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In this paper we describe the local Ricci and Bianchi identities for an h-
normal N-linear connection DΓ(N) on the dual 1-jet space J1∗(T,M). To reach
this aim, we firstly give the expressions of the local distinguished (d-) adapted
components of torsion and curvature tensors produced by DΓ(N), and then we
analyze their attached local Ricci identities. The derived deflection d-tensor iden-
tities are also presented. Finally, we expose the local expressions of the Bianchi
identities (in the particular case of an h-normal N-linear connection of Cartan
type), which geometrically connect the local torsion and curvature d-tensors of the
linear connection DΓ(N).
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1. Introduction

According to Olver’s opinion [23], we consider that the 1-jet spaces and their
duals are natural houses for the study of classical and quantum field theories. For
such a reason, the differential geometry of 1-jet spaces was intensively studied, in a
contravariant approach, by a lot of authors: Saunders [30], Asanov [1], Neagu and
Udrişte (see [20], [21], [22]), and many others.

In the last decades, numerous physicists and geometers were preoccupied by
the development of that so-called the covariant Hamiltonian geometry of physical
fields, which is a multi-parameter, or multi-time, extension of the classical Hamil-
tonian formulation from Mechanics. In such a perspective, we point out that the
covariant Hamiltonian geometry of physical fields appears in the literature of spe-
cialty in three distinct variants: (1) I the multisymplectic geometry − developed
by Gotay, Isenberg, Marsden, Montgomery and their co-workers (see [10], [9]) on a
finite-dimensional multisymplectic phase space; (2) I the polysymplectic geometry
− elaborated by Giachetta, Mangiarotti and Sardanashvily (see [7], [8]), which em-
phasizes the relations between the equations of first order Lagrangian field theory on
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Informatics, University ”Transilvania” of Braşov, Romania, E-mail: alexandru.oana@unitbv.ro

99



100 Mircea Neagu, Alexandru Oană

fiber bundles and the covariant Hamilton equations on a finite-dimensional polysym-
plectic phase space; (3) I the De Donder-Weyl Hamiltonian geometry − studied
by Kanatchikov (see [11], [12], [13]) as opposed to the conventional field-theoretical
Hamiltonian formalism, which requires the space + time decomposition and leads
to the picture of a field as a mechanical system with infinitely degrees of freedom.

From a geometrical point of view, following the ideas initially stated by Asanov
[1], a multi-time Lagrange contravariant geometry on 1-jet spaces (in the sense of
d-linear connections, d-torsions and d-curvatures) was recently developed by Neagu
and Udrişte in [20], [21] and [22]. This 1-jet geometrical theory is a natural multi-
time extension of the classical Lagrangian geometry on tangent bundles, initiated
and developed by Miron and Anastasiei [15].

On the other hand, suggested by the field theoretical extension of the ba-
sic structures of classical Analytical Mechanics within the framework of the De
Donder-Weyl covariant Hamiltonian formulation, the geometrical studies of Miron
[14], Atanasiu [3], [2] and others led to the development of the Hamilton geometry
on cotangent bundles, which is synthesized in the book [16]. Note that the Miron-
Atanasiu Hamiltonian geometrical ideas from cotangent bundles represent the point
start for the development of the jet covariant Riemann-Hamilton geometry depend-
ing on polymomenta, which is presented in the Atanasiu-Neagu papers [4] and [5].
In this paper we are going on the jet multi-time Hamiltonian geometrical studies
from [4] and [5].

2. Components of N-linear connections on dual 1-jet bundle J1∗(T,M)

Let T and M be a temporal (resp. spatial) real, smooth manifold of dimension
m (resp. n), whose coordinates are (ta)a=1,m, respectively (xi)i=1,n. Note that,
throughout this paper, the indices a, b, c, ... run from 1 to m, while the indices i,
j, k, ... run from 1 to n. The Einstein convention of summation is also adopted all
over this work.

Let J1∗(T,M) be the dual 1-jet fibre bundle, whose coordinates (ta, xi, pai ) are
induced from T and M . The coordinate transformations from the product manifold
T× M produce on J1∗(T,M) the following coordinate transformations:

t̃a = t̃a
(
tb
)
, x̃i = x̃i

(
xj
)
, p̃ai =

∂xj

∂x̃i
∂t̃a

∂tb
pbj ,

where det
(
∂t̃a/∂tb

)
̸= 0 and det

(
∂x̃i/∂xj

)
̸= 0.

Definition 2.1. A pair of local functions on E∗ = J1∗(T,M), denoted by

N =

(
N
1

(a)
(i)b, N

2

(a)
(i)j

)
,

whose local components obey the transformation rules

Ñ
1

(b)
(j)c

δt̃c

δta
= N

1

(c)
(k)a

δt̃b

δtc
∂xk

∂x̃j
−

∂p̃bj
∂ta

,

Ñ
2

(b)
(j)k

∂x̃k

∂xi
= N

2

(c)
(k)i

δt̃b

δtc
∂xk

∂x̃j
−

∂p̃bj
∂xi

,
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is called a nonlinear connection on E∗. The components N
1

(a)
(i)b (resp. N

2

(a)
(i)j) are

called the temporal (resp. spatial) components of N .

