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Obiectivul acestui articol este de a estima parametrii unui model 

bidimensional de defectare pe baza unei selectii aleatoare (T1j, T2j) nj ,1=  folosind 

metode parametrice si semiparametrice. Asocierea celor doua variabile T1 si T2 se  
modeleaza prin copule si se compara rezultatele studiului de inferenta statistica. 
Copula reprezinta un mod natural de masura a dependentei dintre variabilele 
aleatoare. 

 
The aim of this paper is to estimate the parameters in a bivariate lifetime 

model in the light of a random sample (T1j, T2j) nj ,1=  by parametric or semi-

parametric methods. We model the association of the bivariate failure times by 
copulas, and compare the results of statistical inference. Copulas provide a natural 
way to study and measure dependence between random variables. 
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Introduction 

In many cases it is convenient to express a joint distribution ),( yxF  as a 
function of )(xFX  and )(yFY  (the individual distribution functions for variables 
X, Y) by:  

)))(()),((())(),((),( 11 yFFxFFFyFxFCyxF YYXXYX −−== . 
In this way the mapping C (that is uniquely determined on the unit square 

when XF  and YF  are continuous) captures the dependence between the random 
variables X and Y.  

In the last years many research papers develop multivariate survival 
distributions. A multivariate distribution is derived assuming that marginal 
distributions are of some specified family. In studies of reliability components are 
assumed to have independent lifetimes but, is more realistic to assume that there 
exist some sort of dependence among components. 
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A useful way to develop bivariate lifetime models is through a family of 
copulas ),v,u(C δ  with a specification of the marginal distributions (where δ  is a 
parameter that determines the dependence structure). 

A bivariate copula ),v,u(C δ  is a family of distribution functions (with u, v 
uniform marginals) defined in [0,1]2 with C(u,1)=u, C(1,v)=v, C(u,0)=C(0,v)=0. 

For any copula C there exist two copulas: the Frechet-Hoeffding upper 
bound defined by M(u,v)=min(u,v) (represents the most positive dependence with 
each variable being an increasing monotone transformation of any other variable) 
and the Frechet lower bound  1}-vu max{0,v)W(u, +=  (this represents the most 
negative dependence  when one variable is a decreasing monotone transformation 
of the other variable) for which: 

 v)(u, M   v)(u, C   v)(u,W ≤≤ . 
By the Sklar’s Theorem [6], for any joint distribution function F with 

marginals F1 and F2, there is a copula C such that for all real numbers x, y: 
(y))F (x),(F C y) F(x, 21= . 

And conversely, if C is a copula and F1, F2 are univariate functions, then the 
function F(x, y) is a joint distribution with marginals F1 and F2. 

Between different families of copulas, a special class is that of 
Archimedean copulas. 

 
• An Archimedean copula has the next representation: 

))()((= )  ,( C 1 vuv u, δδδ ϕϕϕδ +−  
where ϕ  is a convex, decreasing function defined in (0, 1] with 0)1( =ϕ . Some 
examples of these copulas are:  
 
       Gumbel-Barnett family given by Hutchinson and Lai (1990): 
 )1ln()1ln()1)(1(1 )  ,( C vuevuvuv u, −−−−−+−+= δδ ,  ]1,0[∈δ  (1) 
 
       Frank family (1979): 

 )
1

)1)(1(1ln(1 )  ,( C
−

−−
+−= −

−−

δ

δδ

δ
δ

e
eev u,

vu
,  }0{ℜ∈δ  (1’) 

 
  Joe’s copula (1993): 
 δδδδδδ 1])1()1()1()1[(1 )  ,( C vuvuv u, −−−−+−−= ,  1≥δ  (1’’) 
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Fig. 1 The level curves of C(1), for 5.0=δ  

 
The bivariate distribution in this case is: 

       ))(1ln())(1ln(
2121 21))(1))((1(1)()(),( yFxFeyFxFxFxFyxF −−−−−+−+= δ . 

If F1( ), 11 βα , F2 ),( 22 βα  are Weibull distributed, the bivariate distribution is given 
by: 
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• Lu and Bhattacharyya (1990) had defined a bivariate Weibull distribution by 
its survival function : 

)]}1)(1([exp{ y) S(x,
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with marginals survival functions: 
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The associated copula for the joint distribution function F(x, y) =S(x, y)-
S1(x)-S2(y) +1 is: 
 vuevuvuC uv ++−−−= − 1)1)(1(),( δ . (2) 
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Fig. 2 The level curves of C(1), for 2.0=δ  

1. The dependence coefficients  

For a copula, the correlation coefficients as Kendall-tau defined by: 

1),(4
2]1,0[

2
−

∂∂
∂

= ∫∫ dudv
vu

CvuCτ  

and Spearman-ro  

∫∫ −=
2]1,0[

3),(12 dudvvuCρ  

are constant. 
The linear correlation coefficient r based on the covariance of two 

variables is not preserved by copulas: 

)()(
)()()(

YVarXVar
YMXMXYMr −

=  

where M is the theoretical mean and Var is the theoretical variance. 

The tail concentration functions  

Right (R) and left (L) tail concentration function can be defined with 
reference to how much probability is the region near (1, 1) and (0, 0). 
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These are an intermediate step between correlation coefficients as Kendal, 
Spearman and copula function itself: 

x
xxCxL ),()( =  , 

1 2 ( , )( )
1
x C x xR x

x
− +

=
−

 

)(lim
1

xR
x

u
→

=λ  And )(lim
0

xL
x

l
→

=λ  are the Tail dependence coefficients. These 

gave asymptotic measures of the dependence in the tails of bivariate distributions.  
For copula (1): lu 0 λ==λ . 0l =λ  indicates asymptotic independence in 

the lower tail. For copula (2): lu 0 λ==λ . 

