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CHARACTERIZING (ρ, τ)-QUASI-EINSTEIN SOLITONS IN THE

FRAMEWORK OF SYNECTIC LIFT METRIC

Lokman Bilen1, Aydin Gezer2, Şeyma Tombaş3

Abstract: In this paper, we explore the structure of (ρ, τ)-quasi-Einstein

solitons in relation to the synectic lift metric on the tangent bundle TM of a Riemannian

manifold (M, g). Utilizing an adapted frame for our analysis, we investigate the neces-

sary and sufficient conditions for the structures (TM, g̃, λ, V f) and (TM, g̃, λ, Cf) to

qualify as (ρ, τ)-quasi-Einstein solitons, where g̃ denotes the synectic lift metric on the

tangent bundle TM .
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1. Introduction

Let M be an n−dimensional manifold, and let TM represent its tangent bundle. We

use ℑr
s(M) to denote the collection of all tensor fields of type (r, s) on M . Similarly, ℑr

s(M)

refers to the corresponding collection of tensor fields on TM . Additionally, this paper will

always consider everything within the C∞−category, and the manifolds discussed will be

assumed to be connected and of dimension n > 1.

The tangent bundle TM is a fundamental concept in differential geometry, providing

a systematic way to examine and apply tangent vectors throughout the manifold. It en-

capsulates the local linear structure of the manifold and facilitates the extension of vector

space concepts to the manifold context. The exploration of tangent bundle geometry dates

back to Sasaki’s influential paper published in 1958 [23], where he introduced a method to

construct a metric g on the tangent bundle TM of a differentiable manifold M based on a

given Riemannian metric g on M . This metric, now referred to as the Sasaki metric, has

become a cornerstone in differential geometry. In subsequent years, researchers explored

various classical lifts of the metric g from M to TM in their pursuit of alternative lifted

metrics with notable properties (see [1, 9, 5, 16, 26]). Among these, the synectic lift metric

g̃ has emerged as one of the significant metrics. In this paper, we focus on the synectic

lift metric on the tangent bundle of a Riemannian manifold. Our aim is to investigate the

necessary and sufficient conditions for the structures (TM, g̃, λ, V f) and (TM, g̃, λ, Cf)

to be classified as (ρ, τ)-quasi-Einstein solitons, where g̃ denotes the synectic lift metric on

the tangent bundle TM .

A geometric soliton structure is a unique geometric arrangement on a manifold that

displays self-similar behavior when subjected to geometric flows. In differential geometry,

solitons are intimately connected to the solutions of partial differential equations (PDEs),

especially within the framework of geometric flows like the Ricci flow or mean curvature flow.

In this context, solitons represent configurations that evolve in a consistent, self-similar way
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during the flow process. Solitons are crucial for analyzing the long-term dynamics of geo-

metric flows and serve as key tools for exploring the topology and geometry of the manifolds

involved. In physics, solitons typically refer to stable formations that resist dispersal, and

geometric solitons can have similar interpretations in fields like general relativity and string

theory. In [14], the authors study some soliton structure (almost Ricci and almost Yamabe

solitons) on tangent bundle, in [25], investigated Ricci, Yamabe and gradient Ricci–Yamabe

solitons of the twisted-Sasaki metric on the tangent bundle over a statistical manifold. Also

explored natural Ricci soliton on tangent and unit tangent bundle in the paper [2], Yam-

abe and quasi-Yamabe solitons on Euclidean submanifolds worked by Chen and Deshmukh

[8]. Many more studies have been carried out on soliton structures over the years (see

[6, 11, 13, 18, 20]).

A quasi-Einstein soliton generalizes the notion of an Einstein soliton, which is itself a

specific instance of a Ricci soliton. Within the realm of differential geometry and geometric

flows, these solitons offer valuable insights into the structure and dynamics of manifolds

under particular conditions. A quasi-Einstein soliton modifies the soliton equation by incor-

porating an additional function, commonly denoted as f . The equation for a quasi-Einstein

soliton is typically written as:

Ric+∇2f − µdf ⊗ df = λg.

In this equation, ∇2f refers to the Hessian of the smooth function f , while df⊗df denotes the

tensor product of the differential of f . The constants λ and µ introduce flexibility in modeling

the geometry of the manifold, often resulting in solutions that describe non-homogeneous or

more intricate geometric structures. Essentially, quasi-Einstein solitons provide an expanded

framework for examining self-similar solutions to geometric flows, broadening the scope of

Einstein and Ricci solitons to include more general and complex geometric configurations.

