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QUASI-ANALYTIC SOLUTIONS OF FIRST-ORDER 
PARTIAL DIFFERENTIAL EQUATIONS USING THE 

ACCURATE ELEMENT METHOD 
 

Maty BLUMENFELD1  

O ecuaţie diferenţială cu derivate parţiale poate avea pe un domeniu 
bidimensional de integrare o soluţie analitică φ(x,t) (care înlocuită in ecuaţie va 
conduce la o identitate) sau o soluţie numerică (reprezentată de un şir de valori a 
căror exactitate este mai greu de cuantificat). Integrarea unei ecuaţii diferenţiale cu 
derivate parţiale bazată pe metoda AEM (Accurate Element Method) conduce la un 
număr redus de soluţii de formă polinomială, fiecare corespunzând unui singur 
subdomeniu de integrare (element). Un astfel de polinom – considerat a fi o soluţie 
cvasi-analitică – este adecuat unei verificări directe ce se efectuează (similar cu 
soluţia analitică) înlocuindu-l în ecuaţia diferenţială. Prin înlocuire va rezulta un 
reziduu a cărui valoare va permite acceptarea soluţiei găsite sau reluarea 
calculului cu parametri modificaţi, până se obţine un reziduu a cărui valoare se 
consideră admisibilă. Testul numeric introdus de AEM reprezintă o verificare 
directă a solutiei φ(x,t) care se poate face pentru oricare element independent de 
etapele anterioare de calcul parcurse. 

Scopul acestui articol introductiv este de a prezenta metoda şi câteva 
exemple simple. Analiza este deci limitată la ecuaţii diferenţiale cu derivate parţiale 
de ordinul unu cu coeficienţi constanţi, soluţiile cvasi-analitice fiind reprezentate de 
polinoame cu doua variabile de grad 5 având 21 de termeni, respectiv de grad 7 cu 
36 de termeni.  

 
It is usually considered that a PDE can have on a two-dimensional 

integration domain either an analytic solution φ(x,t) (which replaced in the PDE 
leads to an identity) or a numeric solution (represented by a string of numerical 
values whose accuracy is more difficult to quantify). The integration of a PDE by 
the Accurate Element Method leads to Piecewise Polynomial Solutions represented 
by a small number of polynomials, each one valid on a single sub-domain (element); 
they can be considered as quasi-analytic solutions. A quasi-analytic solution is 
suitable for direct verification by replacing it in the PDE that leads not to identities 
but to a quantifiable residual. Based on the value of the residual one can decide 
either to accept the solution or to resume the computation with modified parameters 
until an imposed allowable precision is reached. The numerical test introduced by 
the Accurate Element Method represent a direct and global verification of φ(x,t) on 
each element, being independent on the various steps (the integration history) 
covered in order to obtain it.  

The goal of this introductory paper is to present the method and some 
examples. Consequently it is restricted only to the first order PDEs with constant 
coefficients and to quasi-analytic solutions represented by a 5th degree polynomial 
with 21 terms and by a 7th degree polynomial with 36 terms 
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1. Integration of ODEs using the Accurate Element Method (AEM) 
The Accurate Element Method (AEM) has been initially developed as a method 
leading to quasi-analytic solutions of Ordinary Differential Equations (ODEs). 
Before applying AEM to Partial Differential Equations (PDEs) we have to 
summarize the main characteristics of the AEM as they apply to ODEs [2,3]. 

Let us consider the first-order ODE 

0)x(E)x(E
dx
d)x(E F01 =+φ+
φ              (1.1) 

where E1(x), E0(x), EF(x) can be any type of functions of x. This ODE will be 
integrated between a starting (initial) point xS and a target (final) point xT leading 
to 

0dx)x(Edx)x()x(Edx
dx
d)x(E

xT

xS F

xT

xS 0

xT

xS 1 =+φ+
φ

∫∫∫  (1.2) 

If the coefficients E1 and E0 are constants, this integral can be written as 

IntegEFdx)x(EEE
xT

xS0S1T1 −φ−φ=φ ∫   (1.3) 

While ∫=
xT

xS F dx)x(EIntegEF is trivial, the only difficulty, typical for this type of 

equation, is related to the integral  

∫ φ=φ
xT

xS
dx)x(Int      (1.4) 

that includes the unknown function φ(x) under the integral sign. This integral can 
be solved by replacing φ(x) with an approximation function.  

If only the two end values are considered – φS (starting value, usually 
known) and φT (target value, usually unknown) – the approximation can be a 
linear interpolation. Instead of this linear function, AEM introduces a higher-order 
polynomial referred to as a Concordant Function (CF), depending on the same 
two end unknowns (φS and φT). For instance, if a five degree polynomial is used, 
four additional equations are required to determine the coefficients. The Accurate 
Element Method establishes accurately these equations by using the governing 
equation itself. When the ODE is applied at both ends (Starting and Target) of 
the integration domain  we have as a result two equations [2,3]. The remaining 
two required equations are obtained from the first derivative of the ODE (1.1) 
applied also at the both ends. Based on this approach it is possible to obtain 
Concordant Functions of high or very high order2, by using higher order 
derivatives of the ODE (1.1).  

