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AN APPROXIMATE SOLUTION OF THE MHD FLOW OVER 
A NON-LINEAR STRETCHING SHEET BY RATIONAL 

CHEBYSHEV COLLOCATION METHOD  

Saeid ABBASBANDY1, H. Roohani GHEHSAREH 2, I. HASHIM3  
 

 The problem of the boundary layer flow of an incompressible viscous fluid 
over a non-linear stretching sheet is considered. A spectral collocation method is 
performed in order to find an analytical solution of the governing nonlinear 
differential equations. The obtained results are finally compared through the 
illustrative graphs and tables with the exact solution and some well-known results 
obtained by other researchers. The comparison shows that the obtained results with 
the rational Chebyshev collocation method are more accurate.  
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1. Introduction 
  
In recent years, interest in non-Newtonian fluids has increased due to their 

several applications in industry and technology. Many materials such as polymer 
solutions or melts, drilling muds, clastomers, certain oils and greases and many 
other emulsions are classified as non-Newtonian fluids. It is well known that the 
governing equations for the non-Newtonian fluids are more non-linear and of 
higher order than the Navier-Stokes equations [1]. Thus, to find the analytic 
solutions of such equations is not an easy task. Recently, many problems dealing 
with non-Newtonian fluids have been solved by analytical methods, such as, the 
homotopy analysis method (HAM) [2, 3, 4] and see the references therein. 

Spectral methods, in the context of numerical schemes for differential 
equations, generically belong to the family of weighted residual methods. Spectral 
methods represent a particular group of approximation techniques, in which the 
residuals (or errors) are minimized in a certain way and thereby leading to specific 
methods including the Galerkin, Petrov-Galerkin, collocation and Tau 
formulations. In many papers, various spectral methods are discussed for 

                                                       
1 Prof., Department of Mathematics, Imam Khomeini International University, Ghazvin 34149, 
Iran, e-mail: abbasbandy@yahoo.com 
2 Department of Mathematics, Imam Khomeini International University, Ghazvin 34149, Iran, 
3 Modelling & Data Analysis Research Centre, School of Mathematical Sciences, Universiti 
Kebangsaan Malaysia, 43600 Bangi Selangor, Malaysia 



48                              Saeid Abbasbandy, H. Roohani Ghehsareh, I. Hashim 

problems in bounded intervals or with special boundary conditions [5, 6, 7, 8, 9, 
10]. There are, however, many problems in science and engineering arising in 
unbounded domains. Several spectral methods for treating unbounded domains 
have been proposed by different researchers. The some options for unbounded 
domains fall into three broad categories:   

    1.  For problems posed on a semi-infinite interval )[0,∞ , it is natural to 
consider the usual Laguerre polynomials )(τnL  which form a complete 
orthogonal system in )(0,2 ∞ωL  with ττω −e=)(  [5, 11, 12]. 

    2.  When a solution )(τf  decays rapidly in the direction or directions 
for which the computational interval is unbounded, then the exact solution can be 
calculated by solving the differential equation on a large but finite interval 
(approximation of )[0,∞∈τ  by ][0, L ). This strategy for unbounded domains is 
called domain truncation [5]. 

    3.  Another effective direct approach for solving such problems is based 
on rational approximations [5, 7].  

Recently, Parand et al. applied a spectral method to solve nonlinear 
ordinary differential equations on semi-infinite intervals. Their approach was 
based on rational Tau and spectral methods [13, 14, 15, 16, 17, 18]. 