Einstein manifolds are of crucial importance in both mathematics and physics. Within

Riemannian and semi-Riemannian geometry, there is considerable interest in exploring Ein-

stein manifolds and their various generalizations. Recently, several extensions of Einstein

manifolds have been introduced, including quasi-Einstein manifolds [12], generalized quasi-

Einstein manifolds [7], η-quasi-Einstein manifolds, and (ρ, τ)-quasi-Einstein manifolds [17],

among others. Additionally, in [10], the authors studied perfect fluid spacetimes character-

ized by a Lorentzian metric that incorporates (m, ρ)-quasi-Einstein solitons and provided an

example of an almost co-Kähler manifold exhibiting (m, ρ)-quasi-Einstein solitons. In [22],

the authors investigated (m, ρ)-quasi-Einstein solitons on 3-dimensional trans-Sasakian man-

ifolds, demonstrating that a closed (m, ρ)-quasi-Einstein soliton on a 3-dimensional trans-

Sasakian manifold is either cosymplectic or Einstein under certain conditions, and they also

presented an application of this soliton.

The equation characterizing a (ρ, τ)-quasi-Einstein soliton is generally expressed as

follows:

Ric+∇2f − 1

τ
df ⊗ df = (ρr + λ)g,

where ∇2f denotes the Hessian of a smooth function f , and df ⊗ df represents the tensor

product of the differential of f . In this context, r stands for the scalar curvature, while λ,

τ , and ρ are scalars. In this paper, we explore the necessary and sufficient conditions for

the structures (TM, g̃, λ, V f) and (TM, g̃, λ, Cf) to qualify as (ρ, τ)-quasi-Einstein solitons,

with g̃ being the synectic lift metric on the tangent bundle TM .
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2. Preliminaries

2.1. The adapted frame on tangent bundle

Consider an n-dimensional Riemannian manifold M equipped with a Riemannian

metric g, and let TM denote its tangent bundle. This article utilizes the C∞ category to

provide a thorough explanation, particularly focusing on connected manifolds. We examine

the natural projection π : TM → M with special attention to systems of local coordinates.

When a local coordinate system (U, xi) is established on Mn, it induces a correspond-

ing local coordinate system (π−1(U), xi, xi = ui) on TM , where i = n + i = n + 1, . . . , 2n.

In this context, (ui) represents the Cartesian coordinates in each tangent space TpM for all

p ∈ U , with p being an arbitrary point in U .

The Levi-Civita connection associated with the Riemannian metric g is denoted by

∇. In the context of the horizontal distribution defined by ∇ and the vertical distribution

defined by kerπ∗, we establish the following local frame:

Ei =
∂

∂xi
− ysΓh

is

∂

∂yh
, i = 1, . . . , n,

and

Ei =
∂

∂yi
, i = n+ 1, . . . , 2n,

where Γh
is denotes the Christoffel symbols of g. The local frame {Eβ} = (Ei, Ei) is referred

to as the adapted frame. Consider a vector field X = Xi ∂
∂xi . The horizontal and vertical

lifts of X with respect to the adapted frame are defined as follows:

HX = XiEi,

and
V X = XiEi.

In the tangent bundle TM , the local 1-form system (dxi, δyi) acts as the dual frame

to the adapted frame {Eβ}, where

δyi = H(dxi) = dyi + ysΓi
hsdx

h.

We will first present the following lemma, which will be useful later on.

Lemma 2.1. Let (M, g) a Riemannian manifold and TM its tangent bundle. The Lie

brackets of the adapted frame in TM satisfy the following identities [26]:

[Ej , Ei] = ybR a
ijbEa,

[Ej , Ei] = Γa
jiEa,[

Ej , Ei

]
= 0,

where R a
ijb represents the components of the Riemannian curvature tensor of (M, g).

2.2. The synectic lift metric on tangent bundle

In the context of a manifold (M, g), various Riemannian or pseudo-Riemannian met-

rics can be defined on its tangent bundle TM . These metrics are constructed by lifting the

original Riemannian metric g in a natural manner and are referred to as g-natural metrics.

In [3], the authors identified the complete family of Riemannian g-natural metrics, which

depend on six arbitrary functions of the norm of a vector u ∈ TM .

As noted above, different Riemannian or pseudo-Riemannian metrics on TM have

been formulated using natural lifts of the original metric g. One such metric is known as



110 Lokman Bilen, Aydin Gezer, Şeyma Tombaş

the synectic lift metric on the tangent bundle TM . In this paper, we introduce the synectic

lift metric as a new natural, non-rigid metric on TM . We then establish the necessary

and sufficient conditions for (TM, g̃, λ, V f) and (TM, g̃, λ,Cf) structures to be (ρ, τ)-quasi-

Einstein solitons under the synectic lift metric on the tangent bundle TM .