Example 2.1. Let hab
(
tf
)
(resp. φij

(
xk

)
) be a semi-Riemannian metric on the

temporal manifold T (resp. spatial manifold M). Taking into account the local
transformation rules of the Christoffel symbols χa

bc (t) (resp. Γk
ij (x)) of the metrics

hab (t) (resp. φij (x)), then the pair of local functions

N0 =

(
0
N
1

(a)
(i)b,

0
N
2

(a)
(i)j

)
,

where
0
N
1

(a)
(i)b = χa

bcp
c
i ,

0
N
2

(a)
(i)j = −Γk

ijp
a
k,

represents a nonlinear connection on E∗. This is called the canonical nonli-
near connection attached to the metrics hab(t) and φij(x).

In what follows, we fix a nonlinear connection on E∗, and we consider the
adapted bases of the nonlinear connection N , defined by{

δ

δta
,
δ

δxi
,

∂

∂pai

}
⊂ X (E∗) ,

{
dta, dxi, δpai

}
⊂ X∗ (E∗) , (1)

where
δ

δta
=

∂

∂ta
−N

1

(b)
(j)a

∂

∂pbj
,

δ

δxi
=

∂

∂xi
−N

2

(b)
(j)i

∂

∂pbj
,

δpai = dpai +N
1

(a)
(i)bdt

b +N
2

(a)
(i)jdx

j .

It is important to note that the transformation rules of the elements of the adapted
bases (1) are tensorial ones:

δ

δta
=

∂t̃b

∂ta
δ

δt̃b
,

δ

δxi
=

∂x̃j

∂xi
δ

δx̃j
,

∂

∂pai
=

∂t̃b

∂ta
∂xi

∂x̃j
∂

∂p̃bj
,

dta =
∂ta

∂t̃b
dt̃b, dxi =

∂xi

∂x̃j
dx̃j , δpai =

∂ta

∂t̃b
∂x̃j

∂xi
δp̃bj .

(2)

Remark 2.1. The simple tensorial transformation rules (2) of the adapted bases
(1) determined us to describe in what follows all geometrical objects on the dual 1-jet
space J1∗(T,M) in adapted local components.

In order to develop the geometrical theory of N -linear connections on the dual
1-jet space E∗, we need the following result:

Proposition 2.1. (i) The Lie algebra X (E∗) of vector fields decomposes as

X (E∗) = X (HT)⊕ X (HM )⊕ X (V) ,

where

X (HT)=Span

{
δ

δta

}
, X (HM )=Span

{
δ

δxi

}
, X (V)=Span

{
∂

∂pai

}
.
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(ii) The Lie algebra X∗ (E∗) of covector fields decomposes as

X∗ (E∗) = X∗ (HT)⊕ X∗ (HM )⊕ X∗ (V) ,

where

X∗ (HT)=Span {dta} , X∗ (HM )=Span
{
dxi

}
, X∗ (V)=Span {δpai } .

Let us consider that hT, hM (horizontal) and v (vertical) are the canonical
projections of the above decompositions. In this context, we introduce the following
geometrical concept:

Definition 2.2. A linear connection D : X (E∗) × X (E∗) → X (E∗) is called an
N-linear connection on E∗ if and only if DhT = 0, DhM = 0 and Dv = 0.

It is obvious that the local description of the N -linear connection D on E∗ is
accomplished by nine unique adapted components

DΓ (N) =
(
Aa

bc, Ai
jc, −A

(a)(j)
(i)(b)c, Ha

bk, H i
jk, −H

(a)(j)
(i)(b)k,

C
a(k)
b(c) , C

i(k)
j(c) , − C

(a)(j)(k)
(i)(b)(c)

) , (3)

which are locally defined by the relations:

D δ

δtc

δ

δtb
= Aa

bc

δ

δta
, D δ

δtc

δ

δxj
= Ai

jc

δ

δxi
, D δ

δtc

∂

∂pbj
= −A

(a)(j)
(i)(b)c

∂

∂pai
,

D δ

δxk

δ

δtb
= Ha

bk

δ

δta
, D δ

δxk

δ

δxj
= H i

jk

δ

δxi
, D δ

δxk

∂

∂pbj
= −H

(a)(j)
(i)(b)k

∂

∂pai
,

D ∂

∂pck

δ

δtb
= C

a(k)
b(c)

δ

δta
, D ∂

∂pck

δ

δxj
= C

i(k)
j(c)

δ

δxi
, D ∂

∂pck

∂

∂pbj
= −C

(a)(j)(k)
(i)(b)(c)

∂

∂pai
.

Example 2.2. Let N0 =

(
0
N
1

(a)
(i)b,

0
N
2

(a)
(i)j

)
be the canonical nonlinear connection

produced by the semi-Riemannian metrics (hab, φij). Taking into account the trans-
formation rules of the Christoffel symbols χa

bc and Γi
jk, by local computations, we

can show that the local components

BΓ (N0) =
(
χa
bc, 0, −A

(a)(j)
(i)(b)c, 0, Γi

jk, −H
(a)(j)
(i)(b)k, 0, 0, 0

)
,

where

A
(a)(j)
(i)(b)c = −δjiχ

a
bc, H

(a)(j)
(i)(b)k = δabΓ

j
ik,

verify the transformation rules of the components of an N -linear connection (for
more details, see [5]). Consequently, BΓ (N0) is an N0-linear connection on E∗,
which is called the Berwald connection of the metric pair (hab, φij) .

Now, let DΓ(N) be an N -linear connection on E∗, locally defined by (3). The
linear connection DΓ(N) induces a linear connection on the set of d-tensors on the
dual 1-jet fibre bundle E∗ = J1∗ (T,M) , in a natural way. Thus, starting with a
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d-vector field X and a d-tensor field T , locally expressed by

X = Xa δ

δta
+Xi δ

δxi
+X

(a)
(i)

∂

∂pai
,

T = T
ai(k)(d)...
cj(b)(l)...