 
2.  MHD flow over a non-linear stretching sheet 
Let us consider the Magnetohydrodynamic (MHD) flow of an 

incompressible viscous fluid over a stretching sheet at 0=y . The fluid is 
electrically conducting under the influence of an applied magnetic field )(xB  
normal to the stretching sheet. The induced magnetic field is neglected. The 
resulting boundary layer equations are as follows [19]  
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 where u  and v  are the velocity components in the x - and y -directions 
respectively, ν  is the kinematic viscosity, ρ  is the fluid density and σ  is the 
electrical conductivity of the fluid. In Eq. (2.2), the external electric field and the 
polarization effects are negligible and following Chiam [20] we assume that the 
magnetic field B  takes the form  

 ( 1) / 2
0( ) = .nB x B x −  

 The boundary conditions corresponding to the non-linear stretching of the sheet 
are  

 0,=,0)(,=,0)( xvcxxu n  
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 where c  and n  are constants. Upon making use of the following substitutions:  
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 the resulting non-linear differential system is of the following form:  
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 In [19], Hayat et al. employed the modified Adomian decomposition method with 
the Padé approximant and developed the series solution of the governing non-
linear problem (2.3)-(2.4). Rashidi in [21] used the differential transform method 
with the Padé approximant and obtained analytical solutions for this problem. 
Recently, authors in [22, 23] employed the HAM in order to obtain an analytical 
solution of the governing nonlinear differential equations. For the special case of 

1=β , the exact analytical solution of (2.3)-(2.4) as given in [24] is  

.
1

)1(exp1=)(
M

Mf
+

+−− ττ  (2.5) 

The purpose of this paper is to employ an important type of spectral 
methods called the rational Chebyshev collocation method, that has already been 
successfully applied to some nonlinear problems, for solving the problem (2.3)-
(2.4). 

 
3. Rational Chebyshev polynomials 
 A commonly used sets of orthogonal polynomials are the rational 

Chebyshev polynomials. In this section, we will present some of their basic 
properties. 

The well-known Chebyshev polynomial )(xTl  is the l th normalized 
eigenfunction of the singular Sturm-Liouville problem:  

 1,1).(0,=)(])(1[1 222 −∈+′′−− xxTlxTxx ll  
 Also the Chebyshev polynomials satisfy the following three-term recurrence 
relation:  
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 and are orthogonal in the interval 1,1][−  with respect to the weight function 
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 where 2=0c , 1=ic  for 1≥i  and ijδ  is the Kronecker function. From the above 
relations it is evident that the well-known Chebyshev polynomials are valid only 
for 1,1][−∈x , but for problems with semi-infinite domain, by using a 
transformation that maps a semi-infinite interval into a finite domain, it is possible 
to generate a great variety of new basis sets for the semi-infinite interval that are 
the images under the change-of-coordinate of Chebyshev polynomials. For this 
purpose, Boyd [5, 25, 26, 27] presented algebraic maps in the following form  
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 where L  is a constant parameter. The presented algebraic maps for every fixed 
L , map the semi-infinite interval )[0,∞  into 1,1][− , and  
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 So the rational Chebyshev polynomials can be defined as the following three-
term recurrence relation:  
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 It can be shown that ( )lR τ  is the l th eigenfunction of the singular Sturm-
Liouville problem  
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 and rational Chebyshev polynomials are orthogonal with respect to the weight 
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 where 2=0c , 1=ic  for 1≥i . 

Let )[0,= ∞I  and 
)(

=)(
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+ττ

τω  be a weight function over the 

interval I . We define   
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 We denote by ω〉〈 vu,  the inner product of the space )(2 ILω , i.e.  

 .)()()(=,
0

ττωττω duvvu ∫
∞

〉〈  

 Hence, from the orthogonality relation of rational Chebyshev polynomials (3.2) 
and the fact that the rational Chebyshev polynomials )(τlR  form a set of 
orthogonal basis for )(2 ILω , for any function )(2 ILf ω∈  the following expansion 
holds  

),(=)(
0=

ττ ii
i

Rff ∑
∞

 (3.3) 

 with  

 2

,
= ,i

i

i

f R
f

R
ω

ω

〈 〉
 

 the if 's are the expansion coefficients associated with the family 0}{ ≥iiR . 
 