It results a Concordant Function – perfectly adapted to the ODE (1.1) – 
that depends on φS, φT, and a free term. For any chosen CF it results by 
performing the integral (1.4) 
                                                            
2 Concordant Functions represented by 15 degree polynomials have been succesfully used 
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 FTTSS

xT

xS
KKKdx)x(Int +φ+φ=φ=φ ∫    (1.5) 

where KS, KT, KF are three known coefficients. Finally, from (1.3) it results 
( ) IntegEFKKKEEE FTTSS0S1T1 −+φ+φ−φ=φ   (1.6) 

The target value φT can be usually expressed as 
 

)(f ST φ=φ         (1.7) or ),(f TST φφ=φ     (1.8) 
 

In the first case (1.7) the method is considered explicit, while in the second as 
implicit, because the unknown parameter φT is involved in both left and right 
terms. The equation (1.6) is of this last type; consequently it results that AEM is 
an implicit method, therefore stable. For instance an integral of an ODE using a 
single element starting from xS=0 and having as target xT=10000 proved to be  
perfectly stable (see[3], page 118). It is important to underline that for a linear 
ODE the Accurate Element Method obtains φT directly from (1.6), without any 
iterative approach or any procedure for solving a system of equations usually 
involved in the implicit methods. 

 
2. Integration of PDEs using the Accurate Element Method (AEM) 
2.1 PDE in global coordinates 
 A PDE can be expressed in global coordinates X–T (Fig.1) as 

0)T,X(QP
T

N
X

M G =+φ+
∂
φ∂

+
∂
φ∂     (2.1G) 

 
where here M, N, P are three constants (N×M>0) and the free term QG(X,T) is a 
known function of X and T.  
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The case solved here is an initial-boundary value problem with known 
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1. Initial conditions (T=0) 
...XAXAXAXAXAXAA)X( 6

6
5

5
4

4
3

3
2

210G ++++++=Ψ   (2.2) 
2.Boundary conditions (X=0):  

...TBTBTBTBTBTBB)T( 6
6

5
5

4
4

3
3

2
210G ++++++=Ω    (2.3) 

 
2.2 PDE in local coordinates 
 
 The numerical integration on the rectangle represented in Fig.1 will be 
performed by dividing the domain in a small number of elements. The approach is 
simplified if each element is analyzed by using a local coordinate system x-t 
(Fig.2). The coordinates of the four nodes of a rectangular element having the 
dimensions B and H are: 
Node 1(x1=0,t1=0);Node 2(x2=B,t2=0);Node 3(x3=0,t3=H);Node 4(x4=B, t4=H)(2.4) 

In the local system the PDE will be written as  
 

0)t,x(QP
t

N
x

M =+φ+
∂
φ∂

+
∂
φ∂     (2.1L) 

 
where the free term Q(x,t) is a known two variable polynomial 

...tqxtqxqtqxqq)t,x(Q 2
65

2
4321 ++++++=      (2.5) 

The initial conditions and boundary conditions are given by 
 
Initial conditions (t=0):   ...xxxxxx)x( 6

6
5

5
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4
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3
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210 α+α+α+α+α+α+α=Ψ  (2.6) 
Boundary conditions (x=0):   ...tttttt)t( 6

6
5

5
4

4
3

3
2

210 β+β+β+β+β+β+β=Ω      (2.7) 
 
Remark. The free term (2.5) in local coordinates can be obtained from (2.1) by 
replacing  

X=x+X1 (2.8)     ;          T=t+T1  (2.9) 
where X1 and T1 are the coordinates of the node 1 of ELS in the global axes 
system. Similarly the condition (2.6) results from (2.2) using (2.8) and the 
condition (2.7) from (2.3) using (2.9). 

The equation (2.1L) will be integrated on the rectangular element ELS 
(Fig.2) having the area  A = B × H 

 

0dA)t,x(QdAP
t

N
x

M
A A

=+⎟
⎠
⎞

⎜
⎝
⎛ φ+

∂
φ∂

+
∂
φ∂

∫ ∫   (2.10) 

 
According to §1, AEM replaces – in order to perform the left side integrals 

– the unknown two variables function )t,x(φ by a Concordant Function. 
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3. Concordant Function CF5-21 
3.1 The Concordant Function: a complete two variables polynomial 
 A Concordant Function is a complete two variables polynomial, namely it 
includes all the possible terms that correspond to a chosen degree: 1 constant term 
+ 2 linear terms (x,t)+ 3 second degree terms (x2,xt,t2) and so an. The total number 
of terms NT for a complete function results from 

( )( ) 2/2G1GNT ++=      (3.1) 
where G represents the maximum degree of the polynomial function. For instance 
a five-degree Concordant Function (G=5) having NT=21 terms, noted as CF5-21, 
is given in the local system by 
 
φ(x,t)=C1+C2x+C3t+C4x2+C5xt+C6t2+C7x3+C8x2t+C9xt2+C10t3+C11x4+C12x3t+ 
+C13x2t2+C14xt3+C15t4+C16x5+C17x4t+C18x3t2+C19x2t3+C20xt4+C21t5             (3.2) 
 

In order to obtain the 21 coefficients of (3.2) there are necessary 21 
equations. The first equation is represented by the integral (2.10), consequently 
only 20 equations remain to be established. 
 
3.2 Equations based on the initial conditions: Decoupled Coefficients 
 
 The first kind of equations is those that impose rigorously the initial-
boundary conditions. 
 
