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TWO BOUNDARY ELEMENT APPROACHES FOR THE 
COMPRESSIBLE FLUID FLOW  AROUND A NON-LIFTING 

BODY 

Luminiţa GRECU1, Gabriela DEMIAN2, Mihai DEMIAN3 

În lucrare sunt prezentate două variante de aplicare a metodei elementelor 
pe frontieră pentru rezolvarea problemei curgerii unui fluid compresibil în jurul 
corpurilor, una utilizând o distribuţie de surse pe frontiera corpului şi cealaltă o 
distribuţie de vârtejuri. Se obţin rezultate numerice pentru un caz particular -
obstacolul eliptic- şi de asemenea se face un studiu comparativ între aceste rezultate 
numerice şi soluţia exactă a problemei. Soluţiile numerice sunt în concordanţă cu 
soluţia exactă a problemei în ambele cazuri, dar pentru acest caz particular soluţia 
numerică ce utilizează vârtejuri este mai adecvată.  

 In the paper there are presented two variants of application of the boundary 
element method for solving the compressible fluid flow around bodies, one using a 
distribution of sources on the boundary and the other a vortex distribution. There 
are obtained numerical results for a particular case- the elliptical obstacle-and a 
comparison study between these numerical results and the exact solution of the 
problem is also done. The numerical solutions are in good agreement with the exact 
solution of the problem in both cases, but, for this particular case, the solution that 
uses the vortex distribution better fits. 

Keywords: indirect boundary element method, integral equation, sources  
                    distribution, vortex distribution, compressible fluid flow, elliptical  
                     obstacle. 

1. Introduction 

The boundary integral method (BEM) is a modern numerical technique 
used to solve boundary value problems for systems of partial differential 
equations.  

There exist two principal variants of applying this method: the direct 
method and the indirect one. Both of them offer the principal advantage of the 
BEM over the other numerical method - the ability to reduce the problem 
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dimension by one. This property is advantageous as it reduces the size of the 
system the problem is equivalent with and so improves computational efficiency. 
To achieve this reduction of dimension it is necessary to formulate the governing 
equation as a boundary integral equation, which is usually a singular one ( [ ] [ ]2,1 ), 
and for this there can be used both techniques the indirect technique and the direct 
one. This paper is focused on a comparison between two variants of the first 
technique applied to solve the bivariate problem of an inviscid, compressive 
subsonic fluid flow around bodies, considering the case of a non-lifting obstacle.  

The first variant uses a distribution of sources on the obstacle’s boundary, 
and the second uses a vortex distribution.  

For a better understanding we make a short presentation of the problem to 
solve, as in [3]. A uniform, steady, potential motion of an ideal inviscid fluid of 
subsonic velocity iU∞ , pressure ∞p and density ∞ρ  is perturbed by the presence 
of a fixed body of a known boundary, noted C, assumed to be smooth and closed. 
We want to find out the perturbed motion, and the fluid action on the body.  

Denoting by v  the perturbation velocity (u,v its components along the 
axes) and by V  the velocity field for the perturbed motion, and using 
dimensionless variables we have the following mathematical model:  
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with the boundary condition:  
( ) 02 =β++β yvnxnu on C,                                                                      (2) 

 
 where n  is the normal unit vector outward the fluid, β  has the usual 

signification, 21 M−=β , and M the Mach number for the unperturbed motion. 
It is also required that the perturbation velocity vanishes at infinity: 0lim =

∞
v . 

2. The boundary integral equation - sources distribution 

The indirect method is applied to obtain the boundary integral equation. 
First, the boundary, so C, is assimilated with a sources distribution, having the 

unknown intensity ( )xf , assumed to satisfy a lderoH
..

condition on C. The 
perturbation velocity in a point ( )ξM  situated in the fluid domain is:  
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For getting the boundary integral equation we use relation (2) and the 
expression for the velocity on the boundary deduced using a limit process in (3).  

If  0x  denotes a regular point on the boundary we deduce: 
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where the sign` denotes the Cauchy principal value of the integral (see[6]). 

