N-linear connections on dual 1-jet bundle J'*(T, M)

Let T and M be a temporal (resp. spatial) real, smooth manifold of dimension
m (resp. n), whose coordinates are (t*),_1;, respectively (x’)lzﬁ Note that,
throughout this paper, the indices a, b, ¢, ... run from 1 to m, while the indices i,
J, k, ... Tun from 1 to n. The Einstein convention of summation is also adopted all
over this work.

Let J'*(T, M) be the dual 1-jet fibre bundle, whose coordinates (t¢,z¢,p?) are
induced from T and M. The coordinate transformations from the product manifold

Tx M produce on J*(T, M) the following coordinate transformations:
ox? ot
oz o

=t (), T=7"(a), pt=
where det (0t /0t*) # 0 and det (97°/927) # 0.
Definition 2.1. A pair of local functions on E* = J™ (T, M), denoted by

_ (a) (a)
N = <]¥(z)b7 ]g(z)j> )

whose local components obey the transformation rules

&0 ot (o) 0t° OaF oph
1 (])C@ - 1 (k‘)aﬁ@ ata’

- ~b
N ozk (o) 0t° dzF  Op;

YOk per = Y Wige o Bt
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is called a nonlinear connection on E*. The components ]}f ((S% (resp. ];7 ((S; ) are

called the temporal (resp. spatial) components of N.

Example 2.1. Let hy, (tf) (resp. ©ij (xk)) be a semi-Riemannian metric on the
temporal manifold T (resp. spatial manifold M ). Taking into account the local
transformation rules of the Christoffel symbols xi.(t) (resp. Ffj (x)) of the metrics
hap () (resp. @ij (x)), then the pair of local functions

0 a 0 a
No = (1}7((1)2)7 J;’((iﬁ-) ;

where . o
(a) a . c (a) a
]Y(i)b = XbeP5 > ];[(i j = _F?jpka

represents a nonlinear connection on E*. This is called the canonical nonli-
near connection attached to the metrics hqy(t) and ¢;j(x).

In what follows, we fix a nonlinear connection on E*, and we consider the
adapted bases of the nonlinear connection N, defined by

5 (5 8 * a 7 a * *
{vauapg} CX(E )7 {dt 7dx75p1} Cx (E )7 (1)

where

0 0 N(b)i

ote — ota 10 gpk
0 _ 90 _NO® O

ot Ox

op¢ = dpf + N ((fﬁ,dtb + ((;;g-dxj.
It is important to note that the transformation rules of the elements of the adapted
bases (1) are tensorial ones:
5_05”5 (5_8;%j5 8_83’83?8

ste ot s’ dat  dxi 6T’ Ip? 0t OF It

ote . Ot ot oz’
“— b [ty @ — —_ pP
dt 5 dt’, dx 957 dz’?, opf 57 O pj-
Remark 2.1. The simple tensorial transformation rules (2) of the adapted bases
(1) determined us to describe in what follows all geometrical objects on the dual 1-jet

space JY (T, M) in adapted local components.

(2)

In order to develop the geometrical theory of N-linear connections on the dual
1-jet space E*, we need the following result:

Proposition 2.1. (i) The Lie algebra X (E*) of vector fields decomposes as
X(E") =X (Hg) & X (Har) © X(V),

where

X (35) =Span {5‘;} X (3ay) =Span {52} (V) =Span {;’pg} .
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(ii) The Lie algebra X* (E*) of covector fields decomposes as
X*(E*) = X" (Hg) @ X* (Hp) @ X*(V),
where
X* (Hg) =Span {dt*}, X*(Hj,s)=Span {da:’} , X*(V)=Span {ip{}.

Let us consider that hg, hys (horizontal) and v (vertical) are the canonical
projections of the above decompositions. In this context, we introduce the following
geometrical concept:

Definition 2.2. A linear connection D : X (E*) x X (E*) — X (E*) is called an
N-linear connection on E* if and only if Dhy = 0, Dhy; = 0 and Dv = 0.

