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QUASI-ANALYTIC SOLUTIONS OF FIRST-ORDER
PARTIAL DIFFERENTIAL EQUATIONS USING THE
ACCURATE ELEMENT METHOD

Maty BLUMENFELD'

O ecuatie diferentiala cu derivate partiale poate avea pe un domeniu
bidimensional de integrare o solutie analitici @(x,t) (care inlocuitd in ecuatie va
conduce la o identitate) sau o solutie numericd (reprezentatd de un sir de valori a
caror exactitate este mai greu de cuantificat). Integrarea unei ecuatii diferentiale cu
derivate partiale bazatd pe metoda AEM (Accurate Element Method) conduce la un
numar redus de solutii de formd polinomiald, fiecare corespunzdnd unui singur
subdomeniu de integrare (element). Un astfel de polinom — considerat a fi o solutie
cvasi-analiticd — este adecuat unei verificari directe ce se efectueaza (similar cu
solutia analitica) inlocuindu-l in ecuatia diferentiald. Prin inlocuire va rezulta un
reziduu a carui valoare va permite acceptarea solutiei gasite sau reluarea
calculului cu parametri modificati, pana se obtine un reziduu a carui valoare se
considera admisibild. Testul numeric introdus de AEM reprezintda o verificare
directd a solutiei ¢(x,t) care se poate face pentru oricare element independent de
etapele anterioare de calcul parcurse.

Scopul acestui articol introductiv este de a prezenta metoda si cdteva
exemple simple. Analiza este deci limitatd la ecuatii diferentiale cu derivate partiale
de ordinul unu cu coeficienti constanti, solutiile cvasi-analitice fiind reprezentate de
polinoame cu doua variabile de grad 5 avind 21 de termeni, respectiv de grad 7 cu
36 de termeni.

It is usually considered that a PDE can have on a two-dimensional
integration domain either an analytic solution @(x,t) (which replaced in the PDE
leads to an identity) or a numeric solution (represented by a string of numerical
values whose accuracy is more difficult to quantify). The integration of a PDE by
the Accurate Element Method leads to Piecewise Polynomial Solutions represented
by a small number of polynomials, each one valid on a single sub-domain (element);
they can be considered as quasi-analytic solutions. A quasi-analytic solution is
suitable for direct verification by replacing it in the PDE that leads not to identities
but to a quantifiable residual. Based on the value of the residual one can decide
either to accept the solution or to resume the computation with modified parameters
until an imposed allowable precision is reached. The numerical test introduced by
the Accurate Element Method represent a direct and global verification of ¢(x,t) on
each element, being independent on the various steps (the integration history)
covered in order to obtain it.

The goal of this introductory paper is to present the method and some
examples. Consequently it is restricted only to the first order PDEs with constant
coefficients and to quasi-analytic solutions represented by a 5™ degree polynomial
with 21 terms and by a 7" degree polynomial with 36 terms
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1. Integration of ODEs using the Accurate Element Method (4EM)
The Accurate Element Method (4EM) has been initially developed as a method
leading to quasi-analytic solutions of Ordinary Differential Equations (ODES).
Before applying AEM to Partial Differential Equations (PDEs) we have to
summarize the main characteristics of the AEM as they apply to ODEs [2,3].

Let us consider the first-order ODE

El(x)j—f+Eo<x>¢+EF(x)=o (1)

where E (x), Eo(x), Er(x) can be any type of functions of x. This ODE will be
integrated between a starting (initial) point x5 and a target (final) point xr leading
to

0 [T E et [ Ep(x)dx =0 1.2
[ BiGO dx+ [E () 6() dxt [ Ep(x)dx = (12)
If the coefficients E; and E are constants, this integral can be written as
xT
E, ¢, =E, dq —onxs 0(x) dx — IntegEF (1.3)

While IntegEF = J XST Eq(x)dx is trivial, the only difficulty, typical for this type of

equation, is related to the integral
ntgp= [ ST b(x) dx (1.4)

that includes the unknown function ¢(x) under the integral sign. This integral can
be solved by replacing ¢(x) with an approximation function.

If only the two end values are considered — ¢s (starting value, usually
known) and ¢t (farget value, usually unknown) — the approximation can be a
linear interpolation. Instead of this linear function, AEM introduces a higher-order
polynomial referred to as a Concordant Function (CF), depending on the same
two end unknowns (¢s and ¢r). For instance, if a five degree polynomial is used,
four additional equations are required to determine the coefficients. The Accurate
Element Method establishes accurately these equations by using the governing
equation itself. When the ODE is applied at both ends (Starting and Target) of
the integration domain we have as a result two equations [2,3]. The remaining
two required equations are obtained from the first derivative of the ODE (1.1)
applied also at the both ends. Based on this approach it is possible to obtain
Concordant Functions of high or very high order’, by using higher order
derivatives of the ODE (1.1).

