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AN APPROXIMATE SOLUTION OF THE MHD FLOW OVER
A NON-LINEAR STRETCHING SHEET BY RATIONAL
CHEBYSHEV COLLOCATION METHOD

Saeid ABBASBANDY?, H. Roohani GHEHSAREH ?, 1. HASHIM?®

The problem of the boundary layer flow of an incompressible viscous fluid
over a non-linear stretching sheet is considered. A spectral collocation method is
performed in order to find an analytical solution of the governing nonlinear
differential equations. The obtained results are finally compared through the
illustrative graphs and tables with the exact solution and some well-known results
obtained by other researchers. The comparison shows that the obtained results with
the rational Chebyshev collocation method are more accurate.
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1. Introduction

In recent years, interest in non-Newtonian fluids has increased due to their
several applications in industry and technology. Many materials such as polymer
solutions or melts, drilling muds, clastomers, certain oils and greases and many
other emulsions are classified as non-Newtonian fluids. It is well known that the
governing equations for the non-Newtonian fluids are more non-linear and of
higher order than the Navier-Stokes equations [1]. Thus, to find the analytic
solutions of such equations is not an easy task. Recently, many problems dealing
with non-Newtonian fluids have been solved by analytical methods, such as, the
homotopy analysis method (HAM) [2, 3, 4] and see the references therein.

Spectral methods, in the context of numerical schemes for differential
equations, generically belong to the family of weighted residual methods. Spectral
methods represent a particular group of approximation techniques, in which the
residuals (or errors) are minimized in a certain way and thereby leading to specific
methods including the Galerkin, Petrov-Galerkin, collocation and Tau
formulations. In many papers, various spectral methods are discussed for
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problems in bounded intervals or with special boundary conditions [5, 6, 7, 8, 9,
10]. There are, however, many problems in science and engineering arising in
unbounded domains. Several spectral methods for treating unbounded domains
have been proposed by different researchers. The some options for unbounded
domains fall into three broad categories:

1. For problems posed on a semi-infinite interval [0, ), it is natural to

consider the usual Laguerre polynomials L, (z) which form a complete
orthogonal system in L2 (0,0) with w(z) =e™" [5, 11, 12].

2. When a solution f(z) decays rapidly in the direction or directions
for which the computational interval is unbounded, then the exact solution can be
calculated by solving the differential equation on a large but finite interval
(approximation of 7 €[0,%) by [0,L]). This strategy for unbounded domains is
called domain truncation [5].

3. Another effective direct approach for solving such problems is based
on rational approximations [5, 7].

Recently, Parand et al. applied a spectral method to solve nonlinear
ordinary differential equations on semi-infinite intervals. Their approach was
based on rational Tau and spectral methods [13, 14, 15, 16, 17, 18].

2. MHD flow over a non-linear stretching sheet

Let us consider the Magnetohydrodynamic (MHD) flow of an
incompressible viscous fluid over a stretching sheet at y=0. The fluid is
electrically conducting under the influence of an applied magnetic field B(x)
normal to the stretching sheet. The induced magnetic field is neglected. The
resulting boundary layer equations are as follows [19]

%+@:0, (2.1)
ox oy
2 2
g MM, @Yy 0B, (2.2)
ox oy oy

where u and v are the velocity components in the x- and vy -directions
respectively, v is the kinematic viscosity, o is the fluid density and o is the
electrical conductivity of the fluid. In Eq. (2.2), the external electric field and the
polarization effects are negligible and following Chiam [20] we assume that the
magnetic field B takes the form
B(x) = B,x" "2,
The boundary conditions corresponding to the non-linear stretching of the sheet
are
u(x,0) = cx", v(x,0) =0,
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u(x,y) >0 as y— oo,
where ¢ and n are constants. Upon making use of the following substitutions:

;= c(n +1) X(nfl)/zy’ u=cx"f '(z’),
N\ 2v
V2 n+1 '

the resulting non-linear differential system is of the following form:
d*f  d*f (df Y df
—+f—-p8—| -M|—|=0, (2.3
dz® dz? ﬂ(dz’j (drj (23)

f(0)=0, f'(0)=1, limf'(z)=0, (2.4)

T—>0

where
ﬂ = ﬂ, M = —2 o BO2 .