δ

δta
⊗ δ

δxi
⊗ ∂

∂pdl
⊗ dtc ⊗ dxj ⊗ δpbk ⊗ ...,

we can define the covariant derivative

DXT = XgD δ

δtg

T +XsD δ

δxs

T +X
(g)
(s)D ∂

∂pgs

T =

=
{
XgT

ai(k)(d)...
cj(b)(l).../g +XsT

ai(k)(d)...
cj(b)(l)...|s+

+X
(g)
(s)T

ai(k)(d)...
cj(b)(l)... |(s)(g)

} δ

δta
⊗ δ

δxi
⊗ ∂

∂pdl
⊗ dtc ⊗ dxj ⊗ δpbk ⊗ ...,

where

• the T-horizontal covariant derivative of DΓ(N):

(hT)


T
ai(k)(d)...
cj(b)(l).../g =

δT
ai(k)(d)...
cj(b)(l)...

δtg
+ T

fi(k)(d)...
cj(b)(l)... A

a
fg+

+T
ar(k)(d)...
cj(b)(l)... Ai

rg + T
ai(r)(d)...
cj(f)(l)... A

(f)(k)
(r)(b)g + ...−

−T
ai(k)(d)...
fj(b)(l)... A

f
cg − T

ai(k)(d)...
cr(b)(l)... A

r
jg − T

ai(k)(f)...
cj(b)(r)... A

(d)(r)
(l)(f)g − ...,

• the M -horizontal covariant derivative of DΓ(N):

(hM )


T
ai(k)(d)...
cj(b)(l)...|s =

δT
ai(k)(d)...
cj(b)(l)...

δxs
+ T

fi(k)(d)...
cj(b)(l)... H

a
fs+

+T
ar(k)(d)...
cj(b)(l)... H i

rs + T
ai(r)(d)...
cj(f)(l)... H

(f)(k)
(r)(b)s + ...−

−T
ai(k)(d)...
fj(b)(l)... H

f
cs − T

ai(k)(d)...
cr(b)(l)... H

r
js − T

ai(k)(f)...
cj(b)(r)... H

(d)(r)
(l)(f)s − ...,

• the vertical covariant derivative of DΓ(N):

(v)


T
ai(k)(d)...
cj(b)(l)... |

(s)
(g) =

∂T
ai(k)(d)...
cj(b)(l)...

∂pgs
+ T

fi(k)(d)...
cj(b)(l)... C

a(s)
f(g)+

+T
ar(k)(d)...
cj(b)(l)... C

i(s)
r(g) + T

ai(r)(d)...
cj(f)(l)... C

(f)(k)(s)
(r)(b)(g) + ...−

−T
ai(k)(d)...
fj(b)(l)... C

f(s)
c(g) − T

ai(k)(d)...
cr(b)(l)... C

r(s)
j(g) − T

ai(k)(f)...
cj(b)(r)... C

(d)(r)(s)
(l)(f)(g) − ....

Remark 2.2. If T = Y is a d-vector field on E∗, locally expressed by

Y = Y a δ

δta
+ Y i δ

δxi
+ Y

(a)
(i)

∂

∂pai
,
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then the following expressions of the local covariant derivatives hold good:

(hT)



Y a
/c =

δY a

δtc
+ Y bAa

bc,

Y i
/c =

δY i

δtc
+ Y jAi

jc,

Y
(a)
(i)/c =

δY
(a)
(i)

δtc
− Y

(b)
(j) A

(a)(j)
(i)(b)c,

(hM )



Y a
|k =

δY a

δxk
+ Y bHa

bk,

Y i
|k =

δY i

δxk
+ Y jH i

jk,

Y
(a)
(i)|k =

δY
(a)
(i)

δxk
− Y

(b)
(j) H

(a)(j)
(i)(b)k,

(v)



Y a|(k)(c) =
∂Y a

∂pck
+ Y bC

a(k)
b(c) ,

Y i|(k)(c) =
∂Y i

∂pck
+ Y jC

i(k)
j(c) ,

Y
(a)
(i) |(k)(c) =

∂Y
(a)
(i)

∂pck
− Y

(b)
(j) C

(a)(j)(k)
(i)(b)(c) .

3. Components of h-normal N-linear connections on dual 1-jet spaces

Because the number of components which characterize an N -linear connection
on E∗ is big one (nine local components), we are constrained to study only a partic-
ular class of N -linear connections on E∗, which must be characterized by a reduced
number of components. In this direction, let us fix on the temporal manifold T a
semi-Riemannian metric hab, together with its Christoffel symbols χa

bc. Let J be the
h-normalization d-tensor field on E∗, locally expressed by [5]

J = J
(i)
(a)bjδp

a
i ⊗ dtb ⊗ dxj ,

where J
(i)
(a)bj = habδ

i
j . In this context, we introduce the following geometrical concept:

Definition 3.1. An N -linear connection DΓ(N) on E∗, whose local components (3)
verify the relations

Aa
bc = χa

bc, Ha
bi = 0, C

a(i)
b(c) = 0, DJ = 0,

is called an h-normal N-linear connection on the dual 1-jet fibre bundle E∗.

Theorem 3.1. The adapted components of an h-normal N -linear connection DΓ(N)
verify the following identities:

Aa
bc = χa

bc, Ha
bi = 0, C

a(i)
b(c) = 0,

A
(a)(j)
(i)(b)c = δabA

j
ic − δjiχ

a
bc, H

(a)(j)
(i)(b)k = δabH

j
ik,

C
(a)(j)(k)
(i)(b)(c) = δabC

j(k)
i(c) .