It results a Concordant Function — perfectly adapted to the ODE (1.1) —
that depends on ¢s, ¢r, and a free term. For any chosen CF it results by
performing the integral (1.4)

% Concordant Functions represented by 15 degree polynomials have been succesfully used
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xT
Intd = j 600 dx=Ksbs + Kby +K; (1.5)
where K, K, Kf are three known coefficients. Finally, from (1.3) it results
E ¢r=E ¢5 - Eo(Ks¢s + Ko + KF)_ IntegEF (1.6)

The target value ¢7 can be usually expressed as

O =1(ds) (L.7) or b =1(ds, 1) (1.8)

In the first case (1.7) the method is considered explicit, while in the second as
implicit, because the unknown parameter ¢t is involved in both left and right
terms. The equation (1.6) is of this last type; consequently it results that AEM is
an implicit method, therefore stable. For instance an integral of an ODE using a
single element starting from xs=0 and having as target Xr=10000 proved to be
perfectly stable (see[3], page 118). It is important to underline that for a linear
ODE the Accurate Element Method obtains ¢r directly from (1.6), without any
iterative approach or any procedure for solving a system of equations usually
involved in the implicit methods.

2. Integration of PDEs using the Accurate Element Method (4EM)
2.1 PDE in global coordinates
A PDE can be expressed in global coordinates X—T (Fig.1) as

99 90 _
M6X+N6T+P¢+QG(X’T)_0 (2.1G)

where here M, N, P are three constants (NxM>0) and the free term Qg(X,T) is a
known function of X and T.
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The case solved here is an initial-boundary value problem with known
initial and boundary conditions represented by:
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1. Initial conditions (T=0)

P (X)=A, +AX+AXP+A X +A X +AX +AX .. (2.2)
2.Boundary conditions (X=0):

Q,;(T)=B, +B,T+B,T>+B,T’ +B,T* + B,T* + B,T®... (2.3)

2.2 PDE in local coordinates

The numerical integration on the rectangle represented in Fig.1 will be
performed by dividing the domain in a small number of elements. The approach is
simplified if each element is analyzed by using a local coordinate system x-t
(Fig.2). The coordinates of the four nodes of a rectangular element having the
dimensions B and H are:

Node 1(x,=0,t;=0);Node 2(x,=B,t,=0);Node 3(x5=0,t;=H);Node 4(x4=B, t,=H)(2.4)

In the local system the PDE will be written as

%, o _
M8x+N6t+P¢+Q(X’t)_O (2.1L)

where the free term Q(x,t) is a known two variable polynomial

Q(X,t) =q; + X + st +q X" +qsXt +qgt’ +... (2.5)
The initial conditions and boundary conditions are given by

Initial conditions (t=0): W(x) =0ty + 0, X + 0,X” + 0 X° + 0, X +osx’ +ax’... (2.6)
Boundary conditions (x=0):  Q(t) =B, + Bt +B,t* +Bst’ +B,t* +pst° +Bt°...  (2.7)

Remark. The free term (2.5) in local coordinates can be obtained from (2.1) by
replacing
X=x+X; 2.8) T=t+T, (2.9

where X; and 7; are the coordinates of the node 1 of ELS in the global axes
system. Similarly the condition (2.6) results from (2.2) using (2.8) and the
condition (2.7) from (2.3) using (2.9).

The equation (2.1L) will be integrated on the rectangular element ELS
(Fig.2) having the area 4 =B x H

o0 . 0 _
IA(Ma +NE+P¢jdA+jAQ(x,t)dA_o (2.10)

X

According to §1, AEM replaces — in order to perform the left side integrals
— the unknown two variables function ¢(x,t) by a Concordant Function.
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3. Concordant Function CF5-21
3.1 The Concordant Function: a complete two variables polynomial

A Concordant Function is a complete two variables polynomial, namely it
includes all the possible terms that correspond to a chosen degree: / constant term
+ 2 linear terms (x,7)+ 3 second degree terms (x°,xz,¢°) and so an. The total number
of terms NT for a complete function results from

NT =(G +1)(G +2)/2 (3.1

where G represents the maximum degree of the polynomial function. For instance
a five-degree Concordant Function (G=5) having NT=21 terms, noted as CF5-21,
is given in the local system by

(I)(X,t):C1+C2X+C3t+C4X2+C5Xt+C(,t2+C7X3+C8X2t+C9Xt2+C10t3+c 1 1X4+C12X3t+
+C13X2t2+C14Xt3+C15t4+C16X5+C17X4t+c18X3t2+c19X2t3+C20Xt4+C21t5 (32)

In order to obtain the 21 coefficients of (3.2) there are necessary 21
equations. The first equation is represented by the integral (2.10), consequently
only 20 equations remain to be established.

3.2 Equations based on the initial conditions: Decoupled Coefficients

The first kind of equations is those that impose rigorously the initial-
boundary conditions.