1+n pc(l+n)
In [19], Hayat et al. employed the modified Adomian decomposition method with
the Padé approximant and developed the series solution of the governing non-
linear problem (2.3)-(2.4). Rashidi in [21] used the differential transform method
with the Padé approximant and obtained analytical solutions for this problem.
Recently, authors in [22, 23] employed the HAM in order to obtain an analytical
solution of the governing nonlinear differential equations. For the special case of
S =1, the exact analytical solution of (2.3)-(2.4) as given in [24] is

_1-exp(—v1+M7)
f(r)= :
Vi+M

The purpose of this paper is to employ an important type of spectral
methods called the rational Chebyshev collocation method, that has already been

successfully applied to some nonlinear problems, for solving the problem (2.3)-
(2.4).

(2.5)

3. Rational Chebyshev polynomials

A commonly used sets of orthogonal polynomials are the rational
Chebyshev polynomials. In this section, we will present some of their basic
properties.

The well-known Chebyshev polynomial T,(x) is the Ith normalized

eigenfunction of the singular Sturm-Liouville problem:
VI-X*[V1-X°T/(X)] +17T,(x) =0, xe(-1,1).

Also the Chebyshev polynomials satisfy the following three-term recurrence
relation:
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TO(X) = 11 Tl(X) = Xa
Tn+1(X) = 2XTn(X) —Tn_l(X), n 211
and are orthogonal in the interval [-1,1] with respect to the weight function

o(X) =1/1/1- x>,
[ T.00T, (00000 =22,

where ¢, =2, ¢; =1 for i>1 and & is the Kronecker function. From the above

relations it is evident that the well-known Chebyshev polynomials are valid only
for xe[-1,1], but for problems with semi-infinite domain, by using a
transformation that maps a semi-infinite interval into a finite domain, it is possible
to generate a great variety of new basis sets for the semi-infinite interval that are
the images under the change-of-coordinate of Chebyshev polynomials. For this
purpose, Boyd [5, 25, 26, 27] presented algebraic maps in the following form
1+x T—L
rT=L—— & x= ,
1-x 7+ L
where L is a constant parameter. The presented algebraic maps for every fixed
L, map the semi-infinite interval [0,) into [-1,1], and

_(7-L)\_
Ri(z) =T (Hj =cos(lt),  _ 2cot‘1(\/a, te[0,7z]. (3.1

So the rational Chebyshev polynomials can be defined as the following three-
term recurrence relation:

7—L

Ri(r) =1, R(7)= ,
T+L
7—-L

Rn+1(r) = 2( jRn (T) - Rn—l(T)i nz1
T+L

It can be shown that R (z) is the Ith eigenfunction of the singular Sturm-
Liouville problem

(r+ L)%[(r +LVIR(@)] +12R (7) =0, 7€ (0,00),

and rational Chebyshev polynomials are orthogonal with respect to the weight

function w(7) = % in the interval [0, ), with the orthogonality property:
T\(T+

[[R(D)R,(7)exz)dl7 = Ci?”aij, (3.2)
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where ¢, =2, ¢, =1 for i >1.

AL
Jr(r+L)

Let 1 =[0,0) and a(r) = be a weight function over the

interval | . We define
L> (1) ={v|vismeasurableonland || v || < o},
where

1
Ivl, = (I: V(o) P a)(r)dr)z,
We denote by (u,v), the inner product of the space L% (1), i.e.

vy, = J:v(r)u(r)a)(r)dr.