4.  Rational Chebyshev collocation method 
 Let N  be any positive integer, and },,,{= 10 NN RRRspan …ℜ . Then the 

spectral approximation is of the form  
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0=

ττ kk

N

k
N Rff ∑  (4.1) 

 The collocation approximation is to find the coefficients kf  such that the residual 
function equals to zero at the interior collocation points N

jj 0=}{τ . In the rational 
Chebyshev collocation method for solving problem (2.3) with boundary 
conditions (2.4), we use the 1+N  rational Chebyshev-Gauss-Radau points as the 
collocation points in the following form  
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 where jx 's are the 1+N  Chebyshev-Gauss-Radau points;  
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 Now we apply the rational Chebyshev collocation method presented above for 
solving problem (2.3) with boundary conditions (2.4). For this purpose we define 
the following residual function for any NNf ℜ∈  as an approximate solution of the 
problem  
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 So from the collocation method we have  
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 where jτ 's are the rational Chebyshev-Gauss-Radau points presented in (4.2). 
Taking into account 0=)(∞′iR , for Ni ,...0,1,=  the infinity boundary condition 

0=)(∞′Nf  is already satisfied. System (4.4) contains 1+N  nonlinear equations, it 
can be solved for 1+N  unknowns kf  (the expansion coefficients of )(τNf  in 
term of the polynomials orthogonal with )(τω ). This nonlinear system can be 
solved by Newton's method. 

To obtain the order of convergence of rational Chebyshev approximation, 
we need to investigate several orthogonal projections. From Eq. (4.1), it is evident 
that Nf  is the orthogonal projection of f  upon Nℜ  with respect to the weighted 
inner product ω〉〈.,. . In general we define the )(2 ILω -orthogonal projection 
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 We have the following convergence theorem:  For any )(IHf r
ω∈  and 0≥r ,  
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   proof: see [28]. 

This theorem shows that the rational Chebyshev approximation has 
exponential convergence. In the next section we present some results obtained by 
the rational Chebyshev collocation method for problem (2.3). 

 
5. Numerical results 
  
In this section the rational Chebyshev collocation method is applied to 

obtain the approximate solution of the problem (2.3) with some typical values of 
parameters. In the application of the rational Chebyshev collocation method for 
problems with semi-infinite domain )[0,∞ , the difficulty is in choosing the 
optimal map parameter L . Boyd in [25] offered guidelines for optimizing the map 
parameter L . 

For the special case 1=β , the exact analytical solution for problem (2.3) 
is available (2.5). In this paper, the residual function on the domain 

(
1

2 2
2 0

= ( | | )Res Res dτ
∞

∫ ) and the maximum norm of error function on the 

domain = {max | ( ) ( ) |: [0, )}NErr f fτ τ τ
∞

− ∈ ∞  are employed for checking the 
accuracy of the presented method. The approximations of (0)f ′′  for the problem 
(2.3) with 1=β  and 50=M  computed by the present method with suitable L  
and their relative errors are shown in Table 1. 

                                                     Table  1 
Numerical results for the (0)f ′′  and the maximum norm of error function for 

1=β , 50=M  and several values of N . 
  N    L    (0)f ′′    Err

∞
 

 10  0.819   -7.1404682462  4.500 610−×  
 15  1.451   -7.1414357227  5.267 810−×  
 20  2.111   -7.1414283589  5.163 1010−×  
 25  2.339   -7.1414284276  5.884 1210−×  
 30  2.584   -7.1414284285  7.145 1410−×  

 exact  -   -7.1414284285  - 
  

Obviously, this method is convergent by increasing the number of points 
and obtaining a suitable L  and also it is evident that the presented method can 
compute the unknown value (0)f ′′  with high accuracy. The comparison between 
the exact and approximation solution of problem (2.3) with 1=β  and for several 
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values of magnetic parameter ( M ) have been shown in Fig.1. 

 
Fig. 1: Comparison of the solution obtained by the rational Chebyshev collocation (circle) 

and the exact solution (line) with 1=β , 20=N  and several values of M . 
  