3.2.1 Initial conditions on the South edge 1-2 (t=0)

On the South edge /-2 (Fig.2) is imposed the initial condition (2.6),
supposed here to be a polynomial. Because in the local coordinates for this edge it
corresponds =0, the CF5-21 given by (3.2) becomes the polynomial

O(x,t=0) = C1+ CoX + Cax% + CxC + C 1 x* CreX° (3.3)
If (3.3) and (2.6) are identified it results directly ND1=G+1=5+1=6 coefficients
Ci=oy ; Cy=a; ; Cy=0, ; Cr=0;5 ; Cy=a,; Ce=a; (34
3.2.2 Boundary conditions on the West edge 1-3 (x=0)

Along the West edge 1-3 of ELS (Fig.2) where x=0, the CF (3.2) becomes

0(x=0,t)=C,+ Cst+ Cst’+ C ot>+ Cyst+ Cy t° (3.5)
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If the boundary conditions are continuous for x=0 and =0, namely
B, =0, , the constant C; is already known from (3.4). By identifying (3.5) and the

boundary condition (2.7) it results directly only ND2=G=5 coefficients
Ci=By 5 GCe=B, 5 Cu=Bs 5 C;s5=Bs ; Cy=p (3.6)

All the coefficients established until now result directly without any
connection to other information; they will be referred as decoupled
coefficients. The other remaining constants result usually by solving a system of
equations, being therefore coupled (depending of one another). From the 20
necessary equations, 6+5=11 conditions have been already found. The last 9
equations are established by using the PDE (2.1L).

3.3 Conditions based on the PDE (2.1L) and its derivatives

As it was shown in §1, the AEM develops accurate conditions for
obtaining the unknown coefficients by using the governing equation itself.
Depending on the degree of the Concordant Function one has to use the PDE but
also an adequate number of its derivatives in order to obtain accurately the
remaining equations. These equations have to be applied predominantly at the
nodes of the element’. If one choose to apply for CF5-21 these conditions in the
nodes 2, 3 and 4 (Fig.2), three equations become necessary for each node. The
first is obviously PDE (2.1L), while the two other are its first order derivatives.
The coefficients M, N, P being constants these derivatives are

O(PDE) _\, 0% 0%, ;00 Q_, (3.7)
ot oxot ot ot ot .
O(PDE) _\ 0% 9%, 00 Q_, (3.8)

0x ox? oxot  0x 0x .

The use of these equations is different at each node. At the node 2 the
function and the derivative versus x are known from the initial condition (2.6),
while in the node 3 the function and the derivative versus ¢ are known from the
boundary condition (2.7). On the contrary, in the Target node 4 nothing is known,
neither the function, nor its derivatives.

Suppose the integration procedure is applied on the element G11 (Fig.1).
The first step is to obtain the functions Q(x,t), ¥(x),€(t) in local coordinates by
using the relations (2.8) and (2.9). The methodology for obtaining an equation is
illustrated on the element G11 only for the node 3, whose local coordinates are
x3=0 and t3=H. If (2.1L) is transferred to this node it results

? The programer may transfer some of these equations in other points of the integration domain,
therefore this group of conditions is not unique.
* Because G11 starts from the origin of the global coordinates system, X;=x,=0 and T=t,=0.
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% a )
M(GXJX%H +N (at jwﬁ +P(9) oy Qs =0 (3.9)

While (Q)x=o=n 1s obviously known, the Concordant Function ¢(x,t) has to
coincide at the West side (x=0) with (2.7) so that (¢),_,_, =Q(t=H). Similarly,

the derivative of ¢ versus ¢ has to coincide with the derivative of Q(t)

[@] = (d—Qj =B, +2B,H +3p,H* + 4B, H’ + 5p,H* + 68,H... (3.10)
ot x=0,t=H dt )y

Using these values it results from (3.9) the value of the derivative of
dversus x

% —(@), =—L| N[ 2
() =0 M[N(atjxw P00 Qo | B

From the derivative of the Concordant Function (3.2) versus x it results for x=0
and 7=H the first equation with coupled terms

[@j =C, +HC, + H’C, + H’C,, + H’C,, = (9., (3.12)
aX x=0.t=H

By applying (3.12), the function ¢(x,t) starts to become concordant not
only to the boundary conditions, but also to the PDE (2.1L). One continues with

X

2
(3.7) from which it results {6 ¢J and (3.8) from which one obtains
0,t=H

ox*
the initial condition (2.6), the function (§), 5, =¥(x=B) and its derivatives

VErsus X.

As it was specified above nothing is known in node 4, except the values
of the free term Q(x,t) and of its derivatives. Because the unknown values of the
node 4 are involved in the concordance procedure, the function thus obtained
includes the target values in both left and right sides. Consequently the AEM
procedure for solving PDEs is implicit, therefore stable no matter the
dimensions of the elements.

2
(QJ . The procedure is similar for the node 2, for which are known from
x=0,t=H
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4. Target Edges Polynomial Solutions and Target Value

The strategy developed by AEM concerning the Ordinary Differential
Equations is based on two particularities of the method: the possibility to obtain a
quasi-analytic solution valid on each element and the high precision of the results
that can be obtained at the target point. Because the strategy applied for the
integration of PDEs is on many aspects a two-dimensional extension of the ODE
approach developed in [2,4,5], one can extend the analysis to the same
parameters.

