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ON THE MAXIMUM BRAKING CAPABILITY OF 
AUTOMOBILES 

 
Aurel P. STOICESCU1 

 
În lucrare se prezintă studiul regimului optimal de frânare a unui 

automobil, care conduce la performanţe maxime de frânare. Pentru aceasta se 
aplică principiul de maxim al lui Pontreaghin, arătându-se că există o soluţie 
singulară a problemei. În cazul general, comanda optimală include comenzi de tip 
releu şi comanda singulară. Pentru un sistem uzual de frânare realizarea acestor 
comenzi este dificilă, astfel că deceleraţia maximă posibilă limitată de aderenţă 
este practic imposibil de obţinut. 
 
The paper presents the study of the optimal braking duty of an automobile that 

leads  to the maximum braking performance. With this end in view one applies the 
Pontryagin’s maximum principle. It is proved that there exists a singular solution of 
the problem. In the general case, the optimal control consists of relay type controls 
and singular control. This control is difficult to achieve by an usual braking system. 
Therefore, the  maximum deceleration limited by adhesion is  impossible of 
execution in practice. 
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1. Introduction 
 
The maximum braking capability of an automobile is characterized by one 

of the following quantities: the minimum braking distance, the minimum braking 
time and the maximum deceleration.  The maximum deceleration is often used 
because it is theoretically determined by a more direct method. 

The maximum possible braking capability is given by the maximum 
deceleration that is limited by the adhesion between tyre and road, dmaxp. Its 
expression is [1-5]  

                            mAvcgd xxp /5.0)sincos( 2
max ρααϕ ++=                        (1) 

where: 
 -A[m2] is automobile frontal area; 
 -cx[-]-aerodynamic resistance coefficient; 
 -g[m/s2]-acceleration due to gravity; 
 -m[kg]-automobile mass; 
            -v[m/s]-automobile velocity; 
 -α[rad]-slope angle; 
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 -φx[-]-longitudinal road adhesion coefficient (maximum braking effort 
coefficient); 
 -ρ[kg/m3]-air density. 
 Essentially, the relationship (1) is established by use of the rectilineal 
motion equation for an automobile assuming that the wheels reach the adhesion 
limits simultaneously. Therefore, the problem is dealed with from quasistatic 
point of view and so it is mathematically reduced to an algebraical problem. In 
fact, even if is assumed that a braking system could suddenly generate the 
necessary brake torques, it should be noticed that during process the inertia of the 
braked wheels is involved and that the braking forces are produced by the agency 
of the wheels and the tyres, which are elastic in longitudinal direction. The last 
feature is strongly connected with the rolling characteristic of a tyre. 
 In the present paper the maximum braking capability of an automobile is 
investigated taking into account the above mentioned facts.To solve the problem 
we will apply the Pontryagin’s maximum principle [6,7] and make evident the 
difference relating to the classical approach and resort to suitable numerical 
examples. 
 

2. State equations 
 
It is assumed that a two-axle automobile moves on a road with the 

longitudinal slope of angle α (when the automobile climbes uphill α>0 and when 
it moves downhill α<0). The Newton’s equation for the automobile motion is: 

                           2
21 5.0sin)( AvcραmgXXvm xbb −−+−=                 (2) 

where Xb1 and Xb2 are the longitudinal braking reactions acting on the front  and 
the rear wheels, respectively (Xb1>0, Xb2>0). 
 We consider the general case when the automobile braking is performed 
with coupled engine. If it is supposed, for instance, that the front wheels are 
driving, then one should take into account for the engine brake torque and the 
inertia of the rotating parts of the engine and the driveline. By applying theorem 
on the angular momentum about the front wheel rotation axis (for details see, for 
instance, [1,8]) we obtain: 

