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ON THE MAXIMUM BRAKING CAPABILITY OF
AUTOMOBILES

Aurel P. STOICESCU'

In lucrare se prezintd studiul regimului optimal de franare a unui
automobil, care conduce la performante maxime de frdnare. Pentru aceasta se
aplica principiul de maxim al lui Pontreaghin, ardtindu-se ca exista o solutie
singulard a problemei. In cazul general, comanda optimald include comenzi de tip
releu §i comanda singulard. Pentru un sistem uzual de franare realizarea acestor
comenzi este dificild, astfel ca deceleratia maxima posibila limitatd de aderentd
este practic imposibil de obtinut.

The paper presents the study of the optimal braking duty of an automobile that
leads to the maximum braking performance. With this end in view one applies the
Pontryagin’s maximum principle. It is proved that there exists a singular solution of
the problem. In the general case, the optimal control consists of relay type controls
and singular control. This control is difficult to achieve by an usual braking system.
Therefore, the maximum deceleration limited by adhesion is impossible of
execution in practice.
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1. Introduction

The maximum braking capability of an automobile is characterized by one
of the following quantities: the minimum braking distance, the minimum braking
time and the maximum deceleration. The maximum deceleration is often used

because it is theoretically determined by a more direct method.

The maximum possible braking capability is given by the maximum
deceleration that is limited by the adhesion between tyre and road, dmaxp. Its
expression is [1-5]

dmax p = &(Px cosa+sina)+0.5pc, Av: /m D
where:

-A[m’] is automobile frontal area;

-cy[-]-aerodynamic resistance coefficient;

—g[m/sz ]-acceleration due to gravity;

-m[kg]-automobile mass;

-v[m/s]-automobile velocity;

-a[rad]-slope angle;
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-¢«[-]-longitudinal road adhesion coefficient (maximum braking effort
coefficient);

-p[kg/m’]-air density.

Essentially, the relationship (1) is established by use of the rectilineal
motion equation for an automobile assuming that the wheels reach the adhesion
limits simultaneously. Therefore, the problem is dealed with from quasistatic
point of view and so it is mathematically reduced to an algebraical problem. In
fact, even if is assumed that a braking system could suddenly generate the
necessary brake torques, it should be noticed that during process the inertia of the
braked wheels is involved and that the braking forces are produced by the agency
of the wheels and the tyres, which are elastic in longitudinal direction. The last
feature is strongly connected with the rolling characteristic of a tyre.

In the present paper the maximum braking capability of an automobile is
investigated taking into account the above mentioned facts.To solve the problem
we will apply the Pontryagin’s maximum principle [6,7] and make evident the
difference relating to the classical approach and resort to suitable numerical
examples.

2. State equations

It is assumed that a two-axle automobile moves on a road with the
longitudinal slope of angle o (when the automobile climbes uphill >0 and when
it moves downhill a<0). The Newton’s equation for the automobile motion is:

my=—(Xp +Xb2)—mgsinoc—O.Spchv2 2)
where X3, and Xj, are the longitudinal braking reactions acting on the front and
the rear wheels, respectively (X31>0, Xp»>0).

We consider the general case when the automobile braking is performed
with coupled engine. If it is supposed, for instance, that the front wheels are
driving, then one should take into account for the engine brake torque and the
inertia of the rotating parts of the engine and the driveline. By applying theorem
on the angular momentum about the front wheel rotation axis (for details see, for
instance, [1,8]) we obtain:

. .o =1
Loy =—Mpeign; =My + Xp1rg1 — 217415 3)
2000w =—Mpy + Xpprgn = [Z2 742 4
where Iy = Toig?n " 4 I gpiono ™t 410 +21,1 (5)

with the following notations:

-f [-]-coefficient of rolling resistance (it is assumed that the coefficients of rolling
resistance of the all wheels are same) ;

-lo, I;[-]-final drive gear ratio, overall gear ratio (axle and transmission);
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-Le, Loy, Lo, L1, 02 [kg.mz]-mass moment inertia of the rotating parts of the engine,
gear box, final drive, front and rear wheel, respectively;
-Mpe, Mp1, My, [N.m]-braking torque produced by engine and brake system (for
front and rear axle), respectively;
-¥q41, Y2 [m]-dynamic loaded radius of front and rear tyres, respectively;
-Z\, Z> [N]-normal reactions on the front and rear axles, respectively;
-no, 1 [-]-efficiency of the final drive and overall transmission efficiency,
respectively;
-1, Wy, [rad/s]-angular speeds of the front and rear wheels, respectively.