4.1 Residual function

Suppose that for a given PDE a function ¢(x,t) that fulfils the boundary

conditions exists and is known. The way to verify if this function represents a
solution is to replace it in (2.1L)

R(x,t):M@+N@+P$+Q(x,t) 4.1)
ox ot

If the result R(x,t) — referred as residual function — is zero the function
&(x,t) represents an analytic or exact solution of the PDE. If the residual function
is different from zero, the analysis of its value represents the best way to
appreciate the precision of the numerical result. A very small residual will
indicate that ¢ (x,t) is a good solution.

4.2 Residuals on the Target Edges

In §1 there was considered as working parameters for a (one-dimensional)
ODE the following values of the function: ¢s (start) and ¢t (target). For the two-
dimensional PDE (2.1L) initial value problem, two edges of the element /-2
(South) and /-3 (West) (fig.2) where the initial-boundary conditions are known,
will be referred as Starting Edges. Also the values of the function at the nodes
1,2,3 [known from (2.6) and (2.7)] will be considered as Starting Values
6, =¥(x=0,t=0)=Q(x=0,t=0) ;¢,=Y(x=B,t=0) ; ¢, =Q(x=0,t=H) (4.2)
On the contrary, for the other two edges of the element [ 3-4 (North) and
2-4 (East)] the function ¢(x,t) that verifies the PDE is unknown and its value

0s(Xa,ts) at the node 4 is also unknown. These two last edges will be referred as
Target Edges and ¢4 as Target Value.
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It is necessary to precise that ¢ (x,t) obtained from the 4EM procedure

described in §3 cannot lead to R(x,t)=0 on the whole integration domain. In fact
on the starting edges the residuals R;»(x,t=0) and R;3(x=0,t) are usually different
from zero, because the CF is rigorously adapted — due to (3.4) and (3.6)— to the
imposed boundary conditions that do not depend on the PDE to be integrated,
which is not involved in these relations. Consequently, the verification on the
whole integration domain of the residual according to (4.1) will fail implicitly.
Therefore the verification will be performed only on the Target Edges where
(4.1) becomes

Target Edge 34: RX:R(x,t:t4)=( Z—¢+N%+P$J +Q(x,t=t,)  (4.3)
X
t=t4

Target Edge 24- RT:R(x:x4,t):(Mg—¢+N%+P$J +Q(x=x,,t) (4.4)
X
x=x4

Both residuals (4.3) and (4.4) are one-dimensional functions, which
simplify the analysis necessary to obtain a numerical criterion that certifies the
quality of the solution.

Good Target Edges Polynomial Solutions are very important for the usual
case when the integration is performed on more than one element. Suppose the
integration does not stop at the edge 3-4 (Fig.1), but has to be continued along the
T axis, namely on the following element G/2. In this case the North Target Edge
Polynomial Solution on the edge 3-4 [noted (¥ye )G”] will be used as initial-

condition for G12 [(‘P)Glz = (‘PNTE)

Gll]'

The accuracy of the Target Edge Polynomial Solution (4.3) becomes
decisive for a proper continuation of the integration procedure, because thus the
problem is reduced to a known one, namely similar to that used for GI/1.
Consequently, in local coordinates the integration algorithm remains the same.

4.3 Numerical tests concerning the Target Edges residuals
As it was shown in [5], the residual RX (4.3) can be divided in a number

of points NP leading to xi(i=1,2,...NP) abscissas, based on which one can
calculate a mean square root value given by

RX =$\/ > [R(x,,t=t,)f “5)
i=1

This value has to be compared with an allowable residual: RXwms < Rajow (4.6)
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For the East Target Edge residual (Fig.2, edge 2-4), the analysis is
performed along the ordinate ¢, for the constant abscissa x=x,. The condition
concerning the mean square root value becomes

1 i
RTys = _\/ Z[R(X = X49ti)]2 < Raitow 4.7)
NP\ i3

The parameter Ry is @ conventional value that remains to be established.
Some numerical tests solved by the author have shown that a value of RXys
smaller than 107'°-10"" indicate a very good result, but greater values like
Rallowz10'7-10'8 can also be accepted. These values of Ry, are obviously
disputable. A value like Rys =107 shows that the result & (x,2) leading to such

value has to be rejected and a new computation using a greater number of
elements or/and a higher degree Concordant Function has to be performed. This
approach gives to the user a powerful and global tool to verify the validity of the
whole computation, no matter how many elements or CFs were involved. It is
important to underline that the numerical tests (4.6) and/or (4.7) are performed for
any element independently of the results obtained on the previous elements.
Consequently they represent a verification of the whole procedure, concerned
only by the final result, being therefore independent on the various steps

covered in order to obtain ¢ (x,t).

4.4 The accuracy estimation of the Target Value ¢s(X4,ts)

The first question that has to receive an answer is: the value of @u(x4t4) is
reliable or not ? At least two different ways to give an answer can be considered:

1. Compute the Target Value ¢4(x4,t4) by using an increasing number of
elements in order to follow the convergence of the results. This can be done by
comparing the values obtained for ¢4(x4,t4) using NE and NE+A(NE) elements,
which allows to obtain an estimated error given by

¢(X4 oty )(NE+ANE) B ¢(X4’ ty )(NE)
x4t )(NE+ANE) + (Xt )(NE)

Estimated Target Error = (4.8)

Obviously, this is only an estimated error because it is related to a previous value
d4(X4,t4)(NE), 1OL to the actual value which is unknown.

