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STRONG CONVERGENCE OF THREE-STEP ITERATION PROCESSES

FOR MULTIVALUED MAPPINGS IN SOME CAT (k) SPACES

Saeed Shabani3

In this paper, we prove the strong convergence of the three-step iteration pro-

cesses for some generalized nonexpansive multivalued mappings in the framework of

CAT (1) spaces. The obtained results extend some recent known results.
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1. Preliminaries

Let (X, d) be a metric space, and x ∈ X, E ⊂ X. The distance from x to E is

defined by dist(x,E) = inf{d(x, y) : y ∈ E}. The diameter of E is defined by diam(E) =

sup{d(x, y) : x, y ∈ E}. The set E is called proximal if for each x ∈ E, there exists an

element y ∈ E such that d(x, y) = dist(x,E). we denote by CB(E) the collection of all

nonempty closed bounded subsets of E. The Hausdorff metric H on CB(E) is defined by

H(A,B) = max{sup
x∈A

dist(x,B), sup
y∈B

dist(y,A)},

for all A,B ∈ CB(E). Let T : X → CB(E) be a multivalued mapping. An element x ∈ X

is said to be a fixed point of T if x ∈ Tx. The set of fixed points of T will be denoted by

F (T ). The multivalued mapping T : X → CB(E) is said to

(i) be nonexpansive if

H(Tx, Ty) ≤ d(x, y), x, y ∈ E;

(ii) be quasi-nonexpansive if F (T ) ̸= ∅ and

H(Tx, Tp) ≤ d(x, p), x ∈ E, p ∈ F (T );

(iii) be hemicompact if for any sequence {xn} in E such that

lim
n→∞

dist(xn, Txn) = 0,

there exists a subsequence {xnk
} of {xn} such that limk→∞ xnk

= q ∈ E.

In 2014, Thakur et al. [?] introduced the iterative process as follows:
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Let E be a nonempty convex subset of a Banach space X and T : E → E be a

nonexpansive mapping and αn, βn, γn ∈ (0, 1). The sequence {xn} define by x1 ∈ E and

zn = (1− αn)xn + αnTxn,

yn = (1− βn)zn + βnTzn,

xn+1 = (1− γn)Txn + γnTyn,

(1.1)

In their work, it was proved that this process compared to other processes such as the

Mann, the Ishikawa, the Noor, the Agarwal et al. and the Abbas et al. converges faster.

In this paper, we extend (1.1) to multivalued quasi-nonexpansive mappings in some

CAT (k) spaces (see (2.2)).

Roughly speaking, CAT (k) spaces are geodesic spaces of bounded curvature. The

precise definition is given below. The study of fixed point theory in CAT (k) was initiated

by kirk [?, ?]. His works were followed by many authors (see, e.g., [4–16]).

Let (X, d) be a metric space. A geodesic path joining x ∈ X to y ∈ X (or, briefly,

a geodesic from x to y) is a map c from a closed interval [0, l] ⊂ R to X such that c(0) =

x, c(l) = y, and d(c(t), c(t′)) = |t− t′| for all t, t′ ∈ [0, l]. In particular, c is an isometry and

d(x, y) = l. The image α of c is called a geodesic ( or metric) segment joining x and y.

When it is unique, this geodesic is denoted by [x, y]. This means that z ∈ [x, y] if and only

if there exists α ∈ [0, 1] such that

d(x, z) = td(x, y), d(y, z) = (1− t)d(x, y)

In this case, we write (1− t)x⊕ ty.

The space (X, d) is said to be a geodesic space if every two points of X are joined by

a geodesic, and X is said to be uniquely geodesic if there is exactly one geodesic joining x

to y, for each x, y ∈ X. A subset Y ⊂ X is said to be convex if Y includes every geodesic

segment joining any two of its points.

In a geodesic space (X, d) for x, y, z ∈ X and t ∈ [0, 1], one has

d((1− t)x⊕ ty, z) ≤ (1− t)d(x, z) + td(y, z).

Let D ∈ (0,∞], then (X, d) is called a D−geodesic space if any two points of X with their

distance smaller than D are joined by a geodesic segment. Notice that (X, d) is a geodesic

space if and only if it is a D−geodesic space.

Let n ∈ N , we denote by ⟨., .⟩ the Euclidean scalar product in Rn, that is,

⟨x, y⟩ = Σn
i=1xiyi, x = (x1, . . . , xn), y = (y1, . . . , yn).

Let Sn denote the n−dimensional sphere defined by

Sn = {x = (x1, . . . , xn+1) ∈ Rn+1 : ⟨x, y⟩ = 1},

with metric d(x, y) = arccos⟨x, y⟩, for all (x, y) ∈ Sn × Sn (see[?, Proposition 2.1]).