The longitudinal braking reactions can be expressed as

Xpj=8pjZj.j=12 (6)
where & (7=1,2) are the specific longitudinal braking reactions. The normal
reactions on axles are functions of the specific longitudinal braking reactions [8]:

l—a; + x[1+ F,, /(mgcosa)llpyy + F,q /(mg cosa)
, (7
I+ x(=Cp1 +¢2)
a; — y[1+ F,, /(mgcosa)|p + F,yp /(mg cosa)

I+ (=Cp1 +<p2)
where a=al/L, y=he/L with the following notations:
-a [m]-distance between the gravity center and the normal plane on the road that
passes trough the front axle;
-Fyz, Fuz1, Fazn [N]-aerodynamic lift force, front and rear aerodynamic lift forces;
-hg [m]-height of center of gravity of the automobile;
-L [m]- wheelbase.

Generally, the specific braking reaction is depended on the longitudinal
slip ratio, normal reaction acting on tyre, wheel center velocity and type road
surface. On a given type road surface in certain conditions the effect of the normal
reaction and velocity are not important, so that, in this paper, we suppose that &,
(=1, 2) are depended on the longitudinal slip ratio only, which is defined as

Z|1 =mgcosa

®)

Zy =mgcosa

Ty0 j @
jElm— )

s; =1
%

where 7,¢; 1s rolling radius of the freely rolling wheel corresponding to the wheels
of the j axle.
Taking into account the relationship (6), (7) and (8), Equations (2), (3) and
(4) may be written in the general form:
v=fi(v, o0, 0y)),
Wyl = 2 (Vs 041, 0y0) —uy, (10)
Wy = f3(V, 041, 0y2) =7,
the functions f1, /> and f3 being defined by the expressions:
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(1=a;)Sp1 +aiSpp +[Fyz1 (mg cosa)lCp) +[Fazp /(mgeosa)llpy

J1=-gcosa 1+ x(=Cp1 +<Sp2)

—gsina — O.Sprsz /m, 1
Mo

f2 =—ﬂ+rd—l(§b1 = Z1Ep1>Sp25V)s (12)
Iin, I1;

Fy =52 = 22 G Epaav) (13)
w2

Because F,. and F,; (=1, 2) are depended on vehicle speed and,
consequently, the normal reactions are depended on the vehicle velocity
explicitly. In the above expressions &, are substituted for the functions &y(s;)
(=1,2), which are known. Finally, the state equations contain the control variables
u; and u; defined by relations

up =Mpy /1, uy =Mpy (21 ). (14)

3. Optimal duty of automobile motion during braking

The dynamic system being defined by the state equations (10) it raises the
problem to establish the control variables u; and u; that ensure the maximum
braking capability of an automobile. It can be expressed as the minimum braking
time. In this way we reach the optimal control problem. The considered criterion
is given by

J= jéf dt (15)

where # is the final time. The optimization problem consists in the minimization
of J taking into account the constraints (10). The initial and final conditions are:
V(0)=vg, @1 (0) = @y10, @y (0) = 0y,
V(tp)=vp, 0y (tr) =0y p, Oy (L) =wyp.

First, one considers the stopping braking time that correspond to v, =0.
However, it is necessary to take into account that at v=0 the tire rolling
characteristic is not defined. For this reason, further we consider v,#0, but small
enough (for instance, 1.5 m/s). It is not absolute by necessary to specify the values
of the wheel final angular speeds, thus leaving them as free variables at the final
moment.