2. Compare the values of ¢4(x4,t4) obtained by using different Concordant
Functions.
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5. First-order PDEs with P=0 integrated using CF5-21

If the coefficient P=0, the PDE (2.1G) becomes

9, N _
M6X+N8T+QG(X’T)_O (5.1

For the examples analyzed in this paragraph the integration domain is
quite large, being extended along X from X;.;=0 to Xgizn,=1 and along T from
Tsta=0 up t0 Trage=10. The computations are performed with CF5-21 using a
small number of elements, with large or very large dimensions.

The initial-boundary conditions for all the examples analyzed below are
imposed by the following polynomials taken at random

Y, (X)=10-3X + X* +2X° +3X* (5.2)
Q;(T)=10-2T +3T*-0.5T° +0.2T* (5.3)
5.1 Example 1
o .o
The well-known one-way wave PDE x + 26_T =0 5.4

will be integrated on the rectangular domain X=1, T=10. By comparing (5.1) and
(5.4) it results the M=1, N=2 and the free term Qg(X,T)=0. The initial-boundary
conditions are (5.2) and(5.3).

As it was shown in §3.3 the Accurate Element Method is an implicit
method, consequently one can use elements having quite large dimensions that
can be considered as improper by other methods. In order to follow the influence
of the elements dimensions on the results, the integration of PDE (5.4) has been
performed on a single column along 7, using different number of elements
between NE=1 and NE=10. The results, together with the dimensions (BxH) of
each element, are given in Table 1.

Table 1
Exact Target Value ¢rg=749.2
NE | BxH Target Value Residual | Residual | Actual
ore(X=1,T=10) North East error
D] @ 3 (€] ) (6
1 1x10 | 748.0424382716078 | 7.6x10* | 3.9x10" | -1.5x107
2 1x5 | 747.7472991695568 | 7.7x10* | 1.1x10" | -1.9x107
3 | 1x3.33 | 749.2102287345520 | 7.3%x10” | 1.2x107 | 1.4x10?
4 | 1x2.5 | 749.2011443978998 | 1.3x10* | 4x10™ 1.5x10°®
5 1x2 | 749.2000000000011 | 3x10" | 3.9x10%° | 1.4x10™°
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6 | 1x1.66 | 749.2000001699947 | 1x10~ 4x10% | 2.2x1071°
7 | 1x1.43 | 749.2000000113434 | 4x10° 7x1071% | 1.5x107"
8 | 1x1.25 | 749.1999999939001 | 1.4x10” | 1.1x10"° | -8.1x10™"*
9 | Ix1.11 | 749.1999999992441 | 1.5x10” | 5.5x10"" | -1x107"?
10 | 1x1 | 749.2000000104398 | 9.1x10"° | 1.2x10"" | 1.4x10™"

5.1.1 Because the analytic solution of (5.1) can be obtained [8], the Exact Target
Value for X=7 and 7=10 has been inserted on the top of Table 1. Nevertheless
there are two other more important parameters in the columns (4) and (5) that
have to be inspected by the user: the North and East residuals. These parameters
indicate how good the resulted Target Value is.

Both North and East residuals have small values when the Number of
Elements [NE, column (1)] increases. The residual values are ~10™ up to NE=4,
then decrease abruptly to a very small value (10'13) for NE=35. If the computation
continues by increasing NE, the results are less accurate, though their values
remain still very good. The explanation of this behavior is connected to the
characteristic curves of the PDE (5.4) that can be obtained by integrating the
ordinary differential equation [1,7,8]

de _N %:2 (5.5)

dx M

The integration of (5.5) leads to a family of curves, which — in this particular case
— is represented by a family of straight parallel lines given by

t=K +2x (5.6)

In the origin (for x=0 and t=0) it results K=0, therefore t=2x. If Xx=B=1 it results
t=H=2, which corresponds to NE=5 (Tablel). This means that for NE=5 the line
t=2x represents the diagonal of the rectangular element (Fig.3b). As a
consequence the information provided by the initial conditions (5.2) on the South
edge and by the boundary conditions (5.3) on the West edge is separated from
each other. For any other ratio H/B different from 2 (Fig.3a and Fig.3c) the
information is superposed leading to greater residuals than for NE=5.
Nevertheless the results remain very good also for NE>5, as it results from Table
1. Because the Exact Target Value is known in this case, the last column of
Tablel shows that the Actual errors are between 107'°...107'%. Such negligible
errors allow concluding that all the Target Values corresponding to NE>4 can
be considered as accurate. It is important to observe that for all these
computations the main parameters that are available for the user, namely the
residuals, are between 107...107".
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A
B<2H B=2H B>2H
: » L > - >
X X X
a b C
Fig.3