It is obvious that the local description of the N-linear connection D on E* is
accomplished by nine unique adapted components
_ (a)(5) (a)(5)
DI (N) = (45, A5, — AQGL Hiy Hy — HE (3)

a(k) (k) (@) () (k)
Cher» Cler C<z><b><c>)

which are locally defined by the relations:

5.8 5.6 0 _ L@ 0
Do = Aigm Do 5= Aoz P 6 g~ ~A0wegyy
5tc 5tc 5tc ’
5 5 5 0 _ @@ 0
D5 g5 = Hige D 5 5= Mg D 5 5= Hiingys
ok oxk Sk ’
5 i 8 5 ) 0 0 _ _o@ow 9

Dosp = Qg P 0 50~ Yo P 0 gp= Cone g

opj, opy, ops,
V) D(a) . . ‘
Example 2.2. Let Ny = ]}T(i)b, ]gf(i)j be the canonical nonlinear connection
produced by the semi-Riemannian metrics (hqp, pij). Taking into account the trans-
formation rules of the Christoffel symbols xj, and ij, by local computations, we
can show that the local components

(@) (@)
BT (No) = (xier 0, = ASGL 0, T = HGP, 0, 0, 0),

where

HOWD _ gori

@G) _
AGe = ~01X5e: Higi =

(i) (b)c
verify the transformation rules of the components of an N -linear connection (for
more details, see [5]). Consequently, BI' (Ny) is an No-linear connection on E*,
which is called the Berwald connection of the metric pair (hap, ©ij) -

Now, let DT'(N) be an N-linear connection on E*, locally defined by (3). The
linear connection DI'(NV) induces a linear connection on the set of d-tensors on the
dual 1-jet fibre bundle E* = J* (T, M), in a natural way. Thus, starting with a
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d-vector field X and a d-tensor field 7', locally expressed by

) 1) (a) 0
X = X Xt X
T P A O P
at 5 5 8
(k)(d) . ®

T = T,0)0). 50 ® 50 apt

® dt° @ da? @ 5pl ® ..

we can define the covariant derivative

DxT =X9D 5§ T+X*D 5 T+ X"
5t9 oxs op?

spai(k)(d).
.70 + X Ty Js+
(9)pai(k)(d)... () 0 4 0 .
+X<éq)TcJ( b)(1).. |(g)} 5t 52 © ap o ® dt¢ @ da? @ 6pl @ ..

where

e the T-horizontal covariant derivative of DI'(N):

SR @)
i) _ o0 it g
ei(b)(D)- /g 75,59 e (B)()...

(hy) ar(k)(d)... 4i ai(r)(d)-.. 4(f)(k)
w0 Are T Tei(pa. Amee T~

0
(D g7 O gD

)

)

ai(k)(d).. f ( ) _
~T; Azg — ( cj(b)(r)-.. “*(1)(F)g

Fi®)(0)-. r(b)

e the M-horizontal covariant derivative of DI'(N):

. ST

st T it

e\ (5025)) Hyg TM(%((;? Hil s
i T

e the vertical covariant derivative of DI'(N):

ai (k) (d)...
e GO | fi(k)(d)or vals)
Tt I = — o0~ T L. Criot
(v) ar(k)(d)... i(s) | pai(m)(d).. A H(K)(S)
w0, Crg T Tehmw.. Comie T

ai(k)d) .. (8) _ (k) (d)... (s
Ty Cetey ~ Termyy.. Citg

Remark 2.2. If T =Y is a d-vector field on E*, locally expressed by

)) 7@K (f)-o ~(d)(r)(5)

) 1) (@) O
vy 4+yvi% 4y
sta T S T gpe

cj(O)(r)... “(M()g)

ceey
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then the following expressions of the local covariant derivatives hold good:

oye oye

Y‘/‘C = 5 + YbAbc, YC‘L]C S + Yngk’
(h) Vi = (;YZ +YIAL, (har) { Y= ‘;Yk +YIH,
v 28 yogen | v 2 20y
(8= g+
w) { Yl = gYC‘ +yici®),