The Hamiltonian of the present problem will be:

H =7 + )1 + 20 f2 + 4313 = Jquy = A3uy (17)
where Ao, 4i(t), 42(t), A3(t) are the components of the adjoint vector (costate
vector). Obviously, the braking torques on the two-axle is limited to the maximum

(16)
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values Mpimax and Mppmay, to which correspond to the maximum of the control
variables u] 4,y and .y, namely

Oéuj Sujmax,j=l,2. (18)
The adjoint system of equations is written as:
: OH o o of3 j
N=——="Y—+h—=+13—| 19
! ov ( Pov 2 ov Pav (19)
}:2 - 8H — j,l aﬁ +}~2 afz +ﬂ,3 af3 , (192)
awwl awwl aa)wl aa)wl
J3 =— oH =} 2 + b + 5 | (195)
0wy 0wy 0wy 0wy

If X = (v, w1, ) is the state vector and X= (v*, Ol wwg*) represents the state
vector corresponding to the optimal braking duty, the Pontryagin’s maximum
principle yields

* * * * * * * *
sup H\v ,,,1,0,0,u,uy |= H\V ,0,,1,0,0,u] ,uy (20)
Uyt

* % * * %
H(V ,wwl,wwz,ul,uz)zo, vtE[lo,tf] 21

where u;" and u, are the extremal control variables. Taking into account (17) we
get

up =y . . (22)
0 if 1, >0 0if 43 >0.

But, because the Hamiltonian depends linearly on the control variables it is
necessary to study the existence of a singular solution. Therefore it is necessary to
study the possibility of the existence of the relationships 2,(t)=0, 13(t)=0 for ¢ €[,
t.J< [0,4]. Taking into account (17) and (21) we get

10 + /llfl =0. (23)

According to the maximum principle, 4¢ is a constant so that 1o<0. If 4,=0,
then 1,=0 because always f;#0. This would mean that Ay=A,=1,=43=0 which is
contradictory to the requirements of the maximum principle. Thus, 1¢<0, 1,#0.
With imposed conditions dA,/dt=0 and d1;/dt=0, from the two last relationships
(19) we get

* {ulmax if Ay <0 {”Zmax if 43<0
, Uy =

N _o N _,, (24)

0w, ’ 0w,

Taking into account the expression of f; given by (11) one obtains
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F F
oh __ gcosa . [l—al B 1 B B )sz} dép ,
0oy 1+ x(=Epy +Ep)] mg cos o mg cos o dw,,
(25)
F, F, d
Do s {az ety L )51,1} o)
oy 1+ 2(=Ep1 +Ep0)] mgecosa mgecosa dow,»

As a result, the conditions (24) lead to
dép;

Y=o, j=12 @7)
da,j

which shows that the specific longitudinal reactions should get the maximum
values. These values correspond to the known optimal slip ratios s,;, /=1, 2. It
means that there exists a singular solution of the optimal problem. The state
variables corresponding to the singular solution satisfy the relationships
S1 (v, 041) = V(=58 1) = 7701011 = 0,82 (v, 0y0) = V(1 =Sp2) = a0y = 0.

(28)

The tire rolling characteristic is so that d&,/da,>0 for S; (v, w,;)>0 and
d&i/da,i<0 for S; (v, w,;)<0.

In Figure 1 the straight lines S1=0 and S,=0 corresponding to the singular
solution are shown. Each straight line divides into two domains the suitable plane
(v, wyy)). In the first domain S$;<0 and in the second domain S0 (=1, 2). Let

|l1(v, @) and ||2(v, w,2) be the representative points corresponding to a certain

state. Because f1<0, from (23) it results that 4,<0. Taking into consideration the
two last equations (19), we get the following features:

1)‘1’1—2 =0 if |€(S1=0); 2)@ <0 if |ielh;
dt {3, (1)=0 dt {3, (1)=0
332 S0if |1l 493 ~0if  |l2e(5=0); 5“3 <0 if
U 13, 0)=0 1 2y(0)=0 U1 35(0)=0
HQEIIQ; 6)ﬂ >01f HQEII].
dt 13 (=0

If, at a given moment, 1,(#)=0 and 43(#)=0, we can establish the sequence
of the control depending on the positions of the points ||; and |,. But, in the
general case, it is difficult to establish this sequence. In any case, at the braking
beginning we have ||€/,and ||, €ll, in a way that is shown in Fig. 1
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Fig. 1. The lines corresponding to the singular solution

The singular control corresponds to the singular solution and it can be
determined in the following way. Using the relationships (10), we can write
equalities

doy _ J2(1,0u,0x) —u doyy  [3(0,0y1,0y)) — Uy

) (29)
dv (v, 0y1,0,7) dv (v, 01, 0,7)
Taking into account the relationships (28), we get
dw,,; 1-s5,;
Voo W=, (30)
dv ”rOj

If ¢,; is the longitudinal adhesion coefficient of the tyres of the axle j, one

can write &,=¢,;. Taking into account the relationships (29), (30) and & =Cpjmax We
get

1 l—ay + x[1+F,, /(mgcosa)]¢x2+Fazl /(mg cos )
Ulsg = (@x1—S) Mg cosa +
+ —
I 1+ x(0x2 —0x1)
1- My, i
#o My - e Q)
r01 't
s = 2 (py - f) UL X1+ Fyy /(mg cosa)lpy + Fyzp /(mg cos a) mgcosa +
21, L+ x(9x2 = 9x1)
Jlesm d., (32)
Tr02

where d_ represents the automobile deceleration in the singular duty of braking:
(1= a))ex1 +a19x2 + (Fuz190x1 + Faz29x2) /(Mg cos a)

d,., =gcoso. +gsina +
¢ I+ x(px2 = 0x1)
2
A
+M. (33)
m

If pu=@pn=0,, then d. represents even the maximum possible deceleration
given by (1).



254 Aurel P. Stoicescu

Knowing us, j=1, 2, we can easily determine the brake torques by means
of relationships (14).

Obviously, to achieve the singular motion the maximum brake torques
should be large enough. Thus

ujsg Sujmax,j=1,2. (34)

If the brake system cannot achieve the maximum brake torques large
enough, namely the conditions (34) are not achieved, the optimal braking is
performed by the control given by relationships (22). As we mentioned already
the establishment of the sequence of the optimal controls is difficult. In such cases
it is necessary to use the numerical methods. At braking beginning, obviously, the
controls ., and uyu,, are suddenly applied and further, if such is the case, the
brakes are completely released. After that this process is repeated. If the
maximum brake torques are close by the brake torque values corresponding to the
singular solution but smaller than the preceding mentioned values there may exist
the tendency of the locking of some wheels in the way the numerical simulations
show. But, if the maximum brake torques are not too large, the wheels do not have
tendency of locking and, consequently, it is not necessary to cancel the brake
torques.

Obviously, in the case of the optimal braking strategy the braking time
decreases when the maximum brake torque increases. Also, when the relationship
(34) is satisfied, at the braking beginning the control (22) is applied until the
singular braking duty is attained, after that the braking is achieved by applying the
singular brake torques until the vehicle velocity becomes small enough. We can
choose u1mqx and ua,ec in such a way as to reach the singular braking duty after a
short time without other controls. It is noticed that the reaching of the singular
duty means that the slip ratios of the wheels should get the optimum values at the
same time.

As it has been found, generally, the optimal braking strategy is intricate
enough and it is difficult to put in practice. In addition to all this the brake torques
cannot suddenly increase to the requested values. Consequently, the possible
maximum deceleration cannot be achieved in practice. This issue should be
considered by the evaluation of the braking performances of an automobile.