(4)

Proof. It is obvious that the first three relations come immediately from the defi-
nition of an h-normal N -linear connection. To prove the other three relations, we
emphasize that, taking into account the definition of the local T-horizontal (”/g”),



Bianchi identities in the jet polymomentum Hamilton geometry 105

M -horizontal (”|s”) and vertical (”|(s)(g)”) covariant derivatives produced by DΓ(N),

the condition DJ = 0 is equivalent to

J
(i)
(a)bj/g = 0, J

(i)
(a)bj|s = 0, J

(i)
(a)bj |

(s)
(g) = 0.

Consequently, the condition DJ = 0 provides the local identities

hbfA
(f)(i)
(j)(a)c = habA

i
jc − δij

(
∂hab
∂tc

− hagχ
g
bc

)
,

hbfH
(f)(i)
(j)(a)k = hbaH

i
jk, hbfC

(f)(i)(k)
(j)(a)(c) = hbaC

i(k)
j(c) .

Contracting now the above relations by hbe, we obtain the last required identities
from (4). �
Remark 3.1. The above theorem says us that an h-normal N -linear connection on
E∗ is an N -linear connection determined by four effective components (instead of
nine in the general case):

DΓ(N) =
(
χa
bc, Ai

jc, H i
jk, C

i(k)
j(c)

)
.

The other five components either vanish or are provided by the relations (4). Conse-
quently, we can assert that the Berwald N0-linear connection associated to the pair
of metrics (hab, φij) is an h-normal N0-linear connection on E∗, whose four effective
components are

BΓ (N0) =
(
χa
bc, 0, Γi

jk, 0
)
.

4. Adapted components of torsion and curvature tensors

The study of the adapted components of the torsion and curvature tensors of
an arbitrary N -linear connection DΓ(N) on E∗ was done in [5]. In that context,
one proves that the torsion tensor T is determined by twelve effective local adapted
d-tensors, while the curvature tensor R is determined by eighteen local adapted
d-tensors. In what follows, we study the adapted components of the torsion and
curvature tensors for an h-normal N -linear connection DΓ(N).

Theorem 4.1. The torsion tensor T of an h-normal N -linear connection DΓ(N) is
determined by nine effective local adapted d-tensors (instead of twelve in the general
case):

hT hM v

hThT 0 0 R
(f)
(r)ab

hMhT 0 T r
aj R

(f)
(r)aj

vhT 0 0 P
(f) (j)
(r)a(b)

hMhM 0 T r
ij R

(f)
(r)ij

vhM 0 P
r(j)
i(b) P

(f) (j)
(r)i(b)

vv 0 0 S
(f)(i)(j)
(r)(a)(b)

(5)

where
T r
aj = −Ar

ja, T r
ij = Hr

ij −Hr
ji, P

r(j)
i(b) = C

r(j)
i(b) ,
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P
(f) (j)
(r)a(b) =

∂N
1

(f)
(r)a

∂pbj
+ δfbA

j
ra − δjrχ

f
ba, P

(f) (j)
(r)i(b) =

∂N
2

(f)
(r)i

∂pbj
+ δfbH

j
ri,

R
(f)
(r)ab =

δN
1

(f)
(r)a

δtb
−

δN
1

(f)
(r)b

δta
, R

(f)
(r)aj =

δN
1

(f)
(r)a

δxj
−

δN
2

(f)
(r)i

δta
,

R
(f)
(r)ij =

δN
2

(f)
(r)i

δxj
−

δN
2

(f)
(r)j

δxi
, S

(f)(i)(j)
(r)(a)(b) = −

(
δfaC

i(j)
r(b) − δfbC

j(i)
r(a)

)
.

Proof. Particularizing the general local expressions from [5], which generally give
those twelve d-components of the torsion tensor of an N -linear connection, for an h-
normalN -linear connectionDΓ(N), we deduce that the adapted components T a

bc, T
a
bj

and P
a(k)
b(c) vanish, while the other nine are given by the formulas from theorem. �

Remark 4.1. All torsion d-tensors of the Berwald h-normal N0-linear connection
BΓ (N0) (associated to the metrics hab and φij) are zero, except

R
(f)
(r)ab = χf

gabp
g
r , R

(f)
(r)ij = −Rs

rijp
f
s ,

where χf
gab(t) (resp. R

s
rij(x)) are the local curvature tensors of the semi-Riemannian

metric hab (resp. φij).

Theorem 4.2. The curvature R of an h-normal N -linear connection DΓ(N) is
characterized by 7 effective local d-tensors (instead of 18 in the general case):

hT hM v

hThT χd
abc Rl

ibc −R
(d)(i)
(l)(a)bc = δilχ

d
abc − δdaR

i
lbc

hMhT 0 Rl
ibk −R

(d)(i)
(l)(a)bk = −δdaR

i
lbk

whT 0 P
l (k)
ib(c) −P

(d)(i) (k)
(l)(a)b(c) = −δdaP

i (k)
lb(c)

hMhM 0 Rl
ijk −R

(d)(i)
(l)(a)jk = −δdaR

i
ljk

whM 0 P
l (k)
ij(c) −P

(d)(i) (k)
(l)(a)j(c) = −δdaP

i (k)
lj(c)

ww 0 S
l(j)(k)
i(b)(c) −S

(d)(i)(j)(k)
(l)(a)(b)(c) = −δdaS

i(j)(k)
l(b)(c)