(@
_ M wp@nm

op§ () ~@®)(e)

3. Components of h-normal N-linear connections on dual 1-jet spaces

Because the number of components which characterize an N-linear connection
on E* is big one (nine local components), we are constrained to study only a partic-
ular class of N-linear connections on E*, which must be characterized by a reduced
number of components. In this direction, let us fix on the temporal manifold T a
semi-Riemannian metric hgy,, together with its Christoffel symbols x¢.. Let J be the
h-normalization d-tensor field on E*, locally expressed by [5]

J= J(Z)bjép? @ dt® ® dat,

(a)
where J, ((;)) b = hab5§. In this context, we introduce the following geometrical concept:

Definition 3.1. An N-linear connection DI'(N) on E*, whose local components (3)
verify the relations

{2

Ag = XL, HE =0, CZ((Z)) =0, DJ =0,
s called an h-normal N -linear connection on the dual 1-jet fibre bundle E*.

Theorem 3.1. The adapted components of an h-normal N -linear connection DI'(N)
verify the following identities:

Al =xi, Hi=0, Cil =0,

(@)(@) _ (@)(G) _ j
A(l)( be — S5 AL, — 81X Heyon = oy H, (4)

(@) (k) _ 3 (k)

Ciine = % -
Proof. Tt is obvious that the first three relations come immediately from the defi-
nition of an h-normal N-linear connection. To prove the other three relations, we
emphasize that, taking into account the definition of the local T-horizontal (” /g”),
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M-horizontal (”|,”) and vertical (" |E;§”) covariant derivatives produced by DI'(NV),
the condition DJ = 0 is equivalent to

(@) _ @ _ (@ ((s) _
Tawirg =0 Tapits =0 Tauilig) =0
Consequently, the condition DJ = 0 provides the local identities

NG i i Ohap
hog Agj))((a))c = hapAje — 0; < e hagX‘Zc) 7
HE) i (HE)(k) _ i(k)
horH gy oy = Moot hosCiiiaye) = el
Contracting now the above relations by h%¢, we obtain the last required identities
from (4). O

Remark 3.1. The above theorem says us that an h-normal N -linear connection on
E* is an N-linear connection determined by four effective components (instead of
nine in the general case):
DE(N) = (X Aler Hip, C1)

The other five components either vanish or are provided by the relations (4). Conse-
quently, we can assert that the Berwald Ny-linear connection associated to the pair
of metrics (hap, ij) is an h-normal Ny-linear connection on E*, whose four effective
components are

BT (No) = (Xf, 0, T, 0).
4. Adapted components of torsion and curvature tensors

The study of the adapted components of the torsion and curvature tensors of
an arbitrary N-linear connection DI'(N) on E* was done in [5]. In that context,
one proves that the torsion tensor T is determined by twelve effective local adapted
d-tensors, while the curvature tensor R is determined by eighteen local adapted
d-tensors. In what follows, we study the adapted components of the torsion and
curvature tensors for an h-normal N-linear connection DI'(V).

Theorem 4.1. The torsion tensor T of an h-normal N -linear connection DI'(N) is
determined by nine effective local adapted d-tensors (instead of twelve in the general
case):

I [ [ A [0 |

hehe o [o [ RD,
hahr [0 |7z | BT,

) ()
vhr 0 |0 P(T)a(b) (5)
ks [0 |1 | R,

D [ ph G

vha )0 | Pigy || Peviy

QIO
v 99 ] 5e@e)

where

_ ro_ r(i) _ ()
Toj=—Ajer Ty =H;—Hj, Py =Cyg)
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n ()
p) ) _ O o L5l Al — 5 P G) _ oo )
(r)a(b) 3p§) Xba’ (r)i(b) 85’ b 7o
() () () (/)
¢ Nee Wew 0 e 0N
(r)ab = " ggb st Nmar T g T T gpe
(f) )
PO LGS (G N (s1€19) — s i)
i = Tom om0 0@ a®re) ~ % “r(a))

