
U.P.B. Sci. Bull., Series C, Vol. 85, Iss. 2, 2023 ISSN 2286-3540

CONVOLUTIONAL NEURAL NETWORK MODEL USED
FOR AIDING IC ANALOG/MIXED SIGNAL VERIFICATION

A. Gaita1,2, E. David2, A. Buzo2, M. Grigore2, C. Burileanu1, H. Cucu1, G. Pelz2

A significant amount of time and resources are devoted to the
verification process during the development of analog integrated circuits. Al-
though the verification process has improved over time, an excessive amount
of visual inspection is still required. This verification involves a visual as-
sessment of thousands of analog signals in order to discover various unex-
pected events, such as oscillations, overshoots and undershoots. This as-
pect of the verification process is the most time-consuming and error-prone,
hence we propose a method to assist this manual verification process by
employing a clustering technique that supports the visual evaluation of the
signals. With the aid of machine learning algorithms such as convolutional
neural networks, we have developed a method that can group waveforms by
similarity, thereby identifying waveforms with odd or unexpected behavior as
outliers. Through the lens of the Davies-Bouldin clustering metric and pu-
rity metric, this method provides a significant improvement over previously
developed approach.

Keywords: Convolutional Neural Network, Autoencoder, K-Means, PCA,
Davies-Bouldin

1. Introduction

The verification process of analog integrated circuits(IC) is a difficult
operation that requires a high number of manual inspections, which take a
significant amount of time. Because the level of requirements for analog ICs is
increasing, it is becoming more difficult to guarantee the necessary standards
of satisfaction [1] and this is due to the fact that the degree of complexity has
risen. The current technique for verifying ICs requires a significant amount
of human involvement in the verification process. In order to address these
problems, we have developed an improved automated method for clustering
the enormous amount of data that needs to be manually verified. As a result,
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we have increased both productivity and reliability while also accelerating the
verification process as a whole.

The method presented in this article is based on convolutional neural
networks (CNNs) and an auto-encoder (AE) architecture [2]. The reason for
choosing this type of architecture was the fact that CNNs are responsible for
removing redundancy from signals and emphasizing only the most relevant
signal features [3], while the AE architecture is capable of automatically learn-
ing the main features fed by CNN layers [4]. Given these facts, the CNN-AE
model approach suggested in this study achieves better results compared to
the SIFT-based algorithm, regardless of the application of different metrics.

In order for this type of algorithm to be used on a broader scale, it has
to be included in a tool that displays the results in an understandable manner,
namely a 2D graph where each point represents a signal. To accomplish this,
the Principal Component Analysis (PCA) technique was utilized to translate
the feature space to the previously specified 2D space [5]. This type of rep-
resentation has various advantages since the engineer can observe how diverse
the signals are at a glance, or if a signal exhibits unexpected occurrences.
Therefore, by employing this type of visualization we can effectively assist IC
verification and integrate it into the industry as a reliable and dependable tool.

The proposed work is organized as follows: Section 2 presents previous
work; Section 3 illustrates the suggested approach; and Section 4 illustrates
the clustering validity of the method. Section 5 contains a description of the
database of analog circuit response signals that was utilized in developing the
suggested technique. In Sections 6 and 7, we provide our findings and discuss
how they compare to the state of the art.

2. Previous Work

When dealing with analog/mixed signal integrated circuits, the cost of
functional testing for analog transistors can be significantly higher, up to a
factor of 1000, compared to testing digital transistors [6]. Hence, prioritizing
the optimization of analog transistor verification is imperative for the industry.

In order to address the aforementioned challenge within the industry,
there exist numerous methodologies, such as advanced sampling strategies for
the Operating Condition hyperspace. These strategies are proposed in arti-
cles such as [7] and [8], where the authors presented sophisticated sampling
approaches for the hyperspace which are necessary to provide greater cover-
age with fewer simulations. The research demonstrates that the suggested
enhanced sampling methods yield comparable results to the conventional ver-
ification strategy with three times fewer runs.