3.2.1 Initial conditions on the South edge 1-2 (t=0) 
 
 On the South edge 1-2 (Fig.2) is imposed the initial condition (2.6), 
supposed here to be a polynomial. Because in the local coordinates for this edge it 
corresponds t=0, the CF5-21 given by (3.2) becomes the polynomial 
 

φ(x,t=0) = C1+ C2x + C4x2 + C7x3 + C11x4+ C16x5      (3.3) 
 

If (3.3) and (2.6) are identified it results directly ND1=G+1=5+1=6 coefficients 
 

51641137241201 C;C;C;C;C;C α=α=α=α=α=α=    (3.4) 
 

3.2.2 Boundary conditions on the West edge 1-3 (x=0) 
 
 Along the West edge 1-3 of ELS (Fig.2) where x=0, the CF (3.2) becomes 
 

φ(x=0,t)=C1+ C3t+ C6t2+ C10t3+ C15t4+ C21t5     (3.5) 
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If the boundary conditions are continuous for x=0 and t=0, namely 
00 α=β , the constant C1 is already known from (3.4). By identifying (3.5) and the 

boundary condition (2.7) it results directly only ND2=G=5 coefficients 
6215154102613 C;C;C;C;C β=β=β=β=β=   (3.6) 

 
All the coefficients established until now result directly without any 

connection to other information; they will be referred as decoupled 
coefficients. The other remaining constants result usually by solving a system of 
equations, being therefore coupled (depending of one another). From the 20 
necessary equations, 6+5=11 conditions have been already found. The last 9 
equations are established by using the PDE (2.1L). 
3.3 Conditions based on the PDE (2.1L) and its derivatives 
 As it was shown in §1, the AEM develops accurate conditions for 
obtaining the unknown coefficients by using the governing equation itself. 
Depending on the degree of the Concordant Function one has to use the PDE but 
also an adequate number of its derivatives in order to obtain accurately the 
remaining equations. These equations have to be applied predominantly at the 
nodes of the element3. If one choose to apply for CF5-21 these conditions in the 
nodes 2, 3 and 4 (Fig.2), three equations become necessary for each node. The 
first is obviously PDE (2.1L), while the two other are its first order derivatives. 
The coefficients M, N, P being constants these derivatives are 

 

  0
t
Q

t
P

t
N

tx
M

t
)PDE(

2

22

=
∂
∂

+
∂
φ∂

+
∂
φ∂

+
∂∂
φ∂

=
∂

∂      (3.7) 

     0
x
Q

x
P

tx
N

x
M

x
)PDE( 2

2

2

=
∂
∂

+
∂
φ∂

+
∂∂
φ∂

+
∂
φ∂

=
∂

∂        (3.8) 

 
 The use of these equations is different at each node. At the node 2 the 
function and the derivative versus x are known from the initial condition (2.6), 
while in the node 3 the function and the derivative versus t are known from the 
boundary condition (2.7). On the contrary, in the Target node 4 nothing is known, 
neither the function, nor its derivatives. 
 Suppose the integration procedure is applied on the element G11 (Fig.1). 
The first step is to obtain the functions Q(x,t), )t(),x( ΩΨ in local coordinates4 by 
using the relations (2.8) and (2.9). The methodology for obtaining an equation is 
illustrated on the element G11 only for the node 3, whose local coordinates are 
x3=0 and t3=H. If (2.1L) is transferred to this node it results 
                                                            
3 The programer may transfer some of these equations in other points of the integration domain, 
therefore this group of conditions is not unique. 
4 Because G11 starts from the origin of the global coordinates system, X1=x1=0 and T1=t1=0. 
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While (Q)x=0,t=H is obviously known, the Concordant Function )t,x(φ  has to 
coincide at the West side (x=0) with (2.7) so that ( ) )Ht(Ht,0x =Ω=φ == . Similarly, 
the derivative of φ  versus t has to coincide with the derivative of )t(Ω  
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Using these values it results from (3.9) the value of the derivative of 

φversus x 
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From the derivative of the Concordant Function (3.2) versus x it results for x=0 
and t=H the first equation with coupled terms 
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               (3.12) 

By applying (3.12), the function φ(x,t) starts to  become concordant not 
only to the boundary conditions, but also to the PDE (2.1L). One continues with 

(3.7) from which it results 
Ht,0x

2

tx
==

⎟⎟
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φ∂ and (3.8) from which one obtains 
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⎛
∂
φ∂ . The procedure is similar for the node 2, for which are known from 

the initial condition (2.6), the function ( ) )Bx(0t,Bx =Ψ=φ ==  and its derivatives 
versus x. 

 As it was specified above nothing is known in node 4, except the values 
of the free term Q(x,t) and of its derivatives. Because the unknown values of the 
node 4 are involved in the concordance procedure, the function thus obtained 
includes the target values in both left and right sides. Consequently the AEM 
procedure for solving PDEs is implicit, therefore stable no matter the 
dimensions of the elements. 
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4. Target Edges Polynomial Solutions and Target Value 
 
 The strategy developed by AEM concerning the Ordinary Differential 
Equations is based on two particularities of the method: the possibility to obtain a 
quasi-analytic solution valid on each element and the high precision of the results 
that can be obtained at the target point. Because the strategy applied for the 
integration of PDEs is on many aspects a two-dimensional extension of the ODE 
approach developed in [2,4,5], one can extend the analysis to the same 
parameters. 
 