Hence, from the orthogonality relation of rational Chebyshev polynomials (3.2)
and the fact that the rational Chebyshev polynomials R,(z) form a set of

orthogonal basis for L2 (1), for any function f L2 (1) the following expansion
holds

f(0)= LR (7). (3:3)
with

_(f.R)

1/ o

RLT

the f.'s are the expansion coefficients associated with the family {R}..,

4. Rational Chebyshev collocation method
Let N be any positive integer, and R, =span{R,,R;,...,Ry}. Then the
spectral approximation is of the form

(D)= YR () (4.1)

The collocation approximation is to find the coefficients f, such that the residual
function equals to zero at the interior collocation points {rj}?':o. In the rational

Chebyshev collocation method for solving problem (2.3) with boundary
conditions (2.4), we use the N +1 rational Chebyshev-Gauss-Radau points as the
collocation points in the following form

1+ X,
r=L—"" j=01,...N, 4.2)

! 1-x,
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where x;'s are the N +1 Chebyshev-Gauss-Radau points;
2j7m
2N +1
Now we apply the rational Chebyshev collocation method presented above for
solving problem (2.3) with boundary conditions (2.4). For this purpose we define
the following residual function for any f, € R, as an approximate solution of the

problem

X; = cos(

), j=0.1,..N.

d°f d*f df df
Resy (1) =5+ fu 52— G -MC). - (43)

So from the collocation method we have
Resy(7j) =0, j=1,2,...,N-1,

fn(0)=0, f(0) =1 (4.4)

where z;'s are the rational Chebyshev-Gauss-Radau points presented in (4.2).
Taking into account R/(«) =0, for i =0,1,...,N the infinity boundary condition
fy (0) = 0 is already satisfied. System (4.4) contains N +1 nonlinear equations, it
can be solved for N +1 unknowns f, (the expansion coefficients of f (z) in

term of the polynomials orthogonal with @(z)). This nonlinear system can be

solved by Newton's method.

To obtain the order of convergence of rational Chebyshev approximation,
we need to investigate several orthogonal projections. From Eq. (4.1), it is evident
that f, is the orthogonal projection of f upon R, with respect to the weighted

inner product (..),. In general we define the L’ (I)-orthogonal projection
Py: Li(l)—)iRN by

(Pyf—f,0),=0, VédeR,,
where P, f(z) = f(z). In order to estimate |P, f — f|| , we define the normed

space
H;(I):{v|v is measurable on | and ||v ||, , <o }

where the norm is induced by
1
2 }2

IVl ,= {Z
We have the following convergence theorem: Forany f e H. (I) and r>0,

ro

Tk dk
+1)2 —v
(r+1) dr

k=0
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[P f—f[ <cNT|f

ro
proof: see [28].
This theorem shows that the rational Chebyshev approximation has
exponential convergence. In the next section we present some results obtained by
the rational Chebyshev collocation method for problem (2.3).

5. Numerical results

In this section the rational Chebyshev collocation method is applied to
obtain the approximate solution of the problem (2.3) with some typical values of
parameters. In the application of the rational Chebyshev collocation method for
problems with semi-infinite domain [0,), the difficulty is in choosing the

optimal map parameter L. Boyd in [25] offered guidelines for optimizing the map
parameter L.
For the special case S =1, the exact analytical solution for problem (2.3)

is available (2.5). In this paper, the residual function on the domain

1
(| Res||, = (J'O | Res | dr)2) and the maximum norm of error function on the

domain | Err |, ={max| f () - f(z)|: 7 €[0,%0)} are employed for checking the
accuracy of the presented method. The approximations of f"(0) for the problem
(2.3) with g =1 and M =50 computed by the present method with suitable L

and their relative errors are shown in Table 1.
Table 1

Numerical results for the f"(0) and the maximum norm of error function for
£ =1, M =50 and several values of N .

N L f7(0) | Err|.

10 0.819 -7.1404682462 | 4500 x10°°

15 1.451 71414357227 | 5957 x10°°

20 2.111 -7.1414283589 | 5163 %101

25 2.339 71414284276 | 5 gas %1022

30 2.584 -7.1414284285 | 7145 %10
exact - -7.1414284285 -

Obviously, this method is convergent by increasing the number of points
and obtaining a suitable L and also it is evident that the presented method can
compute the unknown value f"(0) with high accuracy. The comparison between

the exact and approximation solution of problem (2.3) with g =1 and for several
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values of magnetic parameter (M ) have been shown in Fig.1.
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Fig. 1: Comparison of the solution obtained by the rational Chebyshev collocation (circle)
and the exact solution (line) with # =1, N =20 and several values of M .