Definition 2.1. Let g be a Riemannian metric with components gij on M . We define the

metric

g̃ = aijdx
idxj + 2gijdx

iδyj ,

which is non-degenerate and can be considered as a pseudo-Riemannian metric on TM . This

metric is referred to as the synectic lift metric, where a = (aij) is a symmetric (0,2)-type

tensor field on M .

The synectic lift metric g̃, which can be expressed as g̃ = Cg + V a, has the following

matrix form in terms of the induced coordinates:

g̃ = (g̃βγ) =

(
aij + ∂gij gij

gij 0

)
.

For more details, see [24].

In the adapted frame {Eβ}, the synectic lift metric and its inverse are represented as

follows:

g̃ = (g̃βγ) =

(
aij gij
gij 0

)
,

and

g̃−1 =
(
g̃αβ

)
=

(
0 gjk

gjk −ajk

)
.

Here, Cg and V a denote the complete lift and vertical lift of g and a to TM , respectively.

For the Levi-Civita connection associated with the synectic lift metric, we have the

following:

Lemma 2.2. The Levi-Civita connection ∇̃ of the synectic lift metric g̃ on the tangent

bundle is expressed as follows [4]:

∇̃EiEj = Γk
ijEk +

(
Mk

ij + ysR k
sij

)
Ek,

∇̃Ei
Ej = 0,

∇̃EiEj = Γk
ijEk,

∇̃Ei
Ej = 0,

where Mk
ij = 1

2g
kh (∇iahj +∇jahi −∇haij) is a tensor of type (1, 2). Additionally, Rh

ijk

denotes the components of the Riemannian curvature tensor field R associated with the

Levi-Civita connection ∇ of the Riemannian metric g.

Lemma 2.3. Let TM denote the tangent bundle of a Riemannian manifold (M, g), and let

g̃ represent the associated synectic lift metric. In the adapted frame {Eβ}, the Riemannian

curvature tensor R̃ of the Levi-Civita connection ∇̃ associated with the synectic lift metric

g̃ on the tangent bundle exhibits the following properties:

R̃ k
mij = R k

mij ,

R̃ k̄
mij = ∇mMk

ij −∇iM
k
mj + ys

(
∇mR k

sij −∇iR
k

smj

)
,

R̃ k̄
mij̄ = R k

mij ,
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with all other components being zero. Here, Mk
ij =

1
2g

kh (∇iahj +∇jahi −∇haij) is a tensor

of type (1, 2). Additionally, Γh
ij and Rh

ijk denote the components of the Levi-Civita connection

∇ of the Riemannian metric g and its Riemannian curvature tensor on M , respectively (see,

also [15]).

Lemma 2.4. Let TM denote the tangent bundle of a Riemannian manifold (M, g), and

let g̃ represent the associated synectic lift metric. In the adapted frame {Eβ}, the Ricci

curvature tensor R̃ of the Levi-Civita connection ∇̃ associated with the synectic lift metric

g̃ on the tangent bundle exhibits the following properties:

R̃ij = Rij , R̃īj = R̃ij̄ = R̃īj̄ = 0,

where Rij = R k
kij represents the Ricci curvature tensor of the manifold M (see, also [15]).

Lemma 2.5. Let TM denote the tangent bundle of a Riemannian manifold (M, g), and

let g̃ represent the associated synectic lift metric. The scalar curvature r̃ of the Levi-Civita

connection ∇̃ corresponding to the synectic lift metric g̃ on the tangent bundle is equal to

zero (see, also [15]).

3. Main Results

Einstein solitons are of great importance in both mathematics and physics, making

their study within the realms of Riemannian and semi-Riemannian geometry particularly

intriguing. Recently, various extensions of Einstein solitons have been introduced, including

quasi-Einstein solitons, generalized quasi-Einstein solitons, m-quasi-Einstein solitons, and

(ρ, τ)-quasi-Einstein solitons. In this research, we concentrate on the examination of (ρ, τ)-

quasi-Einstein solitons on the tangent bundle, utilizing the synectic lift metric.

In a Riemannian manifold, a metric g is referred to as a generalized quasi-Einstein

soliton if there exist smooth functions f, α, and β such that the following equation holds:

Ric+Hessf − αdf ⊗ df = βg.