Developing new verification methodologies that include a comprehen-
sive description of how the design and verification processes should interact
has been suggested as an additional approach for optimizing the verification
of analog circuits. Among these techniques, we may mention an innovative
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methodology presented in article [9] that describes the interaction between
the design, verification processes and different automated techniques. The
article [10] proposes a schematic-driven physical verification, which is an au-
tomated method of functional verification.

Another way of tackling the optimization of the IC analog verification is
by constructing clustering algorithms optimized for IC verification, employ-
ing Scale Invariant Feature Transform (SIFT) [11]. The approach of the
SIFT-based strategy was to identify critical points of interest in time-series
that contained useful information and to compute descriptors for the specific
events [12]. There are two major elements that make this method unique:
the incorporation of a custom keypoint descriptor and an adaptation of the
SIFT methodology originally developed for use in 2D computer vision ap-
plications and now used to verify 1D signals (IC signal verification). As a
result, our previous method is highly effective at extracting the primary char-
acteristics around the events of interest, such as overshoots, undershoots and
oscillations, since the concerned points are clustered around these types of
events. Important aspects of this technique are data compression with Dis-
crete Cosine Transform (DCT) and feature aggregation with a noise-reduction
Bag-of-Words-type feature grouping mechanism.

3. Proposed Method

In this paper, we propose a technique for the clustering of signals mea-
sured on analog ICs. The initial stage in the clustering process is the ex-
traction of relevant features from the measured signals. CNN were chosen so
that we could extract the most representative characteristics, like patterns or
shapes [13] in regard to behaviors observed in analog IC signals, characteristics
capable of describing specific events such as overshoots, undershoots, or short
time transients. CNN has been effectively utilized in several instances when
automated feature extraction was required, such as [14] and [15]. Using multi-
ple layers, such as convolutional, pooling and fully connected perceptron layers,
we created an autoencoder architecture that can extract a limited number of
coefficients capable of differentiating between these signals. The autoencoder
configuration used in the proposed method can be seen in Figure 1.

These coefficients were further used in the process of clustering using
K-means algorithm, where the K-means is applied to the hyperspace of the
extracted coefficients of the autoencoder. The hyperspace is adapted to ana-
log IC signals, and it is able to discriminate between signals better, but it
cannot be visualized because it has more than 3 dimensions. Hence, to ac-
tually see how the clusters are distributed in this space, we need to reduce
it to a dimension of 2 or 3. To achieve the goal of clustering visualization,
we applied a dimensionality reduction technique called Principal Component
Analysis (PCA) which linearly approximates the hyperspace to a 2D space.
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For each clustering, the CNN-AE model must first go through two in-
dependent stages of training and evaluation before producing feature space.
In the training phase of the model, we aim to recreate the input pictures as
accurately as possible at the output using the architecture depicted in Fig-
ure 1. After the training process has updated the coefficients of the network,
we will utilize the encoder presented in Figure 2 in order to retrieve relevant
characteristics from the signals.

3.1. CNN-AE model

3.1.1. Autoencoder Block. The proposed autoencoder model seeks to auto-
matically extract the primary characteristics of the input images by compress-
ing the neural network coefficients into a middle layer. Autoencoders have an
intermediate layer known as the ”bottleneck” that is significantly smaller than
the input and output layers. The bottleneck layer is a crucial element of our
neural network model since it limits the information that can be transferred
over the whole network, necessitating input data compression [4]. Figure 1
depicts an example of this design, where X = [X1, X2... Xn] is the input
layer, Y = [Y1, Y2... Yn] is the output layer and A = [A1, A2... An] is the
”bottleneck” that compresses the useful information.

3.1.2. Convolutional Neural Network. The use of CNN is motivated by the
need to automatically extract features from the signals for many types of analog
ICs and many types of tests. Moreover, this is necessary when we deal with
signals that can present unexpected events, which we must represent with high
accuracy. CNN is a deep learning algorithm effectively used for automatically
extracting relevant features from images in articles such as [16] and [14]. CNN
has the capacity to assign distinct features to certain aspects of an image,
allowing them to be distinguished from one another [17]. With conventional
techniques, we must manually define descriptors for certain events. This is
a difficult effort to make, given that it is mostly determined experimentally
as we must consider multiple types of tests and analog ICs. This algorithm
has the benefit of extracting the most appropriate features to characterize IC
analog electrical signals from various sources.