(6)

where

Rd
abc := χd

abc =
δχd

ab

δtc
− δχd

ac

δtb
+ χf

abχ
d
fc − χf

acχd
fb,

Rl
ibc =

δAl
ib

δtc
− δAl

ic

δtb
+Ar

ibA
l
rc −Ar

icA
l
rb + C

l(r)
i(f)R

(f)
(r)bc,

Rl
ibk =

δAl
ib

δxk
−

δH l
ik

δtb
+Ar

ibH
l
rk −Hr

ikA
l
rb + C

l(r)
i(f)R

(f)
(r)bk,

P
l (k)
ib(c) =

∂Al
ib

∂pck
− C

l(k)
i(c)/b + C

l(r)
i(f)P

(f) (k)
(r)b(c) ,

Rl
ijk =

δH l
ij

δxk
−

δH l
ik

δxj
+Hr

ijH
l
rk −Hr

ikH
l
rj + C

l(r)
i(f)R

(f)
(r)jk,
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P
l (k)
ij(c) =

∂H l
ij

∂pck
− C

l(k)
i(c)|j + C

l(f)
i(r)P

(r) (k)
(f)j(c) ,

S
l(j)(k)
i(b)(c) =

∂C
l(j)
i(b)

∂pck
−

∂C
l(k)
i(c)

∂pbj
+ C

r(j)
i(b) C

l(k)
r(c) − C

r(k)
i(c) C

l(j)
r(b).

Proof. The general formulas that express the local curvature d-tensors of an arbi-
trary N -linear connection (for more details, see [5]), applied to the particular case of
an h-normal N -linear connectionDΓ(N), imply the above formulas and the relations
from the Table (6). �
Remark 4.2. In the case of the Berwald h-normal N0-linear connection BΓ(N0)
(associated to the pair of metrics (hab, φij)), all curvature d-tensors are zero, except

Rd
abc = χd

abc, R
(d)(i)
(l)(a)bc = −δilχ

d
abc, Rl

ijk = Rl
ijk, R

(d)(l)
(i)(a)jk = δdaR

l
ijk,

where χf
gab(t) (resp. R

s
rij(x)) are the local curvature tensors of the semi-Riemannian

metric hab (resp. φij).

5. Local Ricci identities. Non-metrical deflection d-tensor identities

Let us consider now the following more particular geometrical concept:

Definition 5.1. An h-normal N -linear connection, whose local components

CDΓ(N) =
(
χa
bc, Ai

jc, H i
jk, C

i(k)
j(c)

)
,

verify the relations

H i
jk = H i

kj , C
i(k)
j(c) = C

k(i)
j(c) ,

is called an h-normal N-linear connection of Cartan type or a CDΓ(N)-
linear connection on E∗ = J1∗ (T,M).

Remark 5.1. The torsion tensor T of an h-normal N -linear connection of Cartan
type CDΓ(N) is characterized only by eight adapted local d-tensors because the
torsion components T i

jk = H i
jk −H i

kj from the Table (5) are vanishing.

Example 5.1. Taking into account that the Christoffel symbols Γi
jk(x) of the spa-

tial metric φij(x) are symmetric, it follows that the Berwald h-normal N0-linear
connection BΓ(N0) is of Cartan type.

Theorem 5.1. The following local Ricci identities for a CDΓ(N)-linear connec-
tion are true:

• the hT-Ricci identities:

Xa
/b/c −Xa

/c/b = Xfχa
fbc −Xa|(r)(f)R

(f)
(r)bc,

Xa
/b|k −Xa

|k/b = −Xa
|rT

r
bk −Xa|(r)(f)R

(f)
(r)bk,

Xa
|j|k −Xa

|k|j = −Xa|(r)(f)R
(f)
(r)jk,

Xa
/b|

(k)
(c) −Xa|(k)(c)/b = −Xa|(r)(f)P

(f) (k)
(r)b(c) ,
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Xa
|j |

(k)
(c) −Xa|(k)(c)|j = −Xa

|rC
r(k)
j(c) −Xa|(r)(f)P

(f) (k)
(r)j(c) ,

Xa|(j)(b)|
(k)
(c) −Xa|(k)(c) |

(j)
(b) = −Xa|(r)(f)S

(f)(j)(k)
(r)(b)(c) ;

• the hM -Ricci identities:

Xi
/b/c −Xi

/c/b = XrRi
rbc −Xi|(r)(f)R

(f)
(r)bc,

Xi
/b|k −Xi

|k/b = XrRi
rbk −Xi

|rT
r
bk −Xi|(r)(f)R

(f)
(r)bk,

Xi
|j|k −Xi

|k|j = XrRi
rjk −Xi|(r)(f)R

(f)
(r)jk,

Xi
/b|

(k)
(c) −Xi|(k)(c)/b = XrP

i (k)
rb(c) −Xi|(r)(f)P

(f) (k)
(r)b(c) ,

Xi
|j |

(k)
(c) −Xi|(k)(c)|j = XrP

i (k)
rj(c) −Xi

|rC
r(k)
j(c) −Xi|(r)(f)P

(f) (k)
(r)j(c) ,

Xi|(j)(b)|
(k)
(c) −Xi|(k)(c) |

(j)
(b) = XrS

i(j)(k)
r(b)(c) −Xi|(r)(f)S

(f)(j)(k)
(r)(b)(c) ;

• the v-Ricci identities:

X
(a)
(i)/b/c −X

(a)
(i)/c/b = X

(a)
(r)R

r
ibc −X

(f)
(i) χ

a
fbc −X

(a)
(i) |

(r)
(f)R

(f)
(r)bc,

X
(a)
(i)/b|k −X

(a)
(i)|k/b = X

(a)
(r)R

r
ibk −X

(a)
(i)|rT

r
bk −X

(a)
(i) |

(r)
(f)R

(f)
(r)bk,

X
(a)
(i)|j|k −X

(a)
(i)|k|j = X

(a)
(r)R

r
ijk −X

(a)
(i) |

(r)
(f)R

(f)
(r)jk,

X
(a)
(i)/b|

(k)
(c) −X

(a)
(i) |

(k)
(c)/b = X

(a)
(r)P

r (k)
ib(c) −X

(a)
(i) |

(r)
(f)P

(f) (k)
(r)b(c) ,

X
(a)
(i)|j |

(k)
(c) −X

(a)
(i) |

(k)
(c)|j = X

(a)
(r)P

r (k)
ij(c) −X

(a)
(i)|rC

r(k)
j(c) −X

(a)
(i) |

(r)
(f)P

(f) (k)
(r)j(c),

X
(a)
(i) |

(j)
(b)|

(k)
(c) −X

(a)
(i) |

(k)
(c) |

(j)
(b) = X

(a)
(r)S

r(j)(k)
i(b)(c) −X

(a)
(i) |

(r)
(f)S

(f)(j)(k)
(r)(b)(c) ,

where

X = Xa δ

δta
+Xi δ

δxi
+X

(a)
(i)

∂

∂pai
is an arbitrary d-vector field on the dual 1-jet space E∗ = J1∗(T,M).

Proof. Let (YA) and (ωA), where A ∈
{
a, i,

(a)
(i)

}
, be on E∗ = J1∗(T,M) the dual

bases adapted to the nonlinear connection N , and let X = XFYF be a d-vector field
on E∗. In this context, using the following true equalities (applied for a CDΓ(N)-
linear connection D):

(1) DYC
YB = ΓF

BCYF ,

(2) [YB, YC ] = RF
BCYF ,

(3) T(YC , YB) = TF
BCYF = {ΓF

BC − ΓF
CB −RF

CB}YF ,

(4) R(YC , YB)YA = RF
ABCYF ,

(5) DYC
ωB = −ΓB

FCω
F ,
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(6) [R(YC , YB)X]⊗ ωB ⊗ ωC = {DYC
DYB

X−

−DYB
DYC

X −D[YC ,YB ]X} ⊗ ωB ⊗ ωC ,

by a direct calculation, we find that

XA
:B:C −XA

:C:B = XFRA
FBC −XA

:FTF
BC , (7)

where ”:G” represents one from the local covariant derivatives ”/b”, ”|j” or ”|(j)(b)”

produced by the h-normal N -linear connection of Cartan type CDΓ(N).
Taking into account in (7) that the indices A,B,C, . . . belong to the set{

a, i,
(a)
(i)

}
,

and using the particular features of an h-normal N -linear connection of Cartan
type CDΓ(N) (i.e., the torsion d-components T i

jk are zero; we have the curvature

relations from the Table (6)), by complicated computations, we find what we were
looking for (see also the Table (5)). �

In order to find an interesting application of the preceding Ricci identities,
let us consider the canonical Liouville-Hamilton d-tensor field of polymomenta on
E∗ = J1∗(T,M), which is given by

C∗= pai
∂

∂pai
.

In this context, for an h-normal N -linear connection of Cartan type CDΓ(N), we
can construct the non-metrical deflection d-tensors, setting

∆
(a)
(i)b = pai/b, ∆

(a)
(i)j = pai|j , ϑ

(a)(j)
(i)(b) = pai |

(j)
(b),

where ”/b”, ”|j” and ”|(j)(b)” are the local covariant derivatives produced by CDΓ(N).

By direct local computations, we deduce that the non-metrical deflection d-
tensors of CDΓ(N) have the expressions:

∆
(a)
(i)b = −N

1

(a)
(i)b −Ar

ibp
a
r + χa

fbp
f
i , ∆

(a)
(i)j = −N

2

(a)
(i)j −Hr

ijp
a
r ,

ϑ
(a)(j)
(i)(b) = δab δ

j
i − C

r(j)
i(b) p

a
r .

Applying now the preceding (v)-set of Ricci identities (attached to an h-normal
N -linear connection of Cartan type) to the components of the canonical Liouville-
Hamilton d-vector field of polymomenta, we get
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Corollary 5.1. The following the deflection d-tensor identities, associated to
an h-normal N-linear connection of Cartan type, are true:

∆
(a)
(i)b/c −∆

(a)
(i)c/b = parR

r
ibc − pfi χ

a
fbc − ϑ

(a)(r)
(i)(f)R

(f)
(r)bc

∆
(a)
(i)b|k −∆

(a)
(i)k/b = parR

r
ibk −∆

(a)
(i)rT

r
bk − ϑ

(a)(r)
(i)(f)R

(f)
(r)bk

∆
(a)
(i)j|k −∆

(a)
(i)k|j = parR

r
ijk − ϑ

(a)(r)
(i)(f)R

(f)
(r)jk

∆
(a)
(i)b|

(k)
(c) − ϑ

(a)(k)
(i)(c)/b = parP

r (k)
ib(c) − ϑ

(a)(r)
(i)(f)P

(f) (k)
(r)b(c)

∆
(a)
(i)j |

(k)
(c) − ϑ

(a)(k)
(i)(c)|j = parP

r (k)
ij(c) −∆

(a)
(i)rC

r(k)
j(c) − ϑ

(a)(r)
(i)(f)P

(f) (k)
(r)j(c)

ϑ
(a)(j)
(i)(b) |

(k)
(c) − ϑ

(a)(k)
(i)(c) |

(j)
(b) = parS

r(j)(k)
i(b)(c) − ϑ

(a)(r)
(i)(f)S

(f)(j)(k)
(r)(b)(c) .