4.1 Residual function 
 

Suppose that for a given PDE a function )t,x(~
φ  that fulfils the boundary 

conditions exists and is known. The way to verify if this function represents a 
solution is to replace it in (2.1L) 

 

)t,x(Q~P
t

~
N

x

~
M)t,x(R +φ+

∂
φ∂

+
∂
φ∂

=    (4.1) 

 
If the result R(x,t) – referred as residual function – is zero the function 

)t,x(~
φ represents an analytic or exact solution of the PDE. If the residual function 
is different from zero, the analysis of its value represents the best way to 
appreciate the precision of the numerical result. A very small residual will 
indicate that φ~ (x,t) is a good solution.  

 
4.2 Residuals on the Target Edges  
 

In §1 there was considered as working parameters for a (one-dimensional) 
ODE the following values of the function: φS (start) and φT (target). For the two-
dimensional PDE (2.1L) initial value problem,  two edges of the element 1-2 
(South) and 1-3 (West) (fig.2) where the initial-boundary conditions are known, 
will be referred as Starting Edges. Also the values of the function at the nodes 
1,2,3 [known from (2.6) and (2.7)] will be considered  as Starting Values 
   )Ht,0x(;)0t,Bx(;)0t,0x()0t,0x( 321 ==Ω=φ==Ψ=φ==Ω===Ψ=φ  (4.2) 

On the contrary, for the  other two edges  of the element [ 3-4 (North) and  
2-4 (East)] the function )t,x(~

φ  that verifies the PDE is unknown and its value 
φ4(x4,t4) at the node 4 is also unknown. These two last edges will be referred as 
Target Edges and φ4 as Target Value. 
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It is necessary to precise that φ~ (x,t) obtained from the AEM procedure 
described in §3 cannot lead to R(x,t)≡0 on the whole integration domain. In fact 
on the starting edges the residuals R12(x,t=0) and R13(x=0,t) are usually different 
from zero, because the CF is rigorously adapted – due to (3.4) and (3.6)–  to the 
imposed boundary conditions that do not depend on the PDE to be integrated, 
which is not involved in these relations. Consequently, the verification on the 
whole integration domain of the residual according to (4.1) will fail implicitly. 
Therefore the verification will be performed only on the Target Edges where 
(4.1) becomes 

Target Edge 34:     )tt,x(Q~P
t

~
N

x

~
M)tt,x(RRX 4

4tt
4 =+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
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∂
φ∂

+
∂
φ∂

===
=

   (4.3) 

Target Edge 24:     )t,xx(Q~P
t
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N

x

~
M)t,xx(RRT 4

4xx
4 =+⎟⎟

⎠
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⎝
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φ+

∂
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+
∂
φ∂

===
=

    (4.4) 

 
Both residuals (4.3) and (4.4) are one-dimensional functions, which 

simplify the analysis necessary to obtain a numerical criterion that certifies the 
quality of the solution. 

Good Target Edges Polynomial Solutions are very important for the usual 
case when the integration is performed on more than one element. Suppose the 
integration does not stop at the edge 3-4 (Fig.1), but has to be continued along the 
T axis, namely on the following element G12. In this case the North Target Edge 
Polynomial Solution  on the edge 3-4 [noted ( ) 11GNTEΨ ] will be used as initial-
condition  for G12 [ ( ) ( ) 11GNTE12G Ψ=Ψ ]. 

 The accuracy of the Target Edge Polynomial Solution (4.3) becomes 
decisive for a proper continuation of the integration procedure, because thus the 
problem is reduced to a known one, namely similar to that used for G11. 
Consequently, in local coordinates the integration algorithm remains the same. 

 
4.3 Numerical tests concerning the Target Edges residuals 
 
 As it was shown in [5], the residual RX (4.3) can be divided in a number 
of points NP leading to xi(i=1,2,…NP) abscissas, based on which one can 
calculate a mean square root value given by 
 

∑
=

=

==
NPi

1i

2
4iMS )]tt,x(R[

NP
1RX    (4.5) 

 
This value has to be compared with an allowable residual:     RXMS  < Rallow  (4.6) 
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 For the East Target Edge residual (Fig.2, edge 2-4), the analysis is 
performed along the ordinate t, for the constant abscissa x=x4. The condition 
concerning the mean square root value becomes 
 

∑
=

=

==
NPi

1i

2
i4MS )]t,xx(R[

NP
1RT  <  Rallow  (4.7) 

 
The parameter Rallow is a conventional value that remains to be established. 

Some numerical tests solved by the author have shown that a value of RXMS 
smaller than 10-10-10-11 indicate a very good result, but greater values like 
Rallow ≈ 10-7-10-8 can also be accepted. These values of Rallow are obviously 
disputable. A value like RMS =10-3 shows that the result φ~ (x,t) leading to such 
value has to be rejected and a new computation using a greater number of 
elements or/and a higher degree Concordant Function has to be performed. This 
approach gives to the user a powerful and global tool to verify the validity of the 
whole computation, no matter how many elements or CFs were involved. It is 
important to underline that the numerical tests (4.6) and/or (4.7) are performed for 
any element independently of the results obtained on the previous elements. 
Consequently they represent a verification of the whole procedure, concerned 
only by the final result, being therefore independent on the various steps 
covered in order to obtain φ~ (x,t).  