An alternative to CNN is represented by Feed-Forward Neural Networks
[18], but CNNs are more effective at extracting relevant features. The main
reason behind this is that they can effectively capture spatial relationships
between various events found in a picture. The spatial relationships between
events that are of interest to us are primarily event localization and event
detection. It is crucial to know when a particular type of event occurs, as
well as the distance between specific events. That is important because if an
event occurs too soon or too late, it may indicate a functional error of the
circuit. Since CNN employs convolution kernels, there are fewer coefficients
propagated further in the network and this is highly advantageous because we
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Figure 1. Autoencoder Architecture

are working with a fewer number of input coefficients for the autoencoder and
a more compacted feature space.

3.2. Training of CNN-AE model

Within the autoencoder training process, we aim to update the coeffi-
cients of the neural network in such a way as to reconstruct the input at the
output with the minimal possible error. By comparing the output to the input,
the network is constrained to compress the information in the form of ”bottle-
neck” layer coefficients. This compression is really useful for us because, based
on these coefficients, we will construct the feature space in which the pictures
will be represented.

For both the training and the testing processes, time-series signals were
transformed into images to be used as CNN input. In order to verify analog
signals for each test, we require a specified time interval for each set. The
1D signal is turned into a picture with a fixed time axis, so if a measurement
abruptly ends, it will seem shorter in the image. Differentiating between signals
that end abruptly and the other ones is a prerequisite of the analog IC testing
methodology. For the training process, the initial half of the network consisted
of three convolutional layers: CNN Layer 1 (filter = 16), CNN Layer 2 (filter
= 8) and CNN Layer 3 (filter = 4), with a MaxPooling layer after each CNN
layer, as depicted in orange, in Figure 1. In the second half of the network for
image reconstruction, there are three more CNN Layers: CNN Layer 4 (filter
= 4), CNN Layer 5 (filter = 8) and CNN Layer 6 (filter = 16), each of which is
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preceded by an Up Sampling Layer mirroring MaxPooling, which can be seen
in purple, in Figure 1.

To tune the hyperparameters of the CNN-AE model presented in Table
1, we used Bayesian optimization [19]. To optimize the model, we divided
the database into 70% for training and 30% for testing, in order to validate
the model with the best performance and to avoid overfitting. By varying the
number of hidden layer coefficients, we evaluated several setups for our specific
use case. After applying the model optimization process, the following hyper-
parameter values from Table 1 were determined as the ones which produce the
best results in the clustering process.

After the training procedure has been completed, we extracted the im-
portant features using the architecture depicted in Figure 2, where only the
encoder and the PCA block are employed to reduce the dimensionality.

Table 1. CNN-AE Hyperparameters model - Bayesian optimization

Hyperparameter Interval Step Optimal Value

CNN - kernel [2, 7] 1 2

MaxPooling - pool size [2, 6] 1 2

MaxPooling - strides [2, 6] 1 2

Dropout - rate [0.1, 1] 0.2 0.3

Activation function [ReLu, Sigmoid] ReLu

Bottleneck - No. of Coefficients [64, 256] 4 128

3.3. Clustering process - K-means

In this article, we employed the K-means method in the clustering proce-
dure in order to group the various signal types. K-means was chosen because
it successfully groups linearly distinct points in a multidimensional space of
characteristics. Hence, k-means detects and organizes data with important
qualities. This procedure is a clustering algorithm that was used in this in-
stance in the encoder’s multidimensional feature space. To employ the k-means
method, we had to specify the number of required dataset centroids called k,
which are arbitrary points representing the centers of the clusters. The value
k was selected based on the number of labels observable in the database.