5.1.2 For the case NE=5 the analytic (exact) solution in local coordinates of the
last element (B=1,H=2) is given by
Dexact(X,1)= 749.2 =719.2 X +359.6 t +271.2 X*—271.2 xt +67.8 t* —47.2 X°

+70.8 Xt -35.4 xt?+5.9 %432 x* —6.4 X’t +4.8 X" -1.6 xt3+ 0.2 t* (5.7)

For x=B=1 and t=H=2 it results from (5.7) the Exact Target Value given in Tablel.
The solution obtained by AEM using CF5-21 (based on the coefficients C;, Cs...
C,; resulted from the computation) can be written as

(X, 1) = 0 exaet (x,1) + 1072 x (0.44 Xt + 8.23xt%+ 1.13x%°— 0.15xt?) (5.8)

This polynomial function can be considered in two ways:

1. Because the last parenthesis of (5.8) is multiplied by 10" leading to a
negligible value, one can eliminate this parenthesis in which case it results the
exact solution. Such a case is quite seldom and requires the user’s decision.

2. Consider the solution as it is furnished by the program, namely (5.8).
Obviously, in this case (5.8) is no more an exact solution, but the error is
negligible. In such case a very good solution like (5.8) will be referred as accurate
solution. The Accurate Element Method can lead to such accurate solutions.

The chosen solution (exact or accurate) is valid only on the domain
represented by a single element. Because an analytic solution is valid on the
whole integration domain, the solution furnished by 4EM is referred as a quasi-
analytic solution.

5.1.3 An important function resulted during the computation is the Target Edge
Solution. For instance the North Edge solution, which corresponds in the local
coordinates to t=1, results from the solution (5.7)

One (X, t=1)=1790 1416 x +432x* — 60 x* +3.2x* (5.9)
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Remarks. 1. The exact Target Value that corresponds to X=1, T=10 results in local
coordinates from (5.9) for x=1, ¢z (x =1,t =1)=749.2 (see Table 1).

2. The function (5.9) is valid for the last element. For any intermediary element
dne becomes the initial condition for the next element (See §4.2).

5.2 Example 2

% , , 00
The PDE —L+25+Qu(X,T) =0 5.10
e x 2 T QXD (5.10)

where  Qy(X,T)=—-2-20X-22T—12X> - 28XT-18T* —6X’ —2X’T-2XT -3T° =0 (5.11)
will be integrated on the rectangular domain X=1, T=10 with the initial-boundary
conditions (5.2) and (5.3).

The results, based on an integration strategy similar to that used in
Example 1, are given in Table 2.
5.2.1 The characteristic curves (5.6) are still valid for this example. Consequently
the computation with NE=5 elements leads to the best results as in Example 1.
The Target Value that corresponds to this case [column (3)] can also be
considered as accurate.

Table 2
Exact Target Value ¢rg = 4910.7
NE | BxH Target Value Residual | Residual Actual
Ore(X=1,T=10) North East error
O] @ 3 4 %) 6
1 1x10 | 4917.587191358002 | 1.8x10° | 8.8x10° | 1.4x107
2 1x5 | 4909.596783653137 | 1.1x107 | 4.7x10° | -2.2x10*
3 | 1x3.33 | 4910.610781325277 | 1.2x107 | 3.7x10° | -1.8x10°
4 | 1x2.5 | 4910.700312824404 | 6.8x10° | 3.2x10° | 6.3x10®
5 1x2 | 4910.700000000015 | 8.9x107'¢ | 7.6x10 | 3.1x107"°
6 | 1x1.66 | 4910.700000112351 | 1.3x10"" | 6.4x10"2 | 2.3x10"
7 | 1x1.43 | 4910.700000011681 | 7.9x1075 | 1.7x10 | 2.4x107"2
8 | 1x1.25 | 4910.699999993970 | 2.5x10°" | 2.4x10™* | -1.2x107"2
9 | 1x1.11 | 4910.699999998376 | 3.1x107" | 1.2x10™ | -3.3x10°"
10 | 1x1 | 4910.700000008856 | 2.1x107 | 2.9x107° | 1.8x10"

5.2.2 For the case NE=5 the analytic (exact) solution in local coordinates of the
last element (B=1,H=2) is given by

Dexact(X,1)= 749.2 +2146.8 X + 359.6 t — 396.8 X*+614.8 Xt +67.8 t2 +56.8 x> ~71.2 x’t
+54.6 xt?+5.9 t°(1.9/3) x* (12.8/3) X}t 2.7 X*t* +1.4 xt*+ 0.2 t* (5.12)
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The Exact Target Value given in Table 2 results from (5.12) for x=B=1 and t=H=2.
The solution obtained from by AEM from the computation using CF5-21 (3.2) is

(X, 1) = 0 exact (x,1) — 1072 % (0.91 Xt + 1.49%t%— 1.36X°t*+ 0.098xt*) (5.13)

The remarks made in §5.1.2 concerning the exact and accurate solutions are still
valid here.
5.2.3 The Target North Edge Solution is given by

Onrp (X, t=1)=1790 + 3606 x —550x* + (196/3) x* —(1.9/3) x* (5.14)

6. First-order PDEs with P different from zero
6.1 Integration using CF5-21
6.1.1 Example 3
The PDE KAPYCL e 6.1)
oX oT
will be integrated on the rectangular domain X=1, T=1 with the initial-boundary
conditions (5.2) and (5.3).