 
4.4 The accuracy estimation of the Target Value φ4(x4,t4) 
 
 The first question that has to receive an answer is: the value of φ4(x4,t4) is 
reliable or not ? At least two different ways to give an answer can be considered: 
 1. Compute the Target Value φ4(x4,t4) by using an increasing number of 
elements in order to follow the convergence of the results. This can be done by 
comparing the values obtained for φ4(x4,t4) using NE and NE+Δ(NE) elements, 
which allows to obtain an estimated error given by 
 

Estimated Target Error =
( ) ( )
( ) ( ) )NE(44)NENE(44

)NE(44)NENE(44

t,xt,x
t,xt,x

φ+φ

φ−φ

Δ+

Δ+   (4.8) 

 
Obviously, this is only an estimated error because it is related to a previous value 
φ4(x4,t4)(NE), not to the actual value which is unknown. 
 2. Compare the values of φ4(x4,t4) obtained by using different Concordant 
Functions.  
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5. First-order PDEs with P=0 integrated using CF5-21 
 
 If the coefficient P=0, the PDE (2.1G) becomes 
 

0)T,X(Q
T

N
X

M G =+
∂
φ∂

+
∂
φ∂    (5.1) 

 
For the examples analyzed in this paragraph the integration domain is 

quite large, being extended along X from XLeft=0 to XRight=1 and along T from 
TStart=0 up to TTarget=10. The computations are performed with CF5-21 using a 
small number of elements, with large or very large dimensions. 

The initial-boundary conditions for all the examples analyzed below are 
imposed by the following polynomials taken at random 

 
432

G X3X2XX310)X( +++−=Ψ      (5.2) 
 

 432
G T2.0T5.0T3T210)T( +−+−=Ω                   (5.3) 

 
5.1 Example 1 

The well-known one-way wave PDE    0
T

2
X

=
∂
φ∂

+
∂
φ∂      (5.4) 

will be integrated on the rectangular domain X=1, T=10. By comparing (5.1) and 
(5.4) it results the M=1, N=2 and the free term QG(X,T)=0. The initial-boundary 
conditions are (5.2) and(5.3). 
 As it was shown in §3.3 the Accurate Element Method is an implicit 
method, consequently one can use elements having quite large dimensions that 
can be considered as improper by other methods. In order to follow the influence 
of the elements dimensions on the results, the integration of PDE (5.4) has been 
performed on a single column along T, using different number of elements 
between NE=1 and NE=10. The results, together with the dimensions (B×H) of 
each element, are given in Table 1.  
 

     Table 1 
Exact Target Value φTE = 749.2 

NE B×H Target Value 
φTE(X=1,T=10)

Residual 
North 

Residual 
East 

Actual 
error 

(1) (2) (3) (4) (5) (6) 
1 1×10 748.0424382716078 7.6×10-4 3.9×10-1 -1.5×10-3 

2 1×5 747.7472991695568 7.7×10-4 1.1×10-1 -1.9×10-3 
3 1×3.33 749.2102287345520 7.3×10-5 1.2×10-3 1.4×10-5 
4 1×2.5 749.2011443978998 1.3×10-4 4×10-4 1.5×10-6 
5 1×2 749.2000000000011 3×10-13 3.9×10-13 1.4×10-15 
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6 1×1.66 749.2000001699947 1×10-7 4×10-8 2.2×10--10 

7 1×1.43 749.2000000113434 4×10-9 7×10-10 1.5×10-11 
8 1×1.25 749.1999999939001 1.4×10-9 1.1×10-10 -8.1×10-12 
9 1×1.11 749.1999999992441 1.5×10-9 5.5×10-11 -1×10-12 
10 1×1 749.2000000104398 9.1×10-10 1.2×10-11 1.4×10-11 

 
5.1.1 Because the analytic solution of (5.1) can be obtained [8], the Exact Target 
Value for X=1 and T=10 has been inserted on the top of Table 1. Nevertheless 
there are two other more important parameters in the columns (4) and (5) that 
have to be inspected by the user: the North and East residuals. These parameters 
indicate how good the resulted Target Value is.  

Both North and East residuals have small values when the Number of 
Elements [NE, column (1)] increases. The residual values are ≈10-4 up to NE=4, 
then decrease abruptly to a very small value (10-13) for NE=5. If the computation 
continues by increasing NE, the results are less accurate, though their values 
remain still very good. The explanation of this behavior is connected to the 
characteristic curves of the PDE (5.4) that can be obtained by integrating the 
ordinary differential equation [1,7,8] 

2
1
2

M
N

dx
dt

===              (5.5) 

 
The integration of (5.5) leads to a family of curves, which – in this particular case 
– is represented by a family of straight parallel lines given by 
 

t = K + 2x                      (5.6) 
 

In the origin (for x=0 and t=0) it results K=0, therefore t=2x. If x=B=1 it results 
t=H=2, which corresponds to NE=5 (Table1). This means that for NE=5 the line 
t=2x represents the diagonal of the rectangular element (Fig.3b). As a 
consequence the information provided by the initial conditions (5.2) on the South 
edge and by the boundary conditions (5.3) on the West edge is separated from 
each other. For any other ratio H/B different from 2 (Fig.3a and Fig.3c) the 
information is superposed leading to greater residuals than for NE=5. 
Nevertheless the results remain very good also for NE>5, as it results from Table 
1. Because the Exact Target Value is known in this case, the last column of 
Table1 shows that the Actual errors are between 10-10…10-12. Such negligible 
errors allow concluding that all the Target Values corresponding to NE>4 can 
be considered as accurate. It is important to observe that for all these 
computations the main parameters that are available for the user, namely the 
residuals, are between 10-7…10-11. 
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                                     a    b   c 
             Fig.3     
 