3.4. Dimensionality reduction - PCA

A key step in the verification process is visualizing the clustering result
in a simple and straightforward manner. Due to the fact that the clustering
process operates in a multidimensional space, which lacks a representation of
this form, this study provides an implementation of a dimensionality reduction
technique. Primarily, we employed PCA, which is a very successful technique of
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linear transformation. It determines the size of the linear space by translating
certain dimensions which contain more redundant information. Its function
in this work is to reduce encoder feature space and to reduce the number of
features to two, in order to plot a two-dimensional graph in which each point
represents a signal. The benefit of this representation is that if one signal is
significantly distinct from the others, it will be separated from the other points
and it will become easier to identify.

4. Performance Metrics

It is crucial to be able to precisely monitor the efficiency of clustering
performance. It is an usual procedure to empirically assess the results of the
visualization, but in order to be certain that the CNN-AE method extracted
useful features, we used several metrics like Purity and Davies-Bouldin. These
metrics were applied to the multidimensional hyperspace.

4.1. Purity

One of the metrics used for the verification of the results is purity, which
is a statistic that reflects the extent to which a group contains just one signal
type. This metric is significantly more successful when dealing with a limited
number of groups of signals, since it is much simpler to attain the highest
level of signal purity when there are numerous and countless small clusters of
signals. If we choose to correlate every point with a cluster, we will acquire a
purity score of 100 percent, rendering this statistic worthless. In picking this
metric, we thus considered the need to limit the number of clusters and to
have balanced data because purity doesn’t give useful results in the case of
unbalanced data. The colloquial definition of purity is as follows:

P =
1

N

∑
m∈M

max
d∈D

|m ∩ d| (1)

in which M represents signals that have the same clustering label, D signals
with the same label assigned following the clustering process and N is the total
number of signals from group M .

4.2. Davies-Bouldin metric

The Davies-Bouldin metric is a frequent clustering performance measure-
ment employed in the scientific literature, used to measure the effectiveness of
clustering methods. This algorithm evaluates the overall quality of clustering,
including how compact the points are grouped and how close the groups of
points are to each other. Therefore, clusters that are more dense and more
distant from the others will result in a lower score, which translates into a
better performance.

It is essential to keep in mind that the ideal value for this measure is zero,
which reflects optimal clustering. Hence, if the performance of the clustering
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Figure 2. Encoder Architecture and PCA block used to gen-
erate 2D representation

method improves, the Davies-Bouldin index will reflect a lower score. This
clustering performance measure may be calculated using the following formula:

DaviesBouldinIndex =
1

N

N∑
i=1

max
j 6=i

(
σi + σj
d(ci, cj)

)
(2)

in which d(ci, cj) is the distance between cluster i represented by the ci and
cluster j represented by the cj, σi is the within-cluster distance average for
cluster i, N is the given number of identified clusters.

5. Database

In order to prove the performance of the clustering method, we acquired
a series of signals in a controlled, laboratory environment. For the purpose of
the analog IC verification, the signals from the database contain behaviours
illustrated by oscillations, overshoots and undershoots, as well as glitches that
may occur when testing the circuit in critical conditions. For this article, we
increased the database from ten sets comprising 2950 signals to twenty sets
of signals exhibiting the aforementioned qualities, comprising a total of 7250
signals, where each set contained a small number of signal categories. For
each distinct set of signals, a specialist manually categorized the signals into
two or three classes and labeled each signal with the respective class. These
labels indicate the ground truth that we’ll consider while evaluating the clus-
tering performance. Even though autoencoder training is a supervised process,
clustering is unsupervised, therefore it is often recommended to compare the
results with labels in order to display the overall performance. These sets
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of signals were also utilized to evaluate the SIFT-based waveform clustering
technique in [12].