Proof. Particularizing the general local expressions from [5], which generally give
those twelve d-components of the torsion tensor of an N-linear connection, for an h-
normal N-linear connection DI'(N), we deduce that the adapted components T}, Tlfj

and P2 vanish, while the other nine are given by the formulas from theorem. [

b(c)
Remark 4.1. All torsion d-tensors of the Berwald h-normal Ny-linear connection
BT (No) (associated to the metrics hqy and @;j) are zero, except

(r)ab — = XgabPr> (r)ij 7R$‘sz5’

where x ab( ) (resp. R;:(x)) are the local curvature tensors of the semi-Riemannian
metric hab (resp. @ij).

Theorem 4.2. The curvature R of an h-normal N-linear connection DI'(N) is
characterized by 7 effective local d-tensors (instead of 18 in the general case):

I [hy [[hy o |
0
hehy || X || Rise —Rgl))((g = 0\ Xabe — OaRtipe
hathg |10 Rl Rgl))((;gbk —Oa Riy
U (k) @@ &) _  capt (k)
why ]| 0 ive) || st = %aBune) (6)
hhar [0 [ B [ -ROG, = —0iR,
T (k) @@ k) _  cdapt (k)
e a0 Ree L
1(7)(k _ d 7)(k _ d il k
wo 10 | Sige | —Somee = —%Sike
where
ox4,  oxd,
R(Cllbc = ngc = 5tcb (Stb + ngXfc X£Cbe>
SAL  5AL
[ b ic r oAl r Al U(r) p(f)
szc - 5tc (Stb + A'LbA AZCArb + C( )R( )be?
5A SH!
l b Zk r Iyl r Al 1(r) p(f)
Ry, = 5ok o + Ay, — Hip Ay + Ci ) By
!
LRy _ OAy k) 1(r) p(f) (k)
P = - C. +C. P ,
ib(c) api i(c)/b i(f)” (r)b(c)
SHL.  sH!
| g ik r ryl r oyl Ur) p(f)
ih = Goh ~ ogi T B — HipHy + Gy Ry
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OH!,
v _ OH i p) o)
@) = e~ Cioli TG st
1G)  Hol®)
so0 _ %0 90, i) o) i)
00 = g~ g T i Yo T G0 Gy

Proof. The general formulas that express the local curvature d-tensors of an arbi-
trary N-linear connection (for more details, see [5]), applied to the particular case of
an h-normal N-linear connection DI'(N), imply the above formulas and the relations
from the Table (6). O

Remark 4.2. In the case of the Berwald h-normal Ny-linear connection BI'(Ny)
(associated to the pair of metrics (hap, @ij)), all curvature d-tensors are zero, except

d _ .d @) _ i d (d) (D) d
Rape = Xabes R()(a)bc—_élXabca Rz ka’ R(i)() =04 R;

where Xg p(t) (resp. R7.;(x)) are the local curvature tensors of the semi-Riemannian
metric hqp (Tesp. @ij).

ijk>

5. Local Ricci identities. Non-metrical deflection d-tensor identities
Let us consider now the following more particular geometrical concept:

Definition 5.1. An h-normal N -linear connection, whose local components
— ] i(k)
CDT(N) = (Xfer Abes B €58 )

verify the relations

i i i(k) _ k()
Hjw = Hij: Cjie) = Cley
is called an h-normal N-linear connection of Cartan type or a CDI'(N)-
linear connection on E* = JY (T, M).

Remark 5.1. The torsion tensor T of an h-normal N -linear connection of Cartan
type CDT'(N) s characterized only by eight adapted local d-tensors because the
torsion components T]Zk = H]Zk — H,ij from the Table (5) are vanishing.