Specifically, if β ∈ R and α = 0, this soliton reduces to a gradient Ricci soliton. On the

other hand, if α = 1
m and β ∈ R, the equation simplifies to an m-quasi-Einstein soliton,

where m ∈ N. The concept of a generalized quasi-Einstein soliton was introduced by Catino

[7], and Huang and Wei [17] later proposed examining the (m, ρ)-quasi-Einstein soliton as a

specific case of this framework.

Definition 3.1. In a Riemannian manifold, a metric g is termed an (m, ρ)-quasi-Einstein

soliton if there exists a smooth function f : M → R along with constants τ, ρ, λ ∈ R (where

0 < τ ≤ ∞) such that the following equation holds:

Ric+Hessf − 1

τ
df ⊗ df = (ρr + λ)g. (1)

Here, r represents the scalar curvature, and Hessf (or ∇2f) is the Hessian form of the

smooth function f on M . The importance of these manifolds is highlighted by recent studies

on the m-Bakry-Emery Ricci tensor Ricmf (see [19], [21]), which is defined as follows:

Ricmf = Ric+Hessf − 1

τ
df ⊗ df.

For any smooth function f defined on M , the vertical lift of f to the tangent bundle

TM is given by V f = f , while the complete lift of f to TM is defined as Cf = ys∂sf . To

introduce our primary concept, we denote the Hessian operator of the vertical and complete

lifts of any smooth function f on M with respect to the synectic lift metric.
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The Hessian operator of the metric g for a smooth function f is defined by

(Hessgf) (X,Y ) = XY f − (∇XY ) f,

where X,Y ∈ ℑ1
0(TM). In local coordinates, this can be expressed as

(∇f)βγ = ∂β∂γf − Γα
βγ∂αf = fβγ − Γα

βγfα,

with γ = j, j and β = i, i. Here, ∂βf = ∂
∂xβ f = fβ and ∂β∂γf = ∂

∂xβ
∂

∂xγ f = fβγ , while

∂α∂β∂γf = fαβγ . From this point onward, we will use this representation throughout the

paper.

To elucidate our main topic, we will provide essential information about the Hessian

operator (with respect to the synectic lift metric) for any smooth function f defined on M .

Lemma 3.1. Let f be a smooth function defined on a Riemannian manifold (M, g). The

Hessian (with respect to the synectic lift metric) of its vertical lift can be expressed as follows:(
∇̃2 V f

)
ij

= ∂i∂jf − Γ̃k
ij∂kf =

(
∇2f

)
ij
,(

∇̃2 V f
)
ij̄

= 0,(
∇̃2 V f

)
īj

= 0,(
∇̃2 V f

)
īj̄

= 0.

The auxiliary lemmas that will be utilized in our study are presented below.

Lemma 3.2. For any smooth function f on M , the vertical lift of f to TM is defined as
V f = f , while the complete lift of f to TM is given by Cf = ys∂sf . The dual 1-form of ∇f

is denoted by df . The following equations can thus be established:

i. d V f ⊗ d V f = fifjdx
idxj ,

ii. d Cf ⊗ d Cf = ysypfisfjpdx
idxj + ysfisfjdx

idyj + fifjdy
idyj ,

where fβ = ∂
∂xβ f and fβγ = ∂

∂xβ
∂

∂xγ f .

Theorem 3.1. Let (M, g) be a Riemannian manifold, and let the synectic lift metric on the

tangent bundle TM be given by g̃ = aijdx
idxj +2gijdx

iδyj. The structure (TM, g̃,V f, λ) is

considered a (ρ, τ)-quasi-Einstein soliton if and only if the following conditions are satisfied:

i. λ = 0,

ii. 1
τ fifj = Rij +

(
∇2f

)
ij
.

Here, r̃ = 0 denotes the scalar curvature of g̃, while R̃ represents the Ricci curvature tensor

of g̃. Additionally, R and r are the Riemannian curvature tensor and scalar curvature of

the Levi-Civita connection ∇ of the Riemannian metric g, respectively. Moreover, we define

fβ = ∂βf = ∂
∂xβ f and fβγ = ∂β∂γf = ∂

∂xβ
∂

∂xγ f .

Proof. If the expression
(
∇̃2 V f

)
in Lemma 3.1 is used in (1), we have

R̃ij +
(
∇̃2 V f

)
ij
− 1

τ
dV f ⊗ dV f = (ρr̃ + λ) g̃ij

Rij +
(
∇2f

)
ij
− 1

τ
fifj = λaij (2)
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and

R̃ij +
(
∇̃2 V f

)
ij

= (ρr̃ + λ) g̃ij

0 = λgij

0 = λ. (3)

Substituting equation (3) in the equation (2), we get

1

τ
fifj = Rij +

(
∇2f

)
ij
.