From now on, we assume that k ≥ 0 and define

Dk :=


π√
k

k > 0

+∞ k = 0

we denote by Mn
k the following metric spaces:

(i) if k = 0 then Mn
0 is the Euclidean space Rn;

(ii) if k > 0 then Mn
k is obtained from Sn by multiplying the distance function by the

constant 1√
k
.
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A geodesic triangle ∆(x1, x2, x3) in a geodesic metric space (X, d) consists of three

points in X (the vertices of ∆) and a geodesic segment between each pair of vertices (the

edges of ∆). A comparison triangle for geodesic triangle ∆(x1, x2, x3) in (X, d) is a triangle

∆̄(x1, x2, x3) := ∆(x̄1, x̄2, x̄3) in M2
k such that

dM2
k
(x̄i, x̄j) = d(xi, xj), i, j ∈ {1, 2, 3}.

By [?, Lemma 2.14] a comparison triangle for ∆ always exists provided that the perimeter

d(x1, x2) + d(x2, x3) + d(x3, x1) < 2Dk. A point p̄ ∈ [x̄, ȳ] is called a comparison point for

p ∈ [x, y] if d(x, p) = dM2
k
(x̄, p̄).

A geodesic triangle ∆(x, y, z) in X with perimeter less than 2Dk is said satisfy the CAT (k)

inequality if for any p, q ∈ ∆(x, y, z) and for their comparison points p̄, q̄ ∈ ∆̄(x, y, z), one

has

d(p, q) ≤ dM2
k
(p̄, q̄).

A metric space (X, d) is called a CAT (k) space if it is Dk−geodesic and any geodesic triangle

∆(x, y, z) in X with perimeter less than 2Dk satisfies the CAT (k) inequality.

In this paper, we consider CAT (k) space with k ≥ 0. since most of the results for such

spaces are easily deduced from those for CAT (1) spaces, in what follows, we mainly focus

on CAT (1) spaces.

The following lemmas are needed.

Lemma 1.1. [?, Proposition 3.1]. If (X, d) is a CAT (1) space with diam(X) < π/2, then

there is a constant K > 0 such that

d((1− t)x⊕ ty, z)2 ≤ (1− t)d(x, z)2 + td(y, z)2 − K

2
t(1− t)d(x, y)2,

for any t ∈ [0, 1] and any points x, y, z ∈ X.

Lemma 1.2. [?]. Let {αn} and {βn} be two sequences such that

(i) 0 ≤ αn, βn < 1;

(ii) βn → 0;

(iii)
∑

αnβn = ∞.

Let {λn} be a nonnegative real sequence such that
∑∞

n=1 αnβn(1− βn)λn is bounded. Then

{λn} has a subsequence which converges to zero.

2. Main result

Lemma 2.1. Let (X,d) be a CAT (1) space with convex metric and E be a nonempty closed

convex subset of X. Let T : E → CB(E) be a multivalued mapping with F (T ) ̸= ∅ and PT

is quasi-nonexpansive mapping where

PT (x) = {y ∈ T (x) : d(x, y) = dist(x, T (x))}.

For an initial point x0 ∈ E, let {xn} be sequence generated by the following algorithm:

zn = (1− αn)xn ⊕ αnwn,

yn = (1− βn)zn ⊕ βnw
′
n,

xn+1 = (1− γn)wn ⊕ γnw
′′
n,

(2.2)

where wn ∈ PTxn, w′
n ∈ PT zn, w′′

n ∈ PT yn, and αn, βn, γn ∈ [a, b] ⊂ (0, 1). Then,

limn→∞ d(xn, p) exists for each p ∈ F (T ).
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Proof. for all n ≥ 0, we have

d(zn, p) = d((1− αn)xn ⊕ αnwn, p)

≤ (1− αn)d(xn, p) + αnd(wn, p)

≤ (1− αn)d(xn, p) + αndist(wn, PTnp)

≤ (1− αn)d(xn, p) + αnH(PTnxn, PTnp)

≤ (1− αn)d(xn, p) + αnd(xn, p) = d(xn, p),

and

d(yn, p) = d((1− βn)zn ⊕ βnw
′
n, p)

≤ (1− βn)d(zn, p) + βnd(w
′
n, p)

≤ (1− βn)d(xn, p) + βndist(w
′
n, PTnp)

≤ (1− βn)d(xn, p) + βnH(PTnzn, PTnp)

≤ (1− βn)d(xn, p) + βnd(zn, p)

≤ (1− βn)d(xn, p) + βnd(xn, p) = d(xn, p),

and

d(xn+1, p) = d((1− γn)wn ⊕ γnw
′′
n, p)

≤ (1− γn)d(wn, p) + γnd(w
′′
n, p)

≤ (1− γn)dist(wn, PTnp) + γndist(w
′′
n, PTnp)

≤ (1− γn)H(PTnxn, PTnp) + γnH(PTnyn, PTnp)

≤ (1− γn)d(xn, p) + γnd(yn, p)

≤ (1− γn)d(xn, p) + γnd(xn, p) = d(xn, p),

This implies that {d(xn, p)}∞n=1 is bounded and decreasing. Hence limn→∞ d(xn, p) exists.