6. Results

The algorithm based on CNN-AE performs better than the method based
on SIFT, as shown in Table 2. The difference in approach between both
algorithms stems from the fact that the method based on SIFT takes time-
series information as input, while the strategy based on CNN-AE uses picture
information as input. Due to the fact that the selection of hyperparameters
has a significant impact on the performance of the CNN-AE feature extraction
technique, it is important to optimally select them. In circumstances where
the signal length is large, the method based on CNN-AE has a shortcoming in
that the image’s finer details soon become buried in noise. Due to the inclusion
of such signals in the database and the improved performance of the program,
we can say that the method also handles this case.

Despite the fact that the purity is 100% for many of the sets, this demon-
strates good separability in the multidimensional feature space, which is an
achievable goal. Nevertheless, when attempting to display the data in a two-
dimensional or three-dimensional environment, it is much more difficult to
have clear separability. For this reason, we have implemented a second metric
to determine the degree to which they are separable, as it is vital to optimize
separability for a decent visualization and to facilitate the verification process.
Although there are instances in which both methods have a purity of 100%,
the approach delivers superior results because the clusters are more distant
and compact in the feature space, resulting in a visualization improvement.

Figure 3. Example of a Clustering Representation - Set 1
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Table 2. Comparison between SIFT and CNN-AE Results

Set Name No. of Signals No. of Labels
Purity (%) Davies-Bouldin

SIFT CNN-AE SIFT CNN-AE

Set 1 150 2 100 100 0.592 0.363

Set 2 400 4 100 100 0.370 0.229

Set 3 500 5 72.2 91 1.423 0.729

Set 4 500 6 73.6 77.6 1.488 1.198

Set 5 600 6 100 100 0.470 0.372

Set 6 600 3 100 100 0.311 0.214

Set 7 600 3 100 100 0.249 0.152

Set 8 800 3 94.3 100 0.527 0.418

Set 9 600 4 64.6 59.6 1.422 3.017

Set 10 800 3 94.8 96.8 0.663 0.558

Set 11 600 4 96.3 100 0.486 0.233

Set 12 50 3 100 100 0.336 0.185

Set 13 150 3 100 100 0.103 0.069

Set 14 150 2 87.3 100 0.881 0.365

Set 15 150 2 98.6 100 0.647 0.140

Set 16 150 3 100 100 0.335 0.277

Set 17 150 3 99.3 100 0.481 0.368

Set 18 150 3 100 100 0.164 0.082

Set 19 50 2 62 64 0.929 1.049

Set 20 100 2 74 86 0.953 0.729

In order to develop a specialized CNN-AE type model for analog verifi-
cation signals, we applied Bayesian optimization. This optimization spanned
all of the parameters listed in Table 1 to produce a model that was optimally
suited for this type of work. After completing the optimization procedure
of the results, we utilized the model hyperparameters specified in Table 1.
Because the hyperparameter values were determined automatically as spe-
cial adaptations of the data originating from the verification process, Table 2
demonstrates that the method yields superior results even for a much larger
database in terms of both the purity metric and the Davies-Bouldin metric.
As it can be seen with the purity metric, excessively large disparities cannot
be highlighted because this metric does not take into account the compactness
of the clusters or the distance from one another. When analyzing the data
based on the Davies-Bouldin metric, we observe somewhat larger differences
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because, in order to calculate this score, they consider how compact the groups
of points are and how far apart they are. As it can be observed with a CNN-
AE neural network model with automatically modified hyperparameters, the
study of both metrics yields improved results. Figure 3 is an example of the
CNN-AE model’s application; it shows two groups of standard signals as input
to the model, along with a representation of 2D clustering in which separation
between clusters is successfully achieved.

7. Conclusions

This paper presents and proves the validity of a CNN-AE strategy for
optimizing the verification process. We have achieved this by combining con-
volutional neural networks and autoencoder networks capable of generating a
feature space suitable for analog signals. By comparing the purity and Davies-
Bouldin metrics proposed in this article with the previously developed SIFT-
based clustering approaches [12] we demonstrated that the proposed method
from this study is superior. Based on the fact that the accuracy is superior
to prior findings and that the visual representation enables experts to readily
inspect the result of clustering of a test, we may conclude that the proposed
method has a significant and positive influence on the verification process.
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