We obtain the following singular boundary integral equation (see [3]): 
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where 00 , yx nn are the components of the normal unit vector outward the fluid 

evaluated at 0x .  
In order to solve the singular boundary integral equation we  use constant 

boundary elements. We approximate the boundary by a polygonal 
line{ } NjL j ,1, =  with the nodes on the real boundary and we consider that the 
unknown is constant on each segment.  

We consider that on each iL  the unknown is equal with the value taken in 
the midpoint of the segment, noted  
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In (5) we consider than 0

0 ixx = and we deduce the discrete form of the 
boundary equation: 
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Imposing relation (7) to be satisfied on every midpoint, we get (see [5]) 
the following linear algebraic system which unknowns are the values of the 
sources intensity for the middle points of the segments: 
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with the same notation as in [5]. 

All the coefficients in (8) can be analytically evaluated, so even if they 
represent some integrals these don’t have to be numerically evaluated and no 
errors can appear at this step. Their expressions can also be found in [5], and they 
depend only on the coordinates of the nodes chosen for the boundary 
discretization. 

3. The boundary integral equation - vortex distribution 

In the second approach the boundary is approximated with a vortex 

distribution having the unknown intensity ( )xg , a lderoH
..

function on C too. The 
components of the perturbation velocity for a regular point on the boundary are: 
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where, as in (4)  the sign` denotes the Cauchy principal value of the integral. 
The singular boundary equation for this case, deduced in an analogous 

manner (see [ 3]) is:  
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with the same notations as before.  
For solving this singular boundary integral equation we use linear 

isoparametric boundary elements too and we follow the same steps as in the case 
of the sources distribution.  
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We deduce the discrete form of equation (11), and the system the problem 
is reduced at in this case: 
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the notations are those used in [5], where the analytical expressions are given too.  

It is important to specify that all the coefficients have analytical 
expressions and for this reason no error is introduced for their evaluations. All 
these coefficients depend only on the coordinates of the nodes used for the 
boundary discretization, and so for a great number of nodes, it can be use a 
computer code to solve the problem.  

As we can see from the above paragraphs both methods used in this paper 
to solve the problem of the compressible fluid flow around a non-lifting body lead 
to linear systems of equations with coefficients depending on the coordinates of 
the nodes used for the boundary discretization. For the first case the unknowns are 
the nodal values of the sources intensities, noted Nifi ,1, = ,  and for the second 

case the nodal values of the vortices intensities, noted Nigi ,1, =  .  
After solving each system we can compute for each case the fluid velocity 

for different points of the fluid domain and the fluid action over the body, 
evaluating the local pressure coefficient, noted pc ,  using the relation: 

uvuc p 222 −−−= . 

4. Numerical solutions for the elliptical obstacle 

For solving the systems and for evaluating the fluid velocity there are 
developed two computer codes in C programming language, one for each method, 
and there are compared the numerical solutions obtained.  

These numerical solutions are also compared with the exact solution that 
exists for the particular case of an elliptical obstacle and an incompressible fluid 
(M=0).  

In [4] the bivariate problem of the incompressible fluid flow around an 
elliptical object is exactly solved. The expression of the perturbed fluid velocity is 
obtained using the complex potential, given by the following expression:  
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where tbytax sin,cos == , iyxz += , and 222 bac −= . 
 
 
We have for this case:  
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We consider an elliptical profile with a=2 and b=1. 
Another computer code in MATHCAD gives us the solution for this case. 

These computer codes can be run for any number of nodes used for the boundary 
discretization. We can study using them the errors that appear for each of the two 
types of methods presented above, and how big are these errors for different 
numbers of boundary elements, so these computer codes can be used to make a 
comparison study between the two methods presented in this paper. 

For the case when we use 10, 20 and 30 nodes for the discretization the 
solutions obtained are represented in the following graphics.  

In fig 1, 2, 3 there are represented the values obtained for the velocity 
component along the Ox axis for 10, 20 and 30 nodes and in each of these 
graphics there are performed three situations: the exact solution, the sources 
solution and the vortex solution.  

In fig 4, 5, 6 there are represented the values obtained for the velocity 
component along the Oy axis for each of the three mentioned situations.  

The pressure coefficient is represented in fig. 7, 8,9 for the same cases.  
As we can see from these graphics the elliptical profile is a non-lifting 

profile because there is no difference between the values of the local pressure 
coefficient on the two sides of the profile, and as it is known this is a consequence 
of the fact that it has a smooth boundary.  