5.1.2 For the case NE=5 the analytic (exact) solution in local coordinates of the 
last element (B=1,H=2) is given by 

φexact(x,t)= 749.2 –719.2 x +359.6 t +271.2 x2 –271.2 xt +67.8 t2 –47.2 x3  

     +70.8 x2t –35.4 xt2 +5.9 t3+3.2 x4 –6.4 x3t +4.8 x2t2 –1.6 xt3 + 0.2 t4  (5.7) 

For x=B=1 and t=H=2 it results from (5.7) the Exact Target Value given in Table1. 
The solution obtained by AEM using CF5-21 (based on the coefficients C1, C2… 
C21 resulted from the computation) can be written as 
 

=φ )t,x(~
φ exact (x,t) + 10-13 × (0.44 x4t + 8.23x3t2+ 1.13x2t3– 0.15xt4)      (5.8) 

 

This polynomial function can be considered in two ways: 
 1. Because the last parenthesis of (5.8) is multiplied by 10-13 leading to a 
negligible value, one can eliminate this parenthesis in which case it results the 
exact solution.  Such a case is quite seldom and requires the user’s decision. 
 2. Consider the solution as it is furnished by the program, namely (5.8). 
Obviously, in this case (5.8) is no more an exact solution, but the error is 
negligible. In such case a very good solution like (5.8) will be referred as accurate 
solution. The Accurate Element Method can lead to such accurate solutions. 
 The chosen solution (exact or accurate) is valid only on the domain 
represented by a single element. Because an analytic solution is valid on the 
whole integration domain, the solution furnished by AEM is referred as a quasi-
analytic solution. 
5.1.3 An important function resulted during the computation is the Target Edge 
Solution. For instance the North Edge solution, which corresponds in the local 
coordinates to t=1, results from the solution (5.7) 
 

432
NTE x2.3x60x432x14161790)1t,x( +−+−==φ       (5.9) 

 

t 

B<2H B=2H B>2H 

t t 

x x x 
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Remarks. 1. The exact Target Value that corresponds to X=1, T=10 results in local 
coordinates from (5.9) for x=1, ===φ )1t,1x(NTE 749.2 (see Table 1). 
2. The function (5.9) is valid for the last element. For any intermediary element 

NTEφ  becomes the initial condition for the next element (See §4.2). 
 
5.2 Example 2 

The PDE               0)T,X(Q
T

2
X G =+

∂
φ∂

+
∂
φ∂                 (5.10)  

where   0T3XT2TX2X6T18XT28X12T22X202)T,X(Q 322322
G =−−−−−−−−−−=   (5.11) 

will be integrated on the rectangular domain X=1, T=10 with the initial-boundary 
conditions (5.2) and (5.3). 
 The results, based on an integration strategy similar to that used in 
Example 1, are given in Table 2. 
5.2.1 The characteristic curves (5.6) are still valid for this example. Consequently 
the computation with NE=5 elements leads to the best results as in Example 1. 
The Target Value that corresponds to this case [column (3)] can also be 
considered as accurate. 
 

            Table 2 
Exact Target Value φTE = 4910.7 

NE B×H Target Value 
φTE(X=1,T=10) 

Residual 
North 

Residual 
East 

Actual 
error 

(1) (2) (3) (4) (5) (6) 
1 1×10 4917.587191358002 1.8×10-6 8.8×10-3 1.4×10-3 

2 1×5 4909.596783653137 1.1×10-7 4.7×10-5 -2.2×10-4 
3 1×3.33 4910.610781325277 1.2×10-7 3.7×10-6 -1.8×10-5 
4 1×2.5 4910.700312824404 6.8×10-9 3.2×10-8 6.3×10-8 
5 1×2 4910.700000000015 8.9×10-16 7.6×10-16 3.1×10-15 
6 1×1.66 4910.700000112351 1.3×10-11 6.4×10-12 2.3×10-11 

7 1×1.43 4910.700000011681 7.9×10-13 1.7×10-13 2.4×10-12 
8 1×1.25 4910.699999993970 2.5×10-13 2.4×10-14 -1.2×10-12 
9 1×1.11 4910.699999998376 3.1×10-13 1.2×10-14 -3.3×10-13 
10 1×1 4910.700000008856 2.1×10-13 2.9×10-15 1.8×10-12 

 
  
5.2.2 For the case NE=5 the analytic (exact) solution in local coordinates of the 
last element (B=1,H=2) is given by 
 
       φexact(x,t)= 749.2 +2146.8 x + 359.6 t – 396.8 x2+614.8 xt +67.8 t2 +56.8 x3 –71.2 x2t 

                +54.6 xt2 +5.9 t3–(1.9/3) x4 –(12.8/3) x3t –2.7 x2t2 +1.4 xt3 + 0.2 t4            (5.12) 
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The Exact Target Value given in Table 2 results from (5.12) for x=B=1 and t=H=2. 
The solution obtained from by AEM from the computation using CF5-21 (3.2) is 
 

=φ )t,x(~
φ exact (x,t) – 10-12 × (0.91 x4t + 1.49x3t2– 1.36x2t3+ 0.098xt4)    (5.13) 

 
The remarks made in §5.1.2 concerning the exact and accurate solutions are still 
valid here. 
5.2.3 The Target North Edge Solution is given by 
 

432
NTE x)3/9.1(x)3/196(x550x36061790)1t,x( −+−+==φ         (5.14) 

 
6. First-order PDEs with P different from zero 
6.1 Integration using CF5-21 
6.1.1 Example 3 

The PDE                       0
T

2
X

=φ+
∂
φ∂

+
∂
φ∂                       (6.1) 

will be integrated on the rectangular domain X=1, T=1 with the initial-boundary 
conditions (5.2) and (5.3). 
 In this case AEM, which uses polynomial Concordant Functions, cannot 
obtain a function leading to an exact solution. Nevertheless an accurate solution 
can be obtained with a modified strategy and – as it will result below – with a 
higher order Concordant Function.  
 