4. Numerical exemplification

Taking into account the above mentioned considerations, we consider a
passenger car with the following features: A=1.80m’, ¢~0.35, 1=0.012,
1,=0.180kg.m?, I,,=1.5kg.m?, I,,=1.5 kg.m%, L=2.69m, m=1600kg, r,;=0.30m,
7,00=0.30m, r/1=0.29m, r;=0.29m, x=0.20. The lift aerodynamic effects are
negligible.
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The braking torque produced by engine changes depending on the mean
piston velocity or the engine speed by the linear law [3, 8, 9]:

30 .
M pe :Vh(al-n"‘ﬂl):Vh(?Ztalwwl +ﬁ1] (35)

where V), [[] is engine displacement, # [1/min] represents the crankshaft speed and
oy and f are certain constants depended on the engine type. In present paper it is
assumed the following values: 0{1210'8 N.m/(1.1/min), £=-0.15 N.m/I.
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Fig.2. Rolling characteristic of a tyre
The tyre rolling characteristic is expressed by “Magic Formula” [10] (one
considers the same characteristic for the all wheels):

&p = @y sin[C arctan{B s, — E, (B,s, —arctan(B,s,))}] (36)
where s, is the longitudinal slip ratio. The choice values of the constants are:
B~14, C=1.5, E.=1. For ¢~=1.2 the tyre rolling characteristic is shown in Figure
2. It is typical for the actual tyres while rolling on the dry surface of a modern

road.
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Fig.3. Variation of wheel angular speeds with time during braking

We have conceived a computer program in Mathematica for the
integration of the differential equation system (10) as for well as the determination
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of different quantities which are of interest to the present study. First one treats
the case of the braking with a shut-off engine. If we consider the singular controls
and the initial conditions corresponding to these controls one obtains by numerical
integration the maximum deceleration exactly.
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ok Bt
oo 03 10 15 20 25 30
Time, =

Fig.4. Variation of wheel angular speeds with time during optimal braking

But, if the initial angular speeds of the wheels have the real values
corresponding to the situation when the brake torques are not yet applied, that is
wywo=vo/rw; (=1, 2), the front wheels are locked at time of 1.4 s (Fig. 3, vo=40 m/s)
before the vehicle speed becomes zero. Therefore, one confirms the theory and it
is necessary to begin with the extremal controls.

By means of a computer program the constant brake torques have been
determined, which ensure the wheel angular speeds corresponding to the singular
duty after a very short time. These torques are Mp1=1.2Mp1max, Mpr=1.86Mp2mux
where Mpimax and Mppma, represent the singular brake torques corresponding to
vehicle speed of 40 m/s. It can be noticed that these torques have the large enough
values. The numerical integration of the motion equations shows that the optimal
braking duty is indeed obtained (Fig. 4). The time necessary to get the singular
braking duty is 0.02 s.

Let @, be the coefficient of the braking longitudinal reaction distribution
in the case of a two-axle automobile:

Dy = X1 (Xpy + Xp). (37)

In the case of the braking with a shut-off engine this ratio may be
approximated with enough accuracy by the ratio of the corresponding brake
torques. A simple analysis of the automobile braking and wheel locking by taking
into account the brake torques in a direct adequate way has been achieved in [11].
According to the classical theory, the optimal braking distribution coefficient that
ensures the carrying out the possible maximum deceleration is given by relation
[1-5]:

(Dbop =l-a;+ x9;. (38)
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During braking, the brake torques change with respect to time according to
the following expressions:

M M
q)b bmaxt forl‘ﬁt(), (]—Q)b)ﬂt fOf'tSt(),

My (t)= to ;Mo (1) = fo (39)
DpMpmax  fort>t A=Dp)Mpmax  Sfor t >t

where My, [N.m] is the total brake torque corresponding to a certain braking
operation (for a certain control given by driver) and #, represents the increase time
of the brake torque.