�

We remark that there exist examples of mappings for which ST is nonexpansive (see

[?]), so that the assumption on T is not artificial.

Lemma 2.2. Let (X,d) be a CAT (1) space with convex metric and diam(X) < π/2 and E

be a nonempty closed convex subset of X. Let T : E → CB(E) be a multivalued mapping

with F (T ) ̸= ∅ and PT is quasi-nonexpansive mapping. Let αn, βn, γn ∈ [a, b] ⊂ (0, 1) and

{xn} be sequence generated by (2.2). Then, limn→∞ dist(xn, PTxn) = 0.

Proof.

d(zn, p)
2 = d((1− αn)xn ⊕ αnwn, p)

2

≤ (1− αn)d(xn, p)
2 + αnd(wn, p)

2 − K
2 αn(1− αn)d(xn, wn)

2

≤ (1− αn)d(xn, p)
2 + αndist(wn, PTnp)

2 − K
2 αn(1− αn)d(xn, wn)

2

≤ (1− αn)d(xn, p)
2 + αnH(PTnxn, PTnp)

2 − K
2 αn(1− αn)d(xn, wn)

2

≤ (1− αn)d(xn, p)
2 + αnd(xn, p)

2 − K
2 αn(1− αn)d(xn, wn)

2

≤ d(xn, p)
2 − K

2 αn(1− αn)d(xn, wn)
2,

and
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d(yn, p)
2 = d((1− βn)zn ⊕ βnw

′
n, p)

2

≤ (1− βn)d(zn, p)
2 + βnd(w

′
n, p)

2 − K
2 βn(1− βn)d(zn, w

′
n)

2

≤ (1− βn)d(zn, p)
2 + βndist(w

′
n, PTnp)

2 − K
2 βn(1− βn)d(zn, w

′
n)

2

≤ (1− βn)d(zn, p)
2 + βnH(PTnzn, PTnp)

2 − K
2 βn(1− βn)d(zn, w

′
n)

2

≤ (1− βn)d(zn, p)
2 + βnd(zn, p)

2 − K
2 βn(1− βn)d(zn, w

′
n)

2

= d(zn, p)
2 − K

2 βn(1− βn)d(zn, w
′
n)

2

≤ d(zn, p)
2

≤ d(xn, p)
2 − K

2 αn(1− αn)d(xn, wn)
2.

and

d(xn+1, p)
2 = d((1− γn)wn + γnw

′′
n, p)

2

≤ (1− γn)d(wn, p)
2 + γnd(w

′′
n, p)

2 − K
2 γn(1− γn)d(wn, w

′′
n)

2

≤ (1− γn)d(wn, p)
2 + γndist(w

′′
n, PTn

p)2 − K
2 γn(1− γn)d(wn, w

′′
n)

2

≤ (1− γn)d(wn, p)
2 + γnH(PTnyn, PTnp)

2 − K
2 γn(1− γn)d(wn, w

′′
n)

2

≤ (1− γn)d(wn, p)
2 + γnd(yn, p)

2 − K
2 γn(1− γn)d(wn, w

′′
n)

2

≤ (1− γn)dist(wn, PTnp)
2 + γnd(yn, p)

2 − K
2 γn(1− γn)d(wn, w

′′
n)

2

≤ (1− γn)H(PTnxn, PTnp)
2 + γnd(yn, p)

2 − K
2 γn(1− γn)d(wn, w

′′
n)

2

≤ (1− γn)d(xn, p)
2 + γnd(yn, p)

2 − K
2 γn(1− γn)d(wn, w

′′
n)

2

≤ (1− γn)d(xn, p)
2 + γnd(yn, p)

2

≤ (1− γn)d(xn, p)
2 + γnd(xn, p)

2 − K
2 γnαn(1− αn)d(xn, wn)

2

= d(xn, p)
2 − K

2 γnαn(1− αn)d(xn, wn)
2

Therefore we have

K
2 a

2(1− b)d(xn, wn)
2 ≤ K

2 γnαn(1− αn)d(xn, wn)
2

≤ d(xn, p)
2 − d(xn+1, p)

2.
(2.3)

so
∞∑

n=0

K

2
a2(1− b)d(xn, wn)

2 < ∞,

Thus we obtain that limn→∞ d(xn, wn)
2 = 0. Hence limn→∞ dist(xn, PTxn) = 0. �

Recall that a mapping T : K → X is said to satisfy Condition (I) (see [?]), if there

exists a nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0 and f(r) > 0 for each

r > 0 such that

dist(x, Tx) ≥ f(dist(x, F (T ))),

for x ∈ K.