Example 5.1. Taking into account that the Christoffel symbols F;k(x) of the spa-
tial metric ;;(x) are symmetric, it follows that the Berwald h-normal Ny-linear
connection BT'(Ny) is of Cartan type.
Theorem 5.1. The following local Ricci identities for a CDI'(N)-linear connec-
tion are true:

e the hy-Ricci identities:

a _Ya _ v /fva al(r) p(f)
X/b/c X/c/b =X bec X |(f)R (r)be?

a a _ a a (7") ( )
Xk = X = — X510 — X ) Biyen

a a _ _vya (r) p(f)
X = Xiwy = =X Birygw
a |(k) _Xa|(k) —Xa|(T)P( ) (k)

(c)/b ()" (rdle) 2
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) p(f) (k)
yE i)

NG,
b)(c)’

a®  yal® _ xarr®  ya
Xiilio = Xy = —XiCi — X

a a k a
x| @l - Xl = -x

/\AA

S5

=

o the hjps-Ricci identities:

1(7”) (f)
= X ) Be:

i|(r) p(f)
Tbk X ’(f)R (r)bk>

X",

Xivje = Xjep =
Xiy = Xip = X" Ry — X]

|r

Xiie = Xjgy = X" Ry, —

1) pf)
X op B

X se = X e = X Bive = X( Xoe = X(“)\f) B e
Xk = Xt = X0 R = X0, Tk = X0 1 B
Xl = Xy = X0 Bl — f‘?lﬁiRﬁr?gw

R =G
68 X1, ~ XL ¥, X
X ilie = X&) oo = X Skt — X St
where

) 1) (@) O
X=X+ X' — +X
ote + ozt + (2) 3 &

is an arbitrary d-vector field on the dual 1-jet space E* = JY (T, M).

Proof. Let (Yy) and (w?), where A € {a,i,g?))}, be on E* = J™(T, M) the dual
bases adapted to the nonlinear connection N, and let X = X¥'Yy be a d-vector field
on E*. In this context, using the following true equalities (applied for a CDI'(N)-
linear connection D):

(1) DyoYp =TheYr,

(2) [YB,Yc] = RicYr,

(3) T(Ye, V) = TpeYr = {The — Tep — REp}Yr,

(4) (Y07 YB)YA = RABCYFa
(5)

R
b) DYC = —chwF,
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(6) [R(YC’ YB)X] & w? ® wC = {DYCDYBX_

—Dy, Dy, X — Dy, y;1 X} @ wP @ w,

by a direct calculation, we find that
Xbo - Xip = X Ritpe — X3 The, (7)
2 2 ” 2 » "N 2 |(])77

where ”.¢” represents one from the local covariant derivatives ” "7, ”|;” or

produced by the h-normal N-linear connection of Cartan type C'DI'(N).
Taking into account in (7) that the indices A, B,C, ... belong to the set

{a,z,gj;}

and using the particular features of an h-normal N-linear connection of Cartan
type CDI'(N) (i.e., the torsion d-components T}, are zero; we have the curvature

relations from the Table (6)), by complicated computations, we find what we were
looking for (see also the Table (5)). O

In order to find an interesting application of the preceding Ricci identities,
let us consider the canonical Liouville-Hamilton d-tensor field of polymomenta on

E* = JY(T, M), which is given by

0

C*=p?¢ )

In this context, for an h-normal N-linear connection of Cartan type CDI'(N), we
can construct the non-metrical deflection d-tensors, setting

@ _ 4 (@ @G —al0)
Ay =Py Dayy =Py Yy = Pilgy

where 7 7, 7 ;" are the local covariant derivatives produced by C DI'(V).