A very good agreement was illustrated between the results obtained by the 

rational Chebyshev collocation method and the exact values for all values of τ . 
For 1≠β , there are no explicit exact solutions found for problem (2.3), 

but some semi-analytical methods have been applied for solving (2.3). For two 
cases of problem's parameters 1=  1,= M−β  and 10=  5,= Mβ , the 
approximation values of (0)f ′′  and also the norm-2 of residual function obtained 
by the proposed approach with some numbers of collocation point and a suitable 
L  are given in Tables 2 and 3. 

Table  2 
Numerical results for the (0)f ′′  and norm-2 of residual function for 1= −β , 1=M  and 

several values of N . 
  
 
 
 
 
 
 
 
 

 
 
 
 

  N    L    (0)f ′′    
2

Res  

 10  2.811   -0.8511182003  3.960 410−×  
 15  3.436   -0.8511091034  1.890 510−×  
 20  3.511   -0.8511095789  4.421 710−×  
 25  3.750   -0.8511095738  3.764 810−×  
 30  4.071   -0.8511095740  6.093 1010−×  

 [19]  -   -0.8511  - 
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Table  3 
 Numerical results for the (0)f ′′  and norm-2 of residual function for 5=β , 

10=M  and several values of N .   
  
 
 
 
 
 
 
 
 
 It is evident that this method is convergent (decreasing norm-2 of residual 

function) by increasing the number of points and obtaining a suitable L . In these 
cases there are no exact values of (0)f ′′  available for comparison, but we believe 
that the results given in Tables 2 and 3 by choosing 30=N  and 25=N , 
respectively, are high estimates for (0)f ′′  and are accurate to the last decimal 
positions. 

In Figs. 2-4 the variations of )(τf ′  and )(τf  approximated by the 
presented method for some typical problem's parameters are plotted that agree 
with boundary conditions (2.4). 

 
Fig. 2: Effect of M  on )(τf ′  obtained by rational Chebyshev collocation method with 

20=N  when 1.5= −β . 

Finally, logarithmic graphs of the absolute coefficients || if  of the rational 
Chebyshev functions in the approximate solutions for 1= 1,= M−β  and 

10= 5,= Mβ  with a suitable L  are shown in Figs. 5 and 6, respectively. The 
graphs illustrate that the method has an appropriate convergence rate. 

  N    L    (0)f ′′    
2

Res  

 10  2.726   -3.6956084166  6.146 410−×  
 15  3.021   -3.6956556846  8.795 610−×  
 20  2.639   -3.6956559955  1.894 710−×  
 25  3.201   -3.6956559936  2.906 910−×  

 [19]  -   -3.6956  - 
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Fig. 3: Effect of M  on )(τf ′  obtained by rational Chebyshev collocation method with  

20=N  when 5=β . 

  
          Fig.  4: Effects of parameter β  on analytical solution of )(τf  obtained by the 

rational Chebyshev collocation method with 20=N  when 1=M . 
 

  
Fig.5: Logarithmic graph of absolute coefficients || if  of Rational Chebyshev functions 

in the approximate solution for 1= −β , 1=M  and 4.071=L . 
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  Fig.  6: Logarithmic graph of absolute coefficients || if  of Rational Chebyshev 

functions in the approximate solution for 5=β , 10=M  and 3.201=L . 
6.  Conclusions 
In the present work, an efficient and accurate numerical method based on 

orthogonal functions is successfully applied to get analytical solution of the 
boundary layer flow of an incompressible viscous fluid over a non-linear 
stretching sheet. The numerical solutions are given for different values of the 
problem's parameters by using the collocation method with choosing the rational 
Chebyshev polynomials as the basis functions, which these basis functions have 
some advantages: easy to compute, rapid convergence and completeness, which 
means that any solution can be represented, and very efficient for problems with 
semi-infinite interval. Comparing the computed results by this method with the 
other methods shows that this method provides more accurate and numerically 
stable solutions than those obtained by other methods.  
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