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MULTIPLE ),( mn -HYBRID LAPLACE TRANSFORM  
AND APPLICATIONS TO MULTIDIMENSIONAL HYBRID 

SYSTEMS. PART II: DETERMINING THE ORIGINAL 
 

Valeriu PREPELIŢĂ1, Tiberiu VASILACHE2 

Acest articol completează studiul transformării ),( mn - Laplace hibride din 
[11] cu teoremele de integrare şi sumă a originalului, integrare a imaginii, 
convoluţie, produs al originalelor, valoare iniţială şi valoare finală. 

Sunt prezentate metode de determinare a originalului. Se obţine o formulă de 
inversiune de tip Mellin-Fourier şi se dă o teoremă de dezvoltare generalizată. 

 
This paper completes the study of the ),( mn -Hybrid Laplace Transform 

from [11] with the theorems regarding integration and sum of the original, 
integration of the image, convolution, product of originals, initial and final values. 

Some methods and formulas for determining the original of a given 
),( mn - Hybrid Laplace Transform are provided. A generalized Mellin-Fourier type 

inversion formula is established and two other formulas are derived using 
respectively the Residue Theorem and multivariable Laurent series expansions. A 
generalized Expansion Theorem is also given. 

 
Keywords: Hybrid Laplace Transform, Mellin-Fourier type inversion formula,  
                     expansion theorem 
 

1. Introduction  
 
In Part I [11] the multiple hybrid Laplace- z  transform was defined and its 

main properties were proved, including linearity, homothety, two time-delay 
theorems, translation, differentiation and difference of the original and 
differentiation of the image. Such a transformation is necessary for the study of 
the continuous-discrete multidimensional systems [4], [5], [6], [9], [10], which 
appear as models in many problems, for instance in the study of linear repetitive 
processes [2], [3], [12] or in the iterative learning control  synthesis [7]. 

This paper completes the study of the ),( mn -Hybrid Laplace Transform 
from [11] with the theorems given in Section 2 regarding integration and sum of 
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the original, integration of the image, convolution, product of originals, initial and 
final values. 

 Section 3 provides some methods and formulas for determining the 
original of a given ),( mn -hybrid Laplace transform. A generalized Mellin-Fourier 
type inversion formula is established and two other formulas are derived using 
respectively the Residue Theorem and multivariable Laurent series expansions. A 
generalized Expansion Theorem is also given. 

 
2. Multiple ),( mn -hybrid Laplace transform  
We denote by 〉〈n  the set },,2,1{ n… . 

Definition 2.1. A function CZR →× mnf :  is said to be a continuous-
discrete original function (or simply an  original) if f  has the following 
properties: 

(i) 0),,;,,( 11 =mn kkttf ……  if 0<it  or 0<jk  for some 〉〈∈ ni  or 
〉〈∈ mj . 

(ii) ),,;,,( 1 mkkf …… ⋅⋅  is piecewise smooth on n
+R  for any 

m
mkk +∈Z),,( 1 … . 

(iii) 0>∃ jM , 0≥σ fi , 〉〈∈ ni , 0>fjR , 〉〈∈ mj  such that 
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0>∀ it , 〉〈∈ ni , 0≥∀ jk , 〉〈∈ mj . 
Definition 2.2. For any original f , the function 
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is called the ),( mn -hybrid Laplace transform ( ),( mn -HLT) or the  image of f . 
Sometimes we shall use the notations =);( ktf  0),,;,,( 11 =mn kkttf ……  

and ),,;,,();( 11 mn zzssFzsF ……= . 
 
Definition 2.3. For 〉〈⊂=β mjj q},,{ 1 … , the β -sum of  the original 

function );( ktf  is the function 
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Theorem 2.4 (Integration and sum of the original). For any 
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Proof. Let us denote by );( ktg  the function ττ= β∫
α

dkfSktg
tD

);();(
,

. 

By Definition 2.3 0);( =ktg  if 0=jk  for some β∈j  or 0=it  for some α∈i . 