Conversely by a routine calculation, we can check that in any case i−ii of the theorem.

So the proof is completed. □

Lemma 3.3. Let f be a smooth function on a Riemannian manifold (M, g). The Hessian of

its complete lift, with respect to the synectic lift metric, is given by the following expressions:(
∇̃2 Cf

)
ij

= ys
(
∇i∇jfs −R k

sijfk
)
−Mk

ijfk,(
∇̃2 Cf

)
ij̄

= ∇ifj ,(
∇̃2 Cf

)
īj

= fij ,(
∇̃2 Cf

)
īj̄

= 0.

Theorem 3.2. Let (M, g) be a Riemannian manifold, and let g̃ = aijdx
idxj + 2gijdx

iδyj

denote the synectic lift metric on the tangent bundle TM . The structure (TM, g̃,Cf, λ) is

classified as a (ρ, τ)-quasi-Einstein soliton if and only if the following conditions are satisfied:

i. λ = − 1
nτ y

sgijfisfj ,

ii. ∇i∇jfs = R k
sijfk,

iii. Rij = Mk
ijfk,

iv. ghlfhsflaij = 0,

v. fifj = 0, fisfjp = 0,

where r̃ = 0 represents the scalar curvature of g̃, and R̃ is the Ricci curvature tensor of

g̃. Additionally, R and r denote the Riemannian curvature tensor and scalar curvature of

the Levi-Civita connection ∇ of the Riemannian metric g, respectively. The derivatives are

defined as fβ = ∂βf = ∂
∂xβ f and fβγ = ∂β∂γf = ∂

∂xβ
∂

∂xγ f . The term Mk
ij is given by

Mk
ij =

1

2
gkh (∇iahj +∇jahi −∇haij) .

Proof. If the expression
(
∇̃2 Cf

)
ij

in Lemma 3.3 is used in (1), we obtain

R̃ij +
(
∇̃2 Cf

)
ij
−−1

τ
dCf ⊗ dCf = (ρr̃ + λ) g̃ij

Rij + ys
(
∇i∇jfs −R k

sij fk
)
−Mk

ijfk − 1

τ
ysypfisfjp = −λaij

from which, we get

Rij −Mk
ijfk = −λaij , (4)

∇i∇jfs = R k
sij fk

and

fisfjp = 0.
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If the expression
(
∇̃2 Cf

)
ij

or
(
∇̃2 Cf

)
ij

in Lemma 3.3 is used in (1), we have

−1

τ
ysfisfj = λgij .

Contracting with gij both sides in last equation, we get

λ = − 1

nτ
ysgijfisfj .

Substituting above equation into equation (4), we obtain

Rij −Mk
ijfk =

1

nτ
ysghlfhsflaij

from which, we have

Rij = Mk
ijfk

and

ghlfhsflaij = 0.

If the expression
(
∇̃2 Cf

)
ij

in Lemma 3.3 is used in (1), we get

fifj = 0.

If the above calculations are followed in reverse, the statements of the theorem easily

accesible. So the proof is completed. □

Conclusion

In this paper, we have thoroughly examined the structure of (ρ, τ)-quasi-Einstein

solitons on the tangent bundle TM of a Riemannian manifold (M, g) under the framework

of the synectic lift metric g̃. By employing an adapted frame, we derived necessary and

sufficient conditions for the structures (TM, g̃,V f, λ) and (TM, g̃,C f, λ) to be classified as

(ρ, τ)-quasi-Einstein solitons.

We found that the conditions imposed on λ, the derivatives of f , and the curvature

tensors significantly constrain the geometry of the manifold. Specifically, we established that

for (TM, g̃,V f, λ) to be a (ρ, τ)-quasi-Einstein soliton, λ must be zero, and the relationship

between the Hessian of f and the Ricci curvature tensor must hold as indicated. In contrast,

for (TM, g̃,C f, λ), a more intricate set of conditions involving λ, the Riemannian curvature

tensor, and the complete lift of f emerged, highlighting the delicate interplay between the

geometry of the manifold and the behavior of the smooth function f .

Our findings contribute to a deeper understanding of quasi-Einstein solitons within

the context of synectic lift metrics, expanding the existing literature on solitonic structures

in Riemannian geometry. Future work may extend this analysis to explore the implications

of these conditions on specific classes of Riemannian manifolds and their geometric prop-

erties, as well as investigate the potential applications of (ρ, τ)-quasi-Einstein solitons in

mathematical physics. The study of these solitonic structures promises to unveil further in-

sights into the rich tapestry of geometric phenomena arising from the interplay of curvature

and functional dynamics.
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