If it is assumed that @, has the optimal value given by (38), namely 0.74,
and the total brake torque corresponds to the limit of the adhesion, by numerical
integration of the motion equations the obtained results are depicted in Figs. 5 and
6 (one considers that #=0.15 s). The designed computer program ensures the
complete numerical integration of the system even in the case when the wheels of
one axle or two axles are being locked —up.
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Fig.5. Variation of deceleration with time (@y=®,,,, 1==0.15 s)
It is found that because the optimality requirements established before are not
fulfilled, the deceleration is small enough in comparison with the possible
maximum deceleration and the front wheels are being locked-up which alters the
steering control.
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Fig.6. Variation of vehicle speed and wheel speeds with time (@,=®,, 1=0.15 s)
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Therefore, taking into account that always there is an increased time 7y, in the case
of a classical braking system we may formulate the question of the determination
of the optimal brake torque distribution coefficient and the total torque Mpmax
which ensure the maximum braking performance (e.g. the minimum braking
time).
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Fig.7. Variation of braking time with k;, and @,

For this purpose, on the basis of the mentioned program we have defined a
function that expresses the dependence of the braking time corresponding to a
very small vehicle velocity on My, and @,. After that, this function has been
depicted by contour lines (see Fig. 7). The maximum total brake is defined as to:

M pmax =mgrqikp (40)
where k; [-] represents the brake coefficient.
By means of the mentioned plot and several successive trials by using the
mentioned program it has been established that the minimum braking time of
3.439 s is attained for k;=1.15 and @,=0.726.This means that the maximum brake
torque is less than the brake torque corresponding to the adherence limit (k;<gy).

Also, the coefficient @, is less than the value given by (38), namely 0.74.
It is noticed that for the smaller values of the brake torque there is a variation
interval of @, for which the braking time remains constant. Besides it is noticed
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that for certain values of @, there are two different values of My, that lead to
the same braking time. At the mentioned optimum point the braking is closed to
the ideal braking (see Fig. 8).
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Fig.8. Variation of deceleration with time (k,=1.15, @=0.726)
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Fig.9. Variation of deceleration with time during combined braking (see text)

It is found that both the brake torque distribution coefficient and the proper
values of the brake torques are of importance. But, in real conditions, the
maintaining of the brake torques at the mentioned values is difficult.

In the case of the combined braking with coupled engine one finds that if
the torques corresponding to the singular solution are applied even if the wheel
angular speeds are w,,=Vvo/7+; (j=1, 2), the deceleration is very closed to the ideal
deceleration without some wheel locking up. If the constant torques
corresponding to the singular torques at vehicle velocity of 40 m/s are applied and
it is considered the increase time fy, the wheel blocking-up is not produced
(variation of deceleration is represented in Figure 9). Therefore, the results of the
combined braking are better than those obtained by the braking with the engine
shut off. In exchange, if it is assumed that @,=0.74 (according to relationship
(38)) and the maximum total brake torque corresponds to the adherence limit, then
the front wheels are locked up even if later than when using the brake system
only. During braking with a coupled engine, the coefficient @, corresponding to
the singular braking duty changes with time; in the present case the variation
range 1is [0.726, 0.734]. Anywise, these values are smaller than those
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corresponding to (38). Therefore, even if, generally, the braking performance
achieved by combined braking may be nearer to the ideal performance, the
coefficient @, is not much different from its optimum value and the inadequate
maximum brake torques may lead to the diminution of the braking performance
and the wheel locking up.

5. Conclusions

At the moment of automobile braking, the maximum deceleration limited
by adherence (ideal deceleration) can be theoretically achieved by means of a
brake system control that consists of extreme controls (rely type) and the singular
control which are studied in the paper.

In the case of a classical brake system the ideal deceleration cannot be
achieved. However, there is a distribution coefficient of the brake torques and
suitable values of torques which ensure the maximum deceleration closed to the
ideal deceleration. The mentioned coefficient does not coincide with the optimal
coefficient considered in literature.

Generally, during combined braking with coupled engine, the maximum
deceleration may be nearer to the ideal deceleration. Nevertheless, if the value of
the distribution coefficient does not differ much from the optimum value, the
wheel may become locked.
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