                                  ,. 11111
1

1 ddbbttbewt rfZrXMηiMωI −+−−= −               (3) 
                                       2222222 ..2 ddbbww rfZrXMωI −+−=                      (4) 

where                              120
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wIIigbIttieItI ++−+−= ηη                           (5) 
with the following notations: 
-f [-]-coefficient of rolling resistance (it is assumed that the coefficients of rolling 
resistance of the all wheels are same) ; 
-i0, it [-]-final drive gear ratio, overall gear ratio (axle and transmission); 
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-Ie, Igb, I0, Iw1,Iw2 [kg.m2]-mass moment inertia of the rotating parts of the engine, 
gear box, final drive, front  and rear wheel, respectively; 
-Mbe, Mb1, Mb2 [N.m]-braking torque produced by engine and brake system (for 
front and rear axle), respectively; 
-rd1, rd2 [m]-dynamic loaded radius of front and rear tyres, respectively; 
-Z1, Z2 [N]-normal reactions on the front and rear axles, respectively; 
-η0, ηt [-]-efficiency of the final drive and overall transmission efficiency, 
respectively; 
-ωw1, ωw2 [rad/s]-angular speeds of the front and rear wheels, respectively. 
 The longitudinal braking reactions can be expressed as 
                                                       21,,. == jjZbjbjX ξ                                          (6) 
where ξbj (j=1,2) are the specific longitudinal braking  reactions. The normal 
reactions on axles are functions of the specific longitudinal braking reactions [8]: 
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where al=a/L, χ=hg/L with the following notations: 
-a [m]-distance between the gravity center and the normal plane on the road that 
passes trough the front axle; 
-Faz, Faz1, Faz2 [N]-aerodynamic lift force, front and rear aerodynamic lift forces; 
-hg [m]-height of center of gravity of the automobile; 
-L [m]- wheelbase. 
 Generally, the specific braking reaction is depended on the longitudinal 
slip ratio, normal reaction acting on tyre, wheel center velocity and type road 
surface. On a given type road surface in certain conditions the effect of the normal 
reaction and velocity are not important, so that, in this paper, we suppose that ξbj 
(j=1, 2) are depended on the longitudinal slip ratio only, which is defined as 
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where rr0j is rolling radius of the freely rolling wheel corresponding to the wheels 
of the j axle. 
 Taking into account the relationship (6), (7) and (8), Equations (2), (3) and 
(4) may be written in the general form: 
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the functions f1, f2 and f3 being defined by the expressions: 
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 Because Faz and Fazj (j=1, 2) are depended on vehicle speed and, 
consequently, the normal reactions are depended on the vehicle velocity 
explicitly. In the above expressions ξbj are substituted for the functions ξbj(sj) 
(j=1,2), which are known. Finally, the state equations contain the control variables 
u1 and u2 defined by relations 
                                                ).2/(,/ 22211 wbtb IMuIMu ==                        (14) 
 

3. Optimal duty of automobile motion during braking 
 
The dynamic system being defined by the state equations (10) it raises the 

problem to establish the control variables u1 and u2 that ensure the maximum 
braking capability of an automobile. It can be expressed as the minimum braking 
time. In this way we reach the optimal control problem. The considered criterion 
is given by  

                                                    ∫= ft
dtJ

0
                                                         (15)  

where tf  is the final time. The optimization problem consists in the minimization 
of J taking into account the constraints (10). The initial and final conditions are: 
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First, one considers the stopping braking time that correspond to vf =0. 
However, it is necessary to take into account that at v=0 the tire rolling 
characteristic is not defined. For this reason, further we consider vf ≠0, but small 
enough (for instance, 1.5 m/s). It is not absolute by necessary to specify the values 
of the wheel final angular speeds, thus leaving them as free variables at the final 
moment. 
 The Hamiltonian of the present problem will be: 
                          23123322110 uλuλfλfλfλλH −−+++=                            (17) 

where λ0, λ1(t), λ2(t), λ3(t) are the components of the adjoint vector (costate 
vector). Obviously, the braking torques on the two-axle is limited to the maximum 
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values Mb1max and Mb2max, to which correspond to the maximum of the control 
variables u1max and u2max, namely 
                                          .,,max 210 =≤≤ jjuju                                                (18) 

The adjoint system of equations is written as: 
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If x = (v, ωw1, ωw2) is the state vector and x*= (v*, ωw1
*, ωw2

*) represents the state 
vector corresponding to the optimal braking duty, the Pontryagin’s maximum 
principle yields 
                            ( ) ( ),,,,,,,,,sup *
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where u1

* and u2
* are the extremal control variables. Taking into account (17) we 

get  
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But, because the Hamiltonian depends linearly on the control variables it is 
necessary to study the existence of a singular solution. Therefore it is necessary to 
study the possibility of the existence of the relationships λ2(t)≡0, λ3(t)≡0 for t∈[ti, 
te]⊆ [0,tf]. Taking into account (17) and (21) we get  
                                                       .0110 =+ fλλ                                                (23) 