In this case AEM, which uses polynomial Concordant Functions, cannot
obtain a function leading to an exact solution. Nevertheless an accurate solution
can be obtained with a modified strategy and — as it will result below — with a
higher order Concordant Function.

Table 3
Concordant Function CF5-21 Concordant Function CF7-36
NE | Target Value Residual | Residual | Target Value Residual | Residual
dre(X=1,T=1) North East dre(X=1,T=1) North East
1) (2) (3) “) (%) (6) @)

2 | 5.52522400452 | 1x107% | 5.5x107° | 5.54028509483 | 7.1x10° | 3.3x10°
8 | 5.56988306035 | 1x107 | 7.5x10° | 5.57120294336 | 5.4x10" | 3.8x10™
18 | 5.57218922378 | 1.1x10™* | 2.6x107° | 5.57245422435 | 3.4x10° | 2.7x107
32 | 5.57242210050 | 1.3x10° | 2.2x10° | 5.57249908115 | 1.6x10° | 1.4x10°
50 | 5.57246993387 | 3.2x107° | 1.1x10° | 5.57250041043 | 5.9x10° | 5.9x10°
72 | 5.57248594283 | 1.4x10° | 5.2x10° | 5.57250043866 | 1.6x10” | 3.6x107
98 | 5.57249268026 | 7.5x107 | 2.8x10° | 5.57250043742 | 4.5x107' | 8x107"°
128 | 5.57249591879 | 4.3x107 | 1.6x10° | 5.57250043670 | 4x10"" | 1.7x107°
162 | 5.57249 763010 | 2.7x107 | 1x10° | 557250043640 | 2x10"" | 1.7x10™°
200 | 5.57249 860252 | 1.8x107 | 6.7x107 | 5.572500436 26 | 1.1x107"" | 8.8x10!!
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Table 4
NE 8 18 32 50 72 98 128 162 200
B 0.25 0.166 | 0.125 0.1 0.083 | 0.071 0.062 0.055 0.05
H 0.5 0.33 0.25 0.2 0.166 | 0.142 0.125 0.111 0.1

CF5-21 | 8x107 | 4x107* | 4x10° | 8x10° | 3x10° | 1x10° | 5x107 | 3x107 | 2x107
CF7-36 | 5x107 | 2x107* | 8x10° | 2x107 | 5x107 | 2x10™" | 1x1071° | 5x10"! | 2x10°!"

Because the term depending on P does not modify the characteristic curves [1,8],
the elements used will have the best ratio resulted from (5.6), namely H/B=2. The
target ordinate being T=1, even for a single row of elements along X one needs
two elements, each one having B=0.5 so that H=2B=1. The results obtained using
CF5-21 on a single row (NE=2), are given in the column (2) of Table 3. Because
both North and East residuals have great values (10°—107), it is necessary to
increase the number of elements in order to obtain reliable results. This will be
done by maintaining the ratio H/B=2, so that if two rows and two columns are
used, the number of elements becomes NE=8. The residuals obtained in this case
are still unsatisfactory (10°-107). The procedure of increasing the number of
rows and columns has to continue. The dimensions B and H of the elements are
given in Table 4.

The values obtained for an increasing number of elements are given in
Table 3, columns (2), (3) and (4). They show that the results are convergent (see
the fourth row of Table 4, where are given the Estimated Target Errors). The
Target value obtained with NE=200 elements compared with that corresponding
to NE=162 elements have 6 digits that coincide. If a better result is needed it is
necessary — in order to avoid the excessive increase of the number of elements —
to use a higher order polynomial as Concordant Function.

6.1.2 Example 4

The PDE (2.1L) for which M=1, N=2, P=1 and Qg(X,T) is given by
(5.11) will be integrated on the rectangular domain X=1, T=1 with the initial-
boundary conditions (5.2) and (5.3).

The strategy used is similar to that of Example 3, leading to better results.
For instance the North and East residuals are 10 for NE=2 (a single row) and
(10%-10") for NE=72. A 6 digits coincidence is reached between NE=50 and
NE=72.

Table 5
Concordant Function CF5-21 Concordant Function CF7-36
NE | Target Value | Residual | Residual | Target Value | Residual | Residual
¢TE(X:1 ’T:I) NOrth East (I)TE(X:l ,Tzl) North East
QY] 2) (3) 4) (5) (6) )
2 | 29.9417350066 | 3x10° | 9.8x10° | 29.9560889157 | 1.1x10° | 7.4x10°
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8 | 29.9592996771 | 2.9x10° | 2.3x10° | 29.9602462392 | 8.7x107 | 7x10”
18 | 29.9602823212 | 3.4x107 | 4.8x107 | 29.9604532822 | 6x10° | 5.3x10°
32 | 29.9604109493 | 5.7x10° | 1.7x107 | 29.9604618073 | 3.1x10° | 3x107
50 | 29.9604 417572 | 1.8x10° | 7.2x10° | 29.96046207 53 | 1.1x10™° | 1.5x107°
72 | 29.9604 524036 | 8x10° | 3.4x10° | 29.96046207 84 | 2.5x10"% | 1.6x107"!