The )1,(β -difference of );( kfS τβ  (see [11, Definition 2.19])  is 
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 Theorem 2.5 (Integration of the image). If the following multiple 
improper integral converges, then  
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Proof. Let us denote by ),,;,,();( 11 mn zzssGzsG ……=  the function 
defined by the multiple improper integral in (2.5) and by );( ktg  its original. By 
deriving it, one obtains  
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 Theorem 2.6 (Convolution). For any original functions f  and  g ,  

                        );();()];)([(, zsGzsFktgfmn =∗L .                                      (2.6) 

Proof. Since the originals f  and g  are null if one of their arguments it  or 

ik  is negative, then the definition of the ),( mn -hybrid convolution [11, Definition 

2.3] can be written by replacing ∫ it
0

and ∑
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By changing the order of integration and of summation and then by the change of 
variables of integration iii ut τ=− , 〉〈∈ ni  and the change of the indices of 
summation jjj lk λ=− , 〉〈∈ mj  , we get 
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formula which becomes, since f  and g  are 0 for negative arguments: 
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where we used the following notations: ),,( 1 nqqq …= , ),,( 1 mζζ=ζ … , 
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 Proof. Let us denote ),,;,,();( 1111 mn kkssFksF ……=  the multiple 
Laplace transform (see [11, Definition 2.14])  
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where )];([);( , ktgzsG mnL=  and )];([);(1 ltglsG nL= . 
By Mellin-Fourier formula [1, §2 (25)], [8, Ch. III, §7.2 (10)] and its 
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By [11, Remark 2.9] the left hand member of (2.13) tends to 0 as 
∞→∞→ nss ,,1 … . We can write 
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and (2.12) results by taking the limit in (2.13) as ∞→is , 〉〈∈∀ ni  and ∞→jz , 
〉〈∈∀ mj .                                                 

                                                                                                                     □ 
 Theorem 2.9 (Final value). If the following limits exist, then  
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where L  and Z  are the usual (1-dimensional) Laplace and z  transformations. 
For 0→s , +→1z , the left hand member of (2.15) can be written as a series 
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whose sum can be expressed as the limit of the sequence of its partial sums; by 
reducing some terms we obtain 
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By the final value theorems for 1D Laplace and z -transformations we 
have )]0;([lim)0;(lim tfstf
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By taking the limit as ∞→s , +→1z  in (2.15) and by reducing these 
terms, one obtains (2.14).  

□ 
 
 

3. Methods for determining the original 

 
We consider the following problem: given a function 

),,;,,();( 11 mn zzssFzsF ……=  which is analytic on a domain )( fD  as in [15, 
(2.4)], determine an original function );( ktf  such that );()];([, zsFktfmn =L . 
Firstly we shall establish an inversion formula for the ),( mn -hybrid Laplace 
transform. 

 
Theorem 3.1. If );( ktf  is the original of );( zsF , then  
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where giia σ> , 〉〈∈∀ ni  and fjj Rr > , 〉〈∈∀ mj . 
 Proof. We shall define by induction the following 1D Laplace transforms 
and Z-transforms : 
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By replacing in (3.7) the recurrent Z -transforms one obtains the inversion 
formula (3.1). 

□ 
Remark 3.2. Under certain conditions imposed by Jordan's Lemma, the 

multiple complex integrals in (3.1) can be calculated using Residue Theorem. 
 
Theorem 3.3. The original of ),,;,,( 11 nn zzssF ……  is given by 
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where 0=z  indicates that the integrand is calculated at 0,,01 == mzz … . 

 Proof. If mz  is replaced by 1−
mz , (3.6) becomes 
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hence F̂  can be considered as the set of the coefficients of the Taylor series 
expansion of );( zsF  about 0=mz , and the usual formula for the Taylor series 

coefficients of  function f , namely 
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Similar formulas can be obtained by replacing jz  by 1−

jz , 〉−〈∈ 1mj  in formulas 
(3.4) and (3.5); finally we get 
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and (3.2) can be obtained by replacing F~  given by (3.9) in (3.7).     
                                                                                                                    □ 
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Now let us assume that the transform F  is separable with respect to 
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the conditions of Jordan's Lemma on a suitable domain and iF   has the singular 

points lis , , 〉〈∈ inl , ∗∈Nin  such that ili as <,Re , 〉〈∈ ni . By applying the 
Residue Theorem to the integrals in (3.8) we get: 
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 Let us denote by jδ , 〉〈∈ mj  the discrete impulse function 
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Another method for determining the original is given by the following 
expansion theorem: 

 
Theorem 3.5. If the image );( zsF  has the Laurent series expansion about 
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 Proof. By [11, Definitions 2.6 and 2.10] 
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By linearity, one obtains 
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                                                                                                         □ 

4. Conclusion 

In this paper and in [11] a complete theory of a multiple ),( mn -Hybrid 
Laplace transformation has been developed. In a subsequent paper its applications 
will be provided, including solutions of differential-difference and integral 
equations, as well as the frequency-domain representation of multidimensional 
hybrid control systems.  
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