According to the maximum principle, λ0 is a constant so that λ0≤0. If λ0=0, 
then λ1=0 because always f1≠0. This would mean that λ0=λ1=λ2=λ3=0 which is 
contradictory to the requirements of the maximum principle. Thus, λ0<0, λ1≠0. 
With imposed conditions dλ2/dt≡0 and dλ3/dt≡0, from the two last relationships 
(19) we get 
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Taking into account the expression of f1 given by (11) one obtains 
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As a result, the conditions (24) lead to 

                                                     2,1,0 == j
da
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which shows that the specific longitudinal reactions should get the maximum 
values. These values correspond to the known optimal slip ratios smj, j=1, 2. It 
means that there exists a singular solution of the optimal problem. The state 
variables corresponding to the singular solution satisfy the relationships  

.0)1(),(,0)1(),( 202222101111 =−−==−−= wrmwwrmw ωrsvωvSωrsvωvS  
                                                                                                                            (28) 

The tire rolling characteristic is so that dξbj/darj>0 for Sj (v, ωrj)>0 and 
dξbj/darj<0 for Sj (v, ωrj)<0. 
 In Figure 1 the straight lines S1=0 and S2=0 corresponding to the singular 
solution are shown. Each straight line divides into two domains the suitable plane 
(v, ωwj). In the first domain Sj<0 and in the second domain Sj>0 (j=1, 2). Let 
   &1(v, ωw1) and &2(v, ωw2) be the representative points corresponding to a certain 
state. Because f1<0, from (23) it results that λ1<0. Taking into consideration the 
two last equations (19), we get the following features: 
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If, at a given moment, λ2(t)=0 and λ3(t)=0, we can establish the sequence 
of the control depending on the positions of the points &1 and &2. But, in the 
general case, it is difficult to establish this sequence. In any case, at the braking 
beginning we have &1∈I1 and &2 ∈II1 in a way that is shown in Fig. 1 
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The singular control corresponds to the singular solution and it can be 

determined in the following way. Using the relationships (10), we can write 
equalities 
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Taking into account the relationships (28), we get 
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If ϕxj is the longitudinal adhesion coefficient of the tyres of the axle j, one 
can write ξbj=ϕxj. Taking into account the relationships (29), (30) and ξbj =ξbjmax we 
get 
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where dcs represents the automobile deceleration in the singular duty of braking: 
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If ϕx1=ϕx2=ϕx, then dcs represents even the maximum possible deceleration 
given by (1). 

Fig. 1. The lines corresponding to the singular solution 



254                                                        Aurel P. Stoicescu 

 Knowing ujsg, j=1, 2, we can easily determine the brake torques by means 
of relationships (14).  
 Obviously, to achieve the singular motion the maximum brake torques 
should be large enough. Thus 
                                                    .2,1,max =≤ juu jjsg                                     (34) 

If the brake system cannot achieve the maximum brake torques large 
enough, namely the conditions (34) are not achieved, the optimal braking is 
performed by the control given by relationships (22). As we mentioned already 
the establishment of the sequence of the optimal controls is difficult. In such cases 
it is necessary to use the numerical methods. At braking beginning, obviously, the 
controls u1max and u2max are suddenly applied and further, if such is the case, the 
brakes are completely released. After that this process is repeated. If the 
maximum brake torques are close by the brake torque values corresponding to the 
singular solution but smaller than the preceding mentioned values there may exist 
the tendency of the locking of some wheels in the way the numerical simulations 
show. But, if the maximum brake torques are not too large, the wheels do not have 
tendency of locking and, consequently, it is not necessary to cancel the brake 
torques. 
 Obviously, in the case of the optimal braking strategy the braking time 
decreases when the maximum brake torque increases. Also, when the relationship 
(34) is satisfied, at the braking beginning the control (22) is applied until the 
singular braking duty is attained, after that the braking is achieved by applying the 
singular brake torques until the vehicle velocity becomes small enough. We can 
choose u1max and u2max in such a way as to reach the singular braking duty after a 
short time without other controls. It is noticed that the reaching of the singular 
duty means that the slip ratios of the wheels should get the optimum values at the 
same time. 
 As it has been found, generally, the optimal braking strategy is intricate 
enough and it is difficult to put in practice. In addition to all this the brake torques 
cannot suddenly increase to the requested values. Consequently, the possible 
maximum deceleration cannot be achieved in practice. This issue should be 
considered by the evaluation of the braking performances of an automobile. 
 