By direct local computations, we deduce that the non-metrical deflection d-
tensors of C'DI'(N) have the expressions:

and ” ’(J 9

(@) _ (a) T oa a [ (a) _ (a)
A(z) N(Z)b Ajypr + XpDi 5 A(Z) = —];7(1') — Hi;pf,

@G) _ saxi () a
Yiw = 959 — Cigy pr-

Applying now the preceding (v)-set of Ricci identities (attached to an h-normal
N-linear connection of Cartan type) to the components of the canonical Liouville-
Hamilton d-vector field of polymomenta, we get
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Corollary 5.1. The following the deflection d-tensor identities, associated to
an h-normal N-linear connection of Cartan type, are true:

(@) A @) pl)
Alfse = Do = PERI = 21X e = 95 Bt oe

(a) (a) o o @ e g(@®) p(f)
A(z)b\k A(z)k/b szk A(z) Tbk: - 19(1)( )R(r)bk
(a) @ o apr @) ()
Aiyjik A(z)ku PERE L = I B .
(@) (k) o () _ @) pl) (®
Al = 9 Pivey = iy Eimpee)

(@ () _ g@®) _ apr () _ A@ o) _ @) ph)
Ao = Y6eu =PrPhe — AorCie — e Peie)
@0 () _ g@m)0) _ agr)E) _ g(@)(n) g6k
Iom o~ Yoe b = PSiae — Y0mSmme -

(a)

(l) )/b Prtop(c)
(a) (k)

@) —

)
)

Remark 5.2. The deflection d-tensor identities (8) will be used in the near future
for the construction of the geometrical Maxwell equations that will govern the
abstract multi-time geometrical ”electromagnetism” produced by o quadratic Hamil-
tonian depending on polymomenta (this is our work in progress).

6. The local Bianchi identities of the CDI'(N)-connections on the
dual jet bundle J*(T, M)

From the general theory of linear connections on a vector bundle, one knows
that the torsions T and curvature R of a connection D on the dual 1-jet space
E* = J¥(T, M) are not independent. In other words, they are interrelated by the
following general Bianchi identities (for any X,Y, Z, U € X (E*)):

> {(DxT)(V,2) -R(X,Y)Z+T(T(X,Y),Z)} =0,
{X,Y,Z}
> (DxR)(Y,Z,U)+R(T(X,Y), Z2)U =0,
{XY.z}
where Yy y 71 means a cyclic sum. Obviously, working with a C'DT'(IV)-linear
connection and the local adapted basis of d-vector fields (X 4) C X (E*) (associated
to the given nonlinear connection N on E*), the above Bianchi identities are locally
described by the equalities:

> {RZBC - TZB:C - TgBTgG} =0,

(AB,C}
(9)
> {RDapc +TisRbca} =0,
(AB.C}
where R(X 4, Xp)Xc = RCBAXD, T(Xa,XB) = TBAXD7 and ”.o” represents one
from the local covariant derivatives ” /", ”;” or ”|EZ))” of the CDI'(N)-linear con-

nection D (for similar details, see the works [15], [16] and [19]). Consequently, we
find:

Theorem 6.1. The following thirty effective local Bianchi identities for an h-
normal N -linear connection of Cartan type CDT'(N) are true on the dual 1-jet space
E* = JY(T,M):
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@ G R L olf) ) DEE) i
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e the eight set:
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o the nineth set:
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e the eleventh set:

1(i)(4) | (k) (M@ (5) k) (f)| _
0. 20 @ {Saamlte) + S Sem =0
where, if {A, B,C} are indices of type {a,i, E?))}, then Z{A,B,C} represents a
cyclic sum, and Aqy gy represents an alternate sum.

Proof. Taking into account that the indices A, B, C, D... are of type

(o).

and the torsion TgB and curvature REBC adapted components are given in the
Tables (5) and (6), after laborious local computations, the formulas (9) imply the
required Bianchi identities. ([l

Remark 6.1. We point out that, in the particular single-time case
(T,h) = (R,0 =1),

the last identity of our each set of local Bianchi identities reduces to one of the
classical eleven Bianchi identities that characterize the N-linear connections in the
classical Hamilton geometry on cotangent bundles (see [16]).
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