6.2 Integration using CF7-36

The two last examples will be integrated by using a higher degree
Concordant Function CF7-36 represented by a complete two variables polynomial
of 7™ degree with 36 terms. The 36 equations necessary to obtain the coefficients
of CF7-36 are established on a basis similar to that given in §3. Besides the
integral of the PDE and the initial-boundary conditions, a number of 6 equations’
are written in the nodes 2, 3,4 and also two equations in the node 7 (Fig.2).

6.2.1 Example 3. The results obtained using CF7-36 are given in the columns (5),
(6), (7) of Table 3. The comparison with the corresponding values obtained using
CF5-21 given in the same Table (columns (2), (3) and (4), respectively) shows
that all the results obtained with CF7-36 are better:

a. The residuals for the same number of elements (NE) are smaller for
CF7-36. This results especially for the last case NE=200, for which the residuals
corresponding to CF5-21 are 10”7, while those obtained using CF7-36 are 107
(10 000 times smaller).

b. The residual values 10™" resulted for NE=200 elements show that the
corresponding Target value ¢rg=5.57250043626 can be considered as accurate. In
fact there is a 10 digits coincidence of this last value with that obtained using
NE=162 elements. From (4.8) it results that

The Estimated Target Error =2x10"

6.2.1 Example 4. The values obtained using CF7-36 are given in the columns (5),
(6), (7) of Table 5.In this case the results are also better than those obtained by
using CF5-21:

a. The residuals for NE=72 are 107''-10"" for CF7-36 , while for CF5-21
are much greater (10'8—10'9).

b. There is 9 digits coincidence between the Target values obtained with
50 and 72 elements for CF7-36 (¢rx=29.9604620), while for CF5-21 the
coincidence is only with 6 digits (¢7z=29.9604).

> One equation for the PDE, two equations (3.7), (3.8) for its first derivatives, to which one adds
three equations for the second derivatives.
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Remark. The conclusion that the results improve always by increasing the degree
of the Concordant Function can be delusive. The author’s experience has shown
that for the ordinary differential equations there are cases when the results may
worsen when the degree of the Concordant Functions increases [4,5]. In the
particular cases analyzed here the values obtained using CF7-36 — which can be
considered as accurate — show that it is useless to search for a hypothetical
better solution using a higher degree CF.

7. AEM versus other numerical methods

There are various methods used for the numerical integration of PDESs
[1,7,9]. It is customary, when a new numerical method is developed, to compare it
with the other known methods. This comparison has the purpose to both establish
the comparative precision of the new method, as well as to compare the
computation times. Such comparisons will not be made here because:

1. For the Example 1 an Example 2 the exact solutions are known,
therefore any comparison with a numerical method is useless. For the Example 3
and Example 4, the powerful “internal” tests provided by AEM are enough to
validate the results without any reference to other numerical methods:

a. By increasing the number of elements from NE=50 to NE=72 (Table 5),
one can validate a reliable 6 digits value for CF5-21 (¢rg = 29.9604) or a reliable
10 digits value for CF7-36 (¢ = 29.96046207).

b. The Target value can also be verified by a cross-comparison between
the results corresponding to similar values of the Residuals obtained using CF5-21
and CF7-36, respectively. For instance ¢rg = 29.9604 obtained with CF5-21 using
NE=72 elements (Residuals~10") is confirmed by CF7-36 with only 18 elements
and similar residuals.

2. The time spent for the computation can be compared either directly
using two different programs on the same computer or by comparing the number
of operations. Both these approaches are useless because it is irrelevant to
compare this program written by the author for the scientific purpose to develop
and verify the method, with commercially available programs compiled and
optimized by professional programmers.

8. Conclusions and further developments

The present paper has a limited goal, namely to present the extension to
PDEs of the Accurate Element Method that has initially been developed for
ODEs. The analysis was limited here to the first-order PDEs with constant
coefficients followed by some illustrative examples. The goal was to show:
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a. How the methodology developed by AEM allows a direct verification of
the function-solution depending only on PDE to be solved and not on the
intermediary steps of the computation.

b. The way to obtain numerical parameters that indicate the possible
convergence of the Target Edge Solution and of the Target Value.

The very simple examples presented above have shown that AEM can give
good (if not accurate) results by using a small number of elements whose
dimensions can be considered as improper by other methods. The user can have
permanently reliable information concerning the residuals having the possibility
to accept or reject the result.

Some further developments — from which some are already operational —
will be developed elsewhere:

a. The integration of PDEs with variable coefficients M(X,7), N(X,7),
P(X.T).

b. The integration of PDEs who’s initial and/or boundary conditions are
discontinuous.

c. The extension of the variable coefficients solutions to the integration of
non-linear problems.

d. The integration of second order hyperbolic PDEs.
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