4. Numerical exemplification 
 
Taking into account the above mentioned considerations, we consider a 

passenger car with the following features: A=1.80m2, cx=0.35, f=0.012, 
Ie=0.180kg.m2, Iw1=1.5kg.m2, Iw2=1.5 kg.m2, L=2.69m, m=1600kg, rr01=0.30m, 
rr02=0.30m, rd1=0.29m, rd2=0.29m, χ=0.20. The lift aerodynamic effects are 
negligible. 
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 The braking torque produced by engine changes depending on the mean 
piston velocity or the engine speed by the linear law [3, 8, 9]:  
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where Vh [l] is engine displacement, n [1/min] represents the crankshaft speed and 
α1 and β1 are certain constants depended on the engine type. In present paper it is 
assumed the following values: α1=10-8 N.m/(l.1/min), β1=-0.15 N.m/l. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
The tyre rolling characteristic is expressed by “Magic Formula” [10] (one 

considers the same characteristic for the all wheels): 
                         ))}]arctan((arctan{sin[ xxxxxxxxxb sBsBEsBCφξ −−=      (36) 

where sx is the longitudinal slip ratio. The choice values of the constants are: 
Bx=14, Cx=1.5, Ex=-1. For ϕx=1.2 the tyre rolling characteristic is shown in Figure 
2. It is typical for the actual tyres while rolling on the dry surface of a modern 
road. 
 
 
 
 
 
 
 
 
 
 

We have conceived a computer program in Mathematica for the 
integration of the differential equation system (10) as for well as the determination 

Fig.3. Variation of wheel angular speeds with time during braking 

Fig.2. Rolling characteristic of a tyre 
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of different quantities which are of interest to the present study. First one treats 
the case of the braking with a shut-off engine. If we consider the singular controls 
and the initial conditions corresponding to these controls one obtains by numerical 
integration the maximum deceleration exactly. 

 
 
 
 
 
 
 
 
 
 
 
But, if the initial angular speeds of the wheels have the real values 

corresponding to the situation when the brake torques are not yet applied, that is 
ωwj0=v0/rr0j (j=1, 2), the front wheels are locked at time of 1.4 s (Fig. 3, v0=40 m/s) 
before the vehicle speed becomes zero. Therefore, one confirms the theory and it 
is necessary to begin with the extremal controls. 

By means of a computer program the constant brake torques have been 
determined, which ensure the wheel angular speeds corresponding to the singular 
duty after a very short time. These torques are Mb1=1.2Mb1max, Mb2=1.86Mb2max 
where Mb1max and Mb2max represent the singular brake torques corresponding to 
vehicle speed of 40 m/s. It can be noticed that these torques have the large enough 
values. The numerical integration of the motion equations shows that the optimal 
braking duty is indeed obtained (Fig. 4). The time necessary to get the singular 
braking duty is 0.02 s. 
 Let Φb be the coefficient of the braking longitudinal reaction distribution 
in the case of a two-axle automobile: 
                                                       )./( 211 bbb XXX +=Φ                               (37) 

In the case of the braking with a shut-off engine this ratio may be 
approximated with enough accuracy by the ratio of the corresponding brake 
torques. A simple analysis of the automobile braking and wheel locking by taking 
into account the brake torques in a direct adequate way has been achieved in [11]. 
According to the classical theory, the optimal braking distribution coefficient that 
ensures the carrying out the possible maximum deceleration is given by relation 
[1-5]: 
                                                         ..1 xlbop φχa +−=Φ                                 (38) 

Fig.4. Variation of wheel angular speeds with time during optimal braking 
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 During braking, the brake torques change with respect to time according to 
the following expressions: 
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where Mbmax [N.m] is the total brake torque corresponding to a certain braking 
operation (for a certain control given by driver) and t0 represents the increase time 
of the brake torque. 
 If it is assumed that Φb has the optimal value given by (38), namely 0.74, 
and the total brake torque corresponds to the limit of the adhesion, by numerical 
integration of the motion equations the obtained results are depicted in Figs. 5 and 
6 (one considers that t0=0.15 s). The designed computer program ensures the 
complete numerical integration of the system even in the case when the wheels of 
one axle or two axles are being locked –up.  
 