           Table 3 
 

NE 
Concordant Function CF5-21 Concordant Function CF7-36 

Target Value 
 φTE(X=1,T=1) 

Residual 
North 

Residual 
East 

Target Value 
φTE(X=1,T=1)

Residual 
North 

Residual 
East 

(1) (2) (3) (4) (5) (6) (7) 
2 5.52522400452 1×10-2 5.5×10-3 5.54028509483 7.1×10-3 3.3×10-3 
8 5.56988306035 1×10-3 7.5×10-5 5.57120294336 5.4×10-4 3.8×10-4 
18 5.57218922378 1.1×10-4 2.6×10-5 5.57245422435 3.4×10-5 2.7×10-5 
32 5.57242210050 1.3×10-5 2.2×10-5 5.57249908115 1.6×10-6 1.4×10-6 
50 5.57246993387 3.2×10--6 1.1×10-5 5.57250041043 5.9×10-8 5.9×10-8 
72 5.57248594283 1.4×10-6 5.2×10-6 5.57250043866 1.6×10-9 3.6×10-9 
98 5.57249268026 7.5×10-7 2.8×10-6 5.57250043742 4.5×10-11 8×10-10 
128 5.57249591879 4.3×10-7 1.6×10-6 5.57250043670 4×10-11 1.7×10-10 
162 5.57249 763010 2.7×10-7 1×10-6 5.572500436 40 2×10-11 1.7×10-10 
200 5.57249 860252 1.8×10-7 6.7×10-7 5.572500436 26 1.1×10-11 8.8×10-11 
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Table 4 
NE 8 18 32 50 72 98 128 162 200 
B 0.25 0.166 0.125 0.1 0.083 0.071 0.062 0.055 0.05 
H 0.5 0.33 0.25 0.2 0.166 0.142 0.125 0.111 0.1 

CF5-21 8×10-3 4×10-4 4×10-5 8×10-6 3×10-6 1×10-6 5×10-7 3×10-7 2×10-7 
CF7-36 5×10-3 2×10-4 8×10-6 2×10-7 5×10-9 2×10-10 1×10-10 5×10-11 2×10-11 

 
 Because the term depending on P does not modify the characteristic curves [1,8], 
the elements used will have the best ratio resulted from (5.6), namely H/B=2. The 
target ordinate being T=1, even for a single row of elements along X one needs 
two elements, each one having B=0.5 so that H=2B=1. The results obtained using 
CF5-21 on a single row (NE=2), are given in the column (2) of Table 3. Because 
both North and East residuals have great values (10-2–10-3), it is necessary to 
increase the number of elements in order to obtain reliable results. This will be 
done by maintaining the ratio H/B=2, so that if two rows and two columns are 
used, the number of elements becomes NE=8. The residuals obtained in this case 
are still unsatisfactory (10-3–10-5). The procedure of increasing the number of 
rows and columns has to continue. The dimensions B and H of the elements are 
given in Table 4. 
 The values obtained for an increasing number of elements are given in 
Table 3, columns (2), (3) and (4). They show that the results are convergent (see 
the fourth row of Table 4, where are given the Estimated Target Errors). The 
Target value obtained with NE=200 elements compared with that corresponding 
to NE=162 elements have 6 digits that coincide. If a better result is needed it is 
necessary –  in order to avoid the excessive increase of the number of elements –
to use a higher order polynomial as Concordant Function. 
 
6.1.2 Example 4 
 

The PDE (2.1L) for which M=1, N=2, P=1 and QG(X,T) is given by 
(5.11) will be integrated on the rectangular domain X=1, T=1 with the initial-
boundary conditions (5.2) and (5.3). 
 The strategy used is similar to that of Example 3, leading to better results. 
For instance the North and East residuals are 10-5 for NE=2 (a single row) and 
(10-8–10-9) for NE=72. A 6 digits coincidence is reached between NE=50 and 
NE=72. 
 
                                       Table 5 

 
NE 

Concordant Function CF5-21 Concordant Function CF7-36 
Target Value 
φTE(X=1,T=1) 

Residual 
North 

Residual 
East 

Target Value 
φTE(X=1,T=1) 

Residual 
North 

Residual 
East 

(1) (2) (3) (4) (5) (6) (7) 
2 29.9417350066 3×10-5 9.8×10-5 29.9560889157 1.1×10-5 7.4×10-6 
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8 29.9592996771 2.9×10-6 2.3×10-6 29.9602462392 8.7×10-7 7×10-7 
18 29.9602823212 3.4×10-7 4.8×10-7 29.9604532822 6×10-8 5.3×10-8 
32 29.9604109493 5.7×10-8 1.7×10-7 29.9604618073 3.1×10-9 3×10-9 
50 29.9604 417572 1.8×10-8 7.2×10-8 29.96046207 53 1.1×10-10 1.5×10-10 
72 29.9604 524036 8×10-9 3.4×10-8 29.96046207 84 2.5×10-12 1.6×10-11 

 
6.2 Integration using CF7-36 
 
  The two last examples will be integrated by using a higher degree 
Concordant Function CF7-36 represented by a complete two variables polynomial 
of 7th degree with 36 terms. The 36 equations necessary to obtain the coefficients 
of CF7-36 are established on a basis similar to that given in §3. Besides the 
integral of the PDE and the initial-boundary conditions, a number of 6 equations5 
are written in the nodes 2,3,4 and also two equations in the node 1 (Fig.2).  
 