(8)

Remark 5.2. The deflection d-tensor identities (8) will be used in the near future
for the construction of the geometrical Maxwell equations that will govern the
abstract multi-time geometrical ”electromagnetism” produced by a quadratic Hamil-
tonian depending on polymomenta (this is our work in progress).

6. The local Bianchi identities of the CDΓ(N)-connections on the
dual jet bundle J1∗(T,M)

From the general theory of linear connections on a vector bundle, one knows
that the torsions T and curvature R of a connection D on the dual 1-jet space
E∗ = J1∗(T,M) are not independent. In other words, they are interrelated by the
following general Bianchi identities (for any X,Y, Z, U ∈ X (E∗)):∑

{X,Y,Z}
{(DXT) (Y, Z)− R(X,Y )Z + T (T(X,Y ), Z)} = 0,∑

{X,Y,Z}
(DXR) (Y, Z, U) + R (T(X,Y ), Z)U = 0,

where Σ{X,Y,Z} means a cyclic sum. Obviously, working with a CDΓ(N)-linear
connection and the local adapted basis of d-vector fields (XA) ⊂ X (E∗) (associated
to the given nonlinear connection N on E∗), the above Bianchi identities are locally
described by the equalities:∑

{A,B,C}

{
RF
ABC − TF

AB:C − TG
ABTF

CG

}
= 0,∑

{A,B,C}

{
RF
DAB:C + TG

ABRF
DCG

}
= 0,

(9)

where R(XA, XB)XC = RD
CBAXD, T(XA, XB) = TD

BAXD, and ”:C” represents one

from the local covariant derivatives ”/a”, ”|i” or ”|(i)(a)” of the CDΓ(N)-linear con-

nection D (for similar details, see the works [15], [16] and [19]). Consequently, we
find:

Theorem 6.1. The following thirty effective local Bianchi identities for an h-
normal N -linear connection of Cartan type CDΓ(N) are true on the dual 1-jet space
E∗ = J1∗(T,M):
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• the first set:

1.
∑

{a,b,c} χ
d
abc = 0,

2. A{a,b}

{
T l
arT

r
bk − T l

ak/b

}
= Rl

kab − C
l(r)
k(f)R

(f)
(r)ab,

3. A{j,k}

{
C

l(r)
k(f)R

(f)
(r)aj +Rl

jak + T l
aj|k

}
= 0,

4.
∑

{i,j,k}

{
C

l(r)
k(f)R

(f)
(r)ij −Rl

ijk

}
= 0,

• the second set:

5.
∑

{a,b,c}

{
R

(d)
(l)ab/c + P

(d) (r)
(l)c(f) R

(f)
(r)ab

}
= 0,

6. A{a,b}

{
R

(d)
(l)ak/b + P

(d) (r)
(l)b(f) R

(f)
(r)ak +R

(d)
(l)brT

r
ak

}
=

= R
(d)
(l)ab|k + P

(d) (r)
(l)k(f) R

(f)
(r)ab,

7. A{j,k}

{
R

(d)
(l)aj|k + P

(d) (r)
(l)k(f) R

(f)
(r)aj +R

(d)
(l)krT

r
aj

}
=

= −R
(d)
(l)jk/a − P

(d) (r)
(l)a(f) R

(f)
(r)jk,

8.
∑

{i,j,k}

{
R

(d)
(l)ij|k + P

(d) (r)
(l)k(f) R

(f)
(r)ij

}
= 0,

• the third set:

9. T l
ak|

(p)
(e) − C

l(p)
r(e)T

r
ak + P

l (p)
ka(e) + C

l(p)
k(e)/a − C

l(r)
k(f)P

(f) (p)
(r)a(e) + C

r(p)
k(e)T

l
ar = 0,

10. A{j,k}

{
C

l(p)
j(e)|k + C

l(r)
k(f)P

(f) (p)
(r)j(e) + P

l (p)
jk(e)

}
= 0,

• the fourth set:

11. A{a,b}

{
P

(d) (p)
(l)a(e)/b + P

(d) (r)
(l)b(f) P

(f) (p)
(r)a(e)

}
=

= R
(d)
(l)ab|

(p)
(e) +R

(d)(p)
(l)(e)ab + S

(d)(p)(r)
(l)(e)(f)R

(f)
(r)ab,

12. A{a,k}

{
P

(d) (p)
(l)a(e)|k + P

(d) (r)
(l)k(f) P

(f) (p)
(r)a(e)

}
=

= R
(d)
(l)ak|

(p)
(e) +R

(d)(p)
(l)(e)ak + S

(d)(p)(r)
(l)(e)(f)R

(f)
(r)ak +R

(d)
(l)arC

r(p)
k(e) − T r

akP
(d) (p)
(l)r(e) ,

13. A{j,k}

{
P

(d) (p)
(l)j(e)|k + P

(d) (r)
(l)k(f)P

(f) (p)
(r)j(e) +R

(d)
(l)krC

r(p)
j(e)

}
=

= R
(d)
(l)jk|

(p)
(e) +R

(d)(p)
(l)(e)jk + S

(d)(p)(r)
(l)(e)(f)R

(f)
(r)jk,

• the fifth set:

14. A{
(j)
(b)

,
(k)
(c)

} {
C

l(j)
i(b) |

(k)
(c) + C

r(k)
i(c) C

l(j)
r(b)

}
= S

l(j)(k)
i(b)(c) − C

l(r)
i(f)S

(f)(j)(k)
(r)(b)(c) ,

• the sixth set:
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15. A{
(j)
(b)

,
(k)
(c)

} {
P

(d) (j)
(l)a(b) |

(k)
(c) + P

(f) (j)
(r)a(b) S

(d)(k)(r)
(l)(c)(f) − P

(d)(j) (k)
(l)(b)a(c)

}
=

= −S
(d)(j)(k)
(l)(b)(c)/a − S

(f)(j)(k)
(r)(b)(c) P

(d) (r)
(l)a(f) ,

16. A{
(j)
(b)

,
(k)
(c)

} {
P

(d) (j)
(l)i(b) |

(k)
(c) + P

(f) (j)
(r)i(b) S

(d)(k)(r)
(l)(c)(f) − P

(d)(j) (k)
(l)(b)i(c) −

−C
r(j)
i(b) P

(d) (k)
(l)r(c)

}
= −S

(d)(j)(k)
(l)(b)(c)|i − S

(f)(j)(k)
(r)(b)(c) P

(d) (r)
(l)i(f) ,

• the seventh set:

17.
∑{

(i)
(a)

,
(j)
(b)

,
(k)
(c)

} {
S
(d)(i)(j)
(l)(a)(b) |

(k)
(c) + S

(f)(i)(j)
(r)(a)(b)S

(d)(k)(r)
(l)(c)(f) + S

(d)(i)(j)(k)
(l)(a)(b)(c)

}
= 0,

• the eight set:

18.
∑

{a,b,c} χ
d
eab/c = 0,

19. χd
eab|k = 0,

20. χd
eab|

(k)
(c) = 0,

21.
∑

{a,b,c}

{
Rl

pab/c +R
(f)
(r)abP

l (r)
pc(f)

}
= 0,

22. A{a,b}

{
Rl

pak/b +R
(f)
(r)akP

l (r)
pb(f) + T r

akR
l
pbr

}
= Rl

pab|k +R
(f)
(r)abP

l (r)
pk(f) ,

23. A{j,k}

{
Rl

paj|k +R
(f)
(r)ajP

l (r)
pk(f) + T r

ajR
l
pkr

}
= −Rl

pjk/a −R
(f)
(r)jkP

l (r)
pa(f) ,

24.
∑

{i,j,k}

{
Rl

pij|k +R
(f)
(r)ijP

l (r)
pk(f)

}
= 0,

• the nineth set:

25. A{a,b}

{
P

l (p)
ia(e)/b + P

(f) (p)
(r)a(e) P

l (r)
ib(f)

}
= Rl

iab|
(p)
(e) +R

(f)
(r)abS

l(p)(r)
i(e)(f),

26. A{a,k}

{
P

l (p)
ia(e)|k + P

(f) (p)
(r)a(e) P

l (r)
ik(f)

}
=

= Rl
iak|

(p)
(e) +R

(f)
(r)akS

l(p)(r)
i(e)(f) + C

r(p)
k(e)R

l
iar − T r

akP
l (p)
ir(e) ,

27. A{j,k}

{
P

l (p)
ij(e)|k + P

(f) (p)
(r)j(e) P

l (r)
ik(f) + C

r(p)
j(e)R

l
ikr

}
=

= Rl
ijk|

(p)
(e) +R

(f)
(r)jkS

l(p)(r)
i(e)(f),

• the tenth set:

28. A{
(j)
(b)

,
(k)
(c)

} {
P

l (j)
pa(b)|

(k)
(c) + P

(f) (j)
(r)a(b) S

l(k)(r)
p(c)(f)

}
=

= −S
l(j)(k)
p(b)(c)/a − S

(f)(j)(k)
(r)(b)(c) P

l (r)
pa(f),

29. A{
(j)
(b)

,
(k)
(c)

} {
P

l (j)
pi(b) |

(k)
(c) + P

(f) (j)
(r)i(b) S

l(k)(r)
p(c)(f) − C

r(j)
i(b) P

l (k)
pr(c)

}
=

= −S
l(j)(k)
p(b)(c)|i − S

(f)(j)(k)
(r)(b)(c) P

l (r)
pi(f) ,
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• the eleventh set:

30.
∑{

(i)
(a)

,
(j)
(b)

,
(k)
(c)

} {
S
l(i)(j)
p(a)(b)|

(k)
(c) + S

(r)(i)(j)
(f)(a)(b)S

l(k)(f)
p(c)(r)

}
= 0,

where, if {A,B,C} are indices of type
{
a, i,

(a)
(i)

}
, then

∑
{A,B,C} represents a

cyclic sum, and A{A,B} represents an alternate sum.

Proof. Taking into account that the indices A,B,C,D... are of type{
a, i,

(a)
(i)

}
,

and the torsion TC
AB and curvature RD

ABC adapted components are given in the
Tables (5) and (6), after laborious local computations, the formulas (9) imply the
required Bianchi identities. �

Remark 6.1. We point out that, in the particular single-time case

(T, h) = (R, δ = 1),

the last identity of our each set of local Bianchi identities reduces to one of the
classical eleven Bianchi identities that characterize the N -linear connections in the
classical Hamilton geometry on cotangent bundles (see [16]).
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