A very good agreement was illustrated between the results obtained by the
rational Chebyshev collocation method and the exact values for all values of 7.
For B #1, there are no explicit exact solutions found for problem (2.3),

but some semi-analytical methods have been applied for solving (2.3). For two
cases of problem's parameters g=-1, M=1 and f=5 M =10, the
approximation values of f"”(0) and also the norm-2 of residual function obtained
by the proposed approach with some numbers of collocation point and a suitable
L are given in Tables 2 and 3.

Table 2
Numerical results for the f"(0) and norm-2 of residual function for f=-1, M =1 and

several values of N .

N L £(0) | Res |,
10 2.811 -0.8511182003 | 3960 x 10~
15 3.436 -0.8511091034 | 1 ggg x10°°
20 3511 -0.8511095789 | 4 491 x 10~
25 3.750 -0.8511095738 | 374 x10°°
30 4.071 -0.8511095740 | g 093 %1072
[19] - -0.8511 -
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Table 3
Numerical results for the f"(0) and norm-2 of residual function for § =5,

M =10 and several values of N .

N L f(0) | Res |,
10 2.726 -3.6956084166 | ¢ 146 %10~
15 3.021 -3.6956556846 | g 705 %10~
20 2.639 -3.6956559955 | 1 goa <10~
25 3.201 -3.6956559936 | 5 905 x10-°
[19] - -3.6956 -

It is evident that this method is convergent (decreasing norm-2 of residual
function) by increasing the number of points and obtaining a suitable L. In these
cases there are no exact values of f"”(0) available for comparison, but we believe
that the results given in Tables 2 and 3 by choosing N =30 and N =25,
respectively, are high estimates for f"(0) and are accurate to the last decimal
positions.

In Figs. 2-4 the variations of f'(zr) and f(zr) approximated by the

presented method for some typical problem's parameters are plotted that agree
with boundary conditi(_)ns (2.4).

M=100,50,10,5,1

Fig. 2: Effect of M on f'(z) obtained b; rational Chebyshev collocation method with
N =20 when g =-1.5.

Finally, logarithmic graphs of the absolute coefficients | f; | of the rational
Chebyshev functions in the approximate solutions for g=-1,M =1 and
£ =5 /M =10 with a suitable L are shown in Figs. 5 and 6, respectively. The
graphs illustrate that the method has an appropriate convergence rate.
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M=100,50,10,5,1

' {t)

Fig. 3: Effectof M on f'(7) obtained by rational Chebyshev collocation method with
N =20 when S =5.
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Fig. 4: Effects of parameter £ on analytical solution of f (z) obtained by the
rational Chebyshev collocation method with N =20 when M =1.

—10—

Fig.5: Logarithmic graph of absolute coefficients | f; | of Rational Chebyshev functions
in the approximate solution for # =-1, M =1 and L =4.071.
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Fig. 6: Logarithmic graph of absolute coefficients | f; | of Rational Chebyshev
functions in the approximate solution for £ =5, M =10 and L = 3.201.

6. Conclusions

In the present work, an efficient and accurate numerical method based on
orthogonal functions is successfully applied to get analytical solution of the
boundary layer flow of an incompressible viscous fluid over a non-linear
stretching sheet. The numerical solutions are given for different values of the
problem'’s parameters by using the collocation method with choosing the rational
Chebyshev polynomials as the basis functions, which these basis functions have
some advantages: easy to compute, rapid convergence and completeness, which
means that any solution can be represented, and very efficient for problems with
semi-infinite interval. Comparing the computed results by this method with the
other methods shows that this method provides more accurate and numerically
stable solutions than those obtained by other methods.
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