 
 
 
 
 
 
 
 

It is found that because the optimality requirements established before are not 
fulfilled, the deceleration is small enough in comparison with the possible 
maximum deceleration and the front wheels are being locked-up which alters the 
steering control.  
 
 
 
 
 
 
 
 
 
 

Fig.6. Variation of vehicle speed and wheel speeds with time (Φb=Φbop, t0=0.15 s) 

Fig.5. Variation of deceleration with time (Φb=Φbop, t0==0.15 s) 
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Therefore, taking into account that always there is an increased time t0, in the case 
of a classical braking system we may formulate the question of the determination 
of the optimal brake torque distribution coefficient and the total torque Mbmax 
which ensure the maximum braking performance (e.g. the minimum braking 
time). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
For this purpose, on the basis of the mentioned program we have defined a 

function that expresses the dependence of the braking time corresponding to a 
very small vehicle velocity on Mbmax and Φb. After that, this function has been 
depicted by contour lines (see Fig. 7). The maximum total brake is defined as to: 

                                                   bkdmgrbM 1=max                                 (40) 
where kb [-] represents the brake coefficient. 
By means of the mentioned plot and several successive trials by using the 
mentioned program it has been established that the minimum braking time  of 
3.439 s is attained for kb=1.15 and Φb=0.726.This means that the maximum brake 
torque is less than the brake torque corresponding to the adherence limit (kb<ϕx).  
 Also, the coefficient Φb is less than the value given by (38), namely 0.74. 
It is noticed that for the smaller values of the brake torque there is a variation 
interval of Φb for which the braking time remains constant. Besides it is noticed 

Fig.6. Variation of vehicle speed and wheel speeds with time 
(Φb=Φbop, t0=0.15 s) 

Fig.7. Variation of braking time with kb and Φb 
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that for certain values of Φb   there are two different values of Mbmax that lead to 
the same braking time. At the mentioned optimum point the braking is closed to 
the ideal braking (see Fig. 8). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 It is found that both the brake torque distribution coefficient and the proper 
values of the brake torques are of importance. But, in real conditions, the 
maintaining of the brake torques at the mentioned values is difficult. 

In the case of the combined braking with coupled engine one finds that if 
the torques corresponding to the singular solution are applied even if the wheel 
angular speeds are ωw0j=v0/rr0j (j=1, 2), the deceleration is very closed to the ideal 
deceleration without some wheel locking up. If the constant torques 
corresponding to the singular torques at vehicle velocity of 40 m/s are applied and 
it is considered the increase time t0, the wheel blocking-up is not produced 
(variation of deceleration is represented in Figure 9). Therefore, the results of the 
combined braking are better than those obtained by the braking with the engine 
shut off. In exchange, if it is assumed that Φb=0.74 (according to relationship 
(38)) and the maximum total brake torque corresponds to the adherence limit, then 
the front wheels are locked up even if later than when using the brake system 
only. During braking with a coupled engine, the coefficient Φb corresponding to 
the singular braking duty changes with time; in the present case the variation 
range is [0.726, 0.734]. Anywise, these values are smaller than those 

Fig.8. Variation of deceleration with time (kb=1.15, Φb=0.726)

Fig.9. Variation of deceleration with time during combined braking (see text) 
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corresponding to (38). Therefore, even if, generally, the braking performance 
achieved by combined braking may be nearer to the ideal performance, the 
coefficient Φb is not much different from its optimum value and the inadequate 
maximum brake torques may lead to the diminution of the braking performance 
and the wheel locking up.  

 
5. Conclusions 

 
At the moment of automobile braking, the maximum deceleration limited 

by adherence (ideal deceleration) can be theoretically achieved by means of a 
brake system control that consists of extreme controls (rely type) and the singular 
control which are studied in the paper. 
 In the case of a classical brake system the ideal deceleration cannot be 
achieved. However, there is a distribution coefficient of the brake torques and 
suitable values of torques which ensure the maximum deceleration closed to the 
ideal deceleration. The mentioned coefficient does not coincide with the optimal 
coefficient considered in literature. 
 Generally, during combined braking with coupled engine, the maximum 
deceleration may be nearer to the ideal deceleration. Nevertheless, if the value of 
the distribution coefficient does not differ much from the optimum value, the 
wheel may become locked. 
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