Theorem 2.1. Let (X,d) be a CAT (1) space with convex metric and diam(X) < π/2 and

E be a nonempty closed convex subset of X. Let T : E → CB(E) be a multivalued mapping

with F (T ) ̸= ∅ and PT is quasi-nonexpansive mapping. Let αn, βn, γn ∈ [a, b] ⊂ (0, 1) and

{xn} be sequence generated by (2.2). If T satisfies condition (I), Then, {xn} converges

strongly to a fixed point of T .

Proof. By Lemma 2.2, limn→∞ dist(xn, Txn) ≤ limn→∞ dist(xn, PTxn) = 0. Since T sat-

isfies condition (I), we have limn→∞ dist(xn, F (T )) = 0. The rest of the proof follows the

proof of Theorem 3.2 in [?]. �
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In 2011, Falset et al. [?] introduced Condition (E) which is weaker than nonexpansive

and stronger than quasi-nonexpansive: A mapping T : E → CB(E) satisfy Condition (Eµ),

if

dist(x, Ty) ≤ µdist(Tx, x) + d(x, y)

holds, for all x, y ∈ K. It is said T satisfies Condition (E) whenever T satisfies (Eµ)

for some µ ≥ 1. The following example denotes a generalized nonexpansive multivalued

mapping satisfying the condition(E) which is not a nonexpansive multivalued mapping.

Example 2.1. Define a mapping T on the closed interval [0, 5] by

T (x) =


[
0, x

5

]
x ̸= 5

{1} x = 5

Then the mapping T has the required properties (see[?]).

Theorem 2.2. Let (X,d) be a CAT (1) space with convex metric and diam(X) < π/2 and

E be a nonempty closed convex subset of X. Let T : E → CB(E) be a multivalued mapping

with F (T ) ̸= ∅ and PT satisfying the condition (E). Assume that (i) 0 ≤ αn, βn, γn <

1; (ii) αn → 0; (iii)
∑

αnγn = ∞, and {xn} be sequence generated by (2.2). If T is

hemicompact, then {xn} converges strongly to a fixed point of T .

Proof. By (2.3), we have

K

2

∞∑
n=0

γnαn(1− αn)d(xn, wn)
2 < ∞.

By Lemma 1.2, there exist a subsequence {d(xnk
, znk

)} of {d(xn, zn)} such that limk→∞ d(xnk
, znk

) =

0. Thus

lim
n→∞

dist(xn, Txn) ≤ lim
k→∞

dist(xnk
, PTxnk

) = 0.

Since T is hemicompact, we may assume that xnk
→ q ∈ E. By condition (E), for some

µ ≥ 1, we have

dist(q, T q) ≤ dist(q, ST q)

≤ d(q, xnk
) + dist(xnk

, ST q)

≤ 2d(q, xnk
) + µdist(xnk

, STxnk
) → 0 as k → ∞.

Therefore q ∈ F (T ). Since limn→∞ d(xn, p) exists by Lemma 2.1, it follows that {xn} con-

verges strongly to q. �
Corollary 2.1. Let (X,d) be a CAT (1) space with convex metric and diam(X) < π/2 and

E be a nonempty closed convex subset of X. Let T : E → CB(E) be a multivalued mapping

with F (T ) ̸= ∅ and PT is quasi-nonexpansive mapping. Assume that (i) 0 ≤ αn, βn, γn <

1; (ii) αn → 0; (iii)
∑

αnγn = ∞, and {xn} be sequence generated by (2.2). If T is

hemicompact and continuous, then {xn} converges strongly to a fixed point of T .

3. Conclusion

In this work, we obtained some strong convergence results of the iterative algorithm

(2.2) under weaker assumptions than those of Thakur et al. [?]. To do this work, we were

inspired by [?, ?, ?, ?].

Our results, carry over results of [?] to generalized nonexpansive multivalued mappings in

the framework of CAT (k) spaces. Since most of the results for CAT (k) spaces are deduced

for CAT (1) spaces, we used the framework of CAT (1) spaces.
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