6.2.1 Example 3. The results obtained using CF7-36 are given in the columns (5), 
(6), (7) of Table 3. The comparison with the corresponding values obtained using 
CF5-21 given in the same Table (columns (2), (3) and (4), respectively) shows 
that all the results obtained with CF7-36 are better: 
 a. The residuals for the same number of elements (NE) are smaller for 
CF7-36. This results especially for the last case NE=200, for which the residuals 
corresponding to CF5-21 are 10-7,  while those  obtained  using  CF7-36  are  10-11  
(10 000 times smaller).  
 b. The residual values 10-11 resulted for NE=200 elements show that the 
corresponding Target value φTE=5.57250043626 can be considered as accurate. In 
fact there is a 10 digits coincidence of this last value with that obtained using 
NE=162 elements. From (4.8) it results that 
 

The Estimated Target Error  = 2×10-11 
 
6.2.1 Example 4. The values obtained using CF7-36 are  given in the columns (5), 
(6), (7) of Table 5.In this case the results are also better than those obtained by 
using CF5-21: 
 a. The residuals for NE=72 are 10-11-10-12 for CF7-36 , while for CF5-21 
are much greater (10-8-10-9). 
 b. There is 9 digits coincidence between the Target values obtained with 
50 and 72 elements for CF7-36 (φTE=29.9604620), while for CF5-21 the 
coincidence is only with 6 digits (φTE=29.9604). 

                                                            
5 One equation for the PDE, two equations (3.7), (3.8) for its first derivatives, to which one adds 
three equations for the second derivatives. 
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Remark. The conclusion that the results improve always by increasing the degree 
of the Concordant Function can be delusive. The author’s experience has shown 
that for the ordinary differential equations there are cases when the results may 
worsen when the degree of the Concordant Functions increases [4,5]. In the 
particular cases analyzed here the values obtained using CF7-36 – which can be 
considered as accurate – show that it is useless to search for a hypothetical 
better solution using a higher degree CF. 
 
7. AEM versus other numerical methods  
 

There are various methods used for the numerical integration of PDEs 
[1,7,9]. It is customary, when a new numerical method is developed, to compare it 
with the other known methods. This comparison has the purpose to both establish 
the comparative precision of the new method, as well as to compare the 
computation times. Such comparisons will not be made here because: 

1. For the Example 1 an Example 2 the exact solutions are known, 
therefore any comparison with a numerical method is useless. For the Example 3 
and Example 4, the powerful “internal” tests provided by AEM are enough to 
validate the results without any reference to other numerical methods: 
 a. By increasing the number of elements from NE=50 to NE=72 (Table 5), 
one can validate a reliable 6 digits value for CF5-21 (φTE = 29.9604) or a reliable 
10 digits value for CF7-36 (φTE = 29.96046207). 
 b. The Target value can also be verified by a cross-comparison between 
the results corresponding to similar values of the Residuals obtained using CF5-21 
and CF7-36, respectively. For instance φTE = 29.9604 obtained with CF5-21 using 
NE=72 elements  (Residuals≈10-8) is confirmed by CF7-36 with only 18 elements 
and similar residuals. 

2. The time spent for the computation can be compared either directly 
using two different programs on the same computer or by comparing the number 
of operations. Both these approaches are useless because it is irrelevant to 
compare this program written by the author for the scientific purpose to develop 
and verify the method, with commercially available programs compiled and 
optimized by professional programmers. 
 
8. Conclusions and further developments 
 
 The present paper has a limited goal, namely to present the extension to 
PDEs of the Accurate Element Method that has initially been developed for 
ODEs. The analysis was limited here to the first-order PDEs with constant 
coefficients followed by some illustrative examples. The goal was to show: 



 Quasi-analytic solutions of ordinary differential equations using the accurate element method    49 

  

a. How the methodology developed by AEM allows a direct verification of 
the function-solution depending only on PDE to be solved and not on the 
intermediary steps of the computation. 

b. The way to obtain numerical parameters that indicate the possible 
convergence of the Target Edge Solution and of the Target Value. 

The very simple examples presented above have shown that AEM can give 
good (if not accurate) results by using a small number of elements whose 
dimensions can be considered as improper by other methods. The user can have 
permanently reliable information concerning the residuals having the possibility 
to accept or reject the result.  

Some further developments – from which some are already operational – 
will be developed elsewhere: 

a. The integration of PDEs with variable coefficients M(X,T), N(X,T), 
P(X,T). 

b. The integration of PDEs who’s initial and/or boundary conditions are 
discontinuous. 

c. The extension of the variable coefficients solutions to the integration of 
non-linear problems. 

d. The integration of second order hyperbolic PDEs. 
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