As we can see from the graphics below both numerical solutions are in 
good agreement with the exact solution for the cases when more than 10 nodes are 
used for the boundary discretization, , but better solutions are obtained with the 
second method, so for the case when the obstacle’s boundary is assimilated with a  
vortex distribution. 
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Fig. 1. The velocity along the Ox axis for 10 nodes 
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Fig. 2. The velocity along the Ox axis for 20nodes 
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Fig. 3. The velocity along the Ox axis for 30 nodes 
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Fig. 4. The velocity along the Oy axis for 10 nodes 

 
vy

-1

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

exact vy
sources
vortex

 
Fig. 5. The velocity along the Oy axis for 20 nodes 
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Fig. 6. The velocity along the Oy axis for 30 nodes 
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Fig. 7. The local pressure coefficient for 10 nodes 
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Fig. 8. The local pressure coefficient for 20 nodes 
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Fig. 9. The local pressure coefficient for 30 nodes 
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Fig.10. Errors for vx-case of 10 nodes 
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Fig.11. Errors for vx-case of 20 nodes 
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Fig.12. Errors for vx-case of 30 nodes 
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Fig.13. Errors for vy-case of 10 nodes 
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Fig.14. Errors for vy-case of 20 nodes 
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Fig.15. Errors for vy-case of 30 nodes 
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Fig.16. Errors for cp-case of 10 nodes 
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Fig.17. Errors for cp-case of 20 nodes 
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Fig.18. Errors for cp-case of 30 nodes 
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So both methods offer good numerical solutions but better results are 

obtained for the vortex distribution. This can be seen from the graphics where the 
errors are represented (Fig.10, 11, etc.) for 10, 20 and 30 nodes. Error1 is an 
absolute error for the numerical solution obtained for the case of sources 
distribution, and error2 for the case of vortex distribution. They are evaluated for 
the components of the velocity and also for the local pressure coefficient. 

5. Conclusions 

From the above graphics that show the comparison between the errors 
obtained when we use vortex and sources distributions for 10, 20 and 30 nodes we 
observe that the vortex distribution offers better results.  

We notice that differences between the numerical solutions and the exact 
one appear in each situation, no matter if the components of the velocity or the 
local pressure coefficient are involved and haw many nodes are used for the 
boundary discretization.  

As we can see the improvement achieve by using the vortex distribution is 
growing when more nodes are used for the boundary discretization. We can 
further study which is the critical number of nodes in case of this profile. This 
number of nodes represents the one after which even if we grow the number of the 
boundary elements the solution is not very much improved, and so the 
computational effort that appears is not justified.  

With the same computer codes we can also study the influence of the 
compressibility on the motion and also how the ratio between the semi-axis of the 
ellipse influences the values of the velocities and of the local pressure coefficient. 

Even these computer codes are realized for the case of an elliptical 
obstacle they can be easily modified for running for other smooth obstacles too. 

 

R E F E R E N C E S 

[1] C.A Brebbia, S Walker, Boundary Element Techniques in Engineering – Butterworths, 
London, 1980. 

[2] C.A Brebbia,., J.C.F Telles,., L.C Wobel,, Boundary Element Theory and Application in 
Engineering – Springer-Verlag, Berlin,1984. 

[3] I.K Lifanov.,„Singular integral equations and discrete vortices", VSP, Utrecht, TheNetherlands. 
[4] L Dagoş, Metode Matematice în Aerodinamică  (Mathematical Methods in Aerodinamics) – 

Editura Academiei Române, Bucureşti, 2000. 
 
 
 
 
 



Luminita Grecu, Gabriela Demian, Mihai Demian 86

 [5] L Grecu, Ph.D. these: Boundary element method applied in fluid mechanics, University of 
Bucharest, Faculty of Mathematics, 2004. 

[6] L Dragoş, Mecanica Fluidelor Vol.1 Teoria Generală  Fluidul Ideal Incompresibil  (Fluid 
Mechanics Vol.1. General Theory  The Ideal Incompressible Fluid) – Editura Academiei 
Române, Bucureşti, 1999. 

 