2. The concordance function 

Let F be a joint  bivariate distribution and G  an other  joint bivariate 
distribution. 

The concordance function Q is the difference of the probabilities of 
concordance and discordance between  two vectors (X1,Y1) and (X2,Y2) of 
continuous  random variables with different joint distributions F and G, but  with 
common margins F1 and F2. 

The function depends on the distributions of (X1,Y1) and (X2,Y2) only 
through their copulas. 
 Let C1 and C2 the copulas associated of  the vectors (X1,Y1) and (X2,Y2), 
so that: F(x,y)=C1(F1(x),F2(y)); G(x,y)=C2(F1(x),F2(y)). In this case: 

2
2 1

[0,1]

Q P[(X1-X2)(Y1-Y2) 0]- P[(X1-X2)(Y1-Y2) 0] 4 1C dC= > < = −∫∫ . 

3. Parametric and semi-parametric estimation procedure  

Copula models are used when the association between variables is 
important. In this case, the effect of the dependence structure is separated from 
that of  the marginals. Two strategies could be envisaged.  

Let (T1j, T2j) n,1j=  be a sample of the failure times for the variables T1 and 

T2, where:  
         ),(Weibull~T),,(Weibull~T 222111 βαβα  with probability density f1 and f2. 

The probability density considered for ),( βαWeibull  is: 
β

αβ
βα
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⎠
⎞
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−=

x

exxf 1)( , x>0. 

The first method is a two stage estimation method. The 1-st stage involves 
maximum likelihood for univariate marginals parameters. This procedure is 
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computationally simpler than estimating all parameters. So, the equations that 

must be solved are: 0
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The second method is a semi-parametric one. The procedure consist of 
selecting the parameter value that maximize the pseudo-likelihood   

 [ ]∑
=

=
n

j
jnjn tFtFcL

1
2211 ))(),((ln)( δδ   

where Fin is the empirical distribution function of i-th variable, i=1,2. 
In [5] is proved that the semi-parametric estimator nδ̂  is consistent 

and: ( )δδ −nn ˆ  is asymptotically normal. 

The estimation nδ̂  is given by the equation:  
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In our case for copula (1) this is: 
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with )t(Flnv),t(Flnu j2n2jj1n1j == . 

For the copula (2) 1vue)v1)(u1(),v,u(C uv −++−−=δ δ−  associated to 
the bivariate Weibull distribution the equation that gives the dependence 
parameter is: 
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4. Application 
We use the recurrent data found at the address http://www-unix.oit. 

umass.edu/~statdata/statdata/data/recur.dat  
Table 1 

ID AGE TREAT T1 T2 CENSOR EVENT 
1 43 0 9 56 1 3 
1 43 0 56 88 1 4 
1 43 0 0 6 1 1 
1 43 0 6 9 1 2 
2 43 0 0 42 1 1 
2 43 0 87 91 0 3 
2 43 0 42 87 1 2 
3 41 0 0 15 1 1 
3 41 0 15 17 1 2 
3 41 0 17 36 1 3 
3 41 0 36 112 0 4 

The sample consists in 386 pacients registered with the first time when the 
disease occurred and the next recurrence of it.  These times are T1 and T2. From 
all data, we selected only these that have event = 2. 

The concordance with Weibull distribution is established by the 
linearization method . The values of the parameters are:  

222882.29,0109524.1 11 == βα , 11479.59,459987.1 22 == βα  

 
The figure of linearization are: 
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The estimated correlation coefficients are:      Table 2 
Correlations 

    T1 T2 
T1 Pearson Correlation 1 .780(**)
  Sig. (2-tailed) . .000
  N 386 386
T2 Pearson Correlation .780(**) 1
  Sig. (2-tailed) .000 .
  N 386 386

Table 3 
Correlations 

      T1 T2 
Kendall's tau_b T1 Correlation 

Coefficient 1.000 .588(**) 

    Sig. (2-tailed) . .000 
    N 386 386 
  T2 Correlation 

Coefficient .588(**) 1.000 

    Sig. (2-tailed) .000 . 
    N 386 386 
Spearman's rho T1 Correlation 

Coefficient 1.000 .743(**) 

    Sig. (2-tailed) . .000 
    N 386 386 
  T2 Correlation 

Coefficient .743(**) 1.000 

    Sig. (2-tailed) .000 . 
    N 386 386 

** Correlation is significant at the 0.01 level (2-tailed). 
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 For copula (1) we define the function: 
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and for copula (2) we define the function 
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and we search for the function )(δf  the root ]1,0[∈δ . We present the graphs of 
)(δf  in the two cases.  

 

 
Fig. 3 The function )(δf  for the two copulas  
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 In the first case one observe that ]1,0[∉δ . This shows to us that for this 
copula the number of data must be much more. In the second case we find two 
solutions ]5.0,0[1 ∈δ  and ]1,5.0[2 ∈δ . Knowing that the parameter of 
dependence δ for a such copula is in the interval [-0,20 ; 0,32] we find the value 

1706.0≅δ  with an error or order 10-2. 
 

Conclusions 

 The semiparametric method for estimating the dependence parameter of a 
pair of random variables applied for two different bivariate distributions with the 
same marginals ask different values for the volume of selection. For the first 
copula that is an Archimedian one the volume of selection must be bigger then for 
the second copula, that is associated to a bivariate Weibull. This is a reason for 
which we can not find a value of ]1,0[∈δ  for the copula (1). 
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