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MULTIPLE (n,m)-HYBRID LAPLACE TRANSFORM

AND APPLICATIONS TO MULTIDIMENSIONAL HYBRID
SYSTEMS. PART II: DETERMINING THE ORIGINAL

Valeriu PREPELITA!, Tiberiu VASILACHE?

Acest articol completeaza studiul transformarii (n,m) - Laplace hibride din

[11] cu teoremele de integrare §i sumad a originalului, integrare a imaginii,
convolutie, produs al originalelor, valoare initiala si valoare finala.

Sunt prezentate metode de determinare a originalului. Se obtine o formuld de
inversiune de tip Mellin-Fourier si se dd o teoremd de dezvoltare generalizata.

This paper completes the study of the (n,m)-Hybrid Laplace Transform

from [11] with the theorems regarding integration and sum of the original,
integration of the image, convolution, product of originals, initial and final values.
Some methods and formulas for determining the original of a given

(n,m) - Hybrid Laplace Transform are provided. A generalized Mellin-Fourier type

inversion formula is established and two other formulas are derived using
respectively the Residue Theorem and multivariable Laurent series expansions. A
generalized Expansion Theorem is also given.

Keywords: Hybrid Laplace Transform, Mellin-Fourier type inversion formula,
expansion theorem

1. Introduction

In Part I [11] the multiple hybrid Laplace-z transform was defined and its
main properties were proved, including linearity, homothety, two time-delay
theorems, translation, differentiation and difference of the original and
differentiation of the image. Such a transformation is necessary for the study of
the continuous-discrete multidimensional systems [4], [5], [6], [9], [10], which
appear as models in many problems, for instance in the study of linear repetitive
processes [2], [3], [12] or in the iterative learning control synthesis [7].

This paper completes the study of the (n,m)-Hybrid Laplace Transform

from [11] with the theorems given in Section 2 regarding integration and sum of
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the original, integration of the image, convolution, product of originals, initial and
final values.

Section 3 provides some methods and formulas for determining the
original of a given (n,m)-hybrid Laplace transform. A generalized Mellin-Fourier

type inversion formula is established and two other formulas are derived using
respectively the Residue Theorem and multivariable Laurent series expansions. A
generalized Expansion Theorem is also given.

2. Multiple (n,m)-hybrid Laplace transform
We denote by (n) the set {1,2,...,n}.

Definition 2.1. A function f:R"xZ™ — C is said to be a continuous-
discrete original function (or simply an original) if f has the following
properties:

() f@,.t3kysek,)=0 if £, <0 or k; <0 for some ie(n) or
je(m).

()  fCoe-u3kqy..nky) is piecewise smooth on R!  for any
(kyy... k) e Z1.

(ii1) EIMj >0, 4 >0, ie(n), Rﬁ >0, je(m) such that

|f(tla---atn;kla--->km) | SMJ‘ eXP[quitiJHR;/ (21)
i=1 j=1

V;>0,ieln), Vk; 20, je(m).
Definition 2.2. For any original f, the function
F(8ies8,320002,) = [ o], /;)...kzof(tl,...,tn;k],...,km)- o)
ce TN g zlk‘ . -z,;k’" dt,...dt,
is called the (n,m)-hybrid Laplace transform ((n,m)-HLT) or the image of f .
Sometimes we shall use the notations f(t;k)= f(t,....t;k,....k,)=0
and F(8;2) = F (S-S5 2155 Zp) -

Definition 2.3. For B={ji,....j,} =(m), the B-sum of the original
function f(#;k) is the function
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0 if 3k,<0,jepB or Jk;<0,jep

S, f(tk) =17 Ful! 23
o/ 0 > X f(tkyl,)  otherwise, 23
1, =0 /‘/-q:0
~ = 1, if jep
where f(t;kB,ZB)=f(z‘1,...,tn;k1,...,km) with k; = k. if jeP
; .

For a ={i,....i,} =(n) and 1 ={1,....1,,} € (R™)" with t;, >0, Viea we
denote by D, , the cartesian product D ; :H [0,#;] and by ID fdr the
iea !
multiple integral J.é“ ...Ié’?’ f (IT,...,rz;kl,...,km)drl-l ...dr,-p where
N {Ti if iea

ti if ie o.

Theorem 2.4 (Integration and sum of the original). For any
= {il,.nip} () and B=1{ji...., j,} < (m),

Ln,m{j% Sp f(r;k)dr}:(l_[ SilJ[H (z j—l)I}F(s;z). (2.4)

ica jeB
Proof. Let us denote by g(#;k) the function g(#;k)= -[D Spf (v k)dr.
oLt

By Definition 2.3 g(#;k)=0 if k; =0 for some jef or 4 = 0 for some i€ a.

The (B,)-difference of Sp f(t;k) (see [11, Definition 2.19]) is

AyS, f(r;k)= f(z;k), hence A,g(t;k) =J‘Dw f(r;k)dr . By deriving with
8P

respect til,...,tip we obtain WA »&t;k)=f(t;k). By applying the

operator L, ,, and by [11, Theorem 2.21] this equality becomes

(H s; J{H (z jl)JG(s;z)—F(s;z)
iea JjeB

hence
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Ln,m[g(r;k)]=G<s;z>=[H s{lJ 1 G- |Fs).
iea jeB
i
Theorem 2.5 (Integration of the image). If the following multiple
improper integral converges, then

Ft ot ik k, }_

tl"'tnkl"'km (2'5)

=[] F(Tl""q’r”;é“'”’CW)drl...drnd(;l...d(;m.
1 Sy ¥y Z, 1... m

Proof. Let us denote by G(s;z)=G(sy,...,8,;21,.-.,2,,) the function
defined by the multiple improper integral in (2.5) and by g(¢#;k) its original. By
deriving it, one obtains

0" " G(S)yen sS85 215 ns2,,) _ -1y
0s,--+0s,0z, -+ 0z, Z,oz

F(s).008,525..0,2,,)

m

By applying [11, Th. 2.22] with p=n, g=m, y, =---=y, =1, b, =---=b, =1

l/)

we get
nem n m m an+mG(S;Z)
{( ) (H j(H Jg( )] (H Jaaaa
=(=1)""F(s;2)=L,,[(=D"" f(&K)].
Therefore gt:k)= IAGL) and (2.5 results from

it

L, [8(t:K)]=G(s;2).
Theorem 2.6 (Convolution). For any original functions f and g,
Lyl (f *g)6:6)] = F(s5;2)G(s32). (2.6)

Proof. Since the originals f and g are null if one of their arguments #; or

k. is negative, then the definition of the (n,m)-hybrid convolution [11, Definition

k; o
2.3] can be written by replacing jg’ and Z by J.(:o and Z . Then
1;=0 1;=0
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nm (f*g)(tlﬂ ) n’ "'-5km)]:
=j:...j:Z...Z(j:...j:i..if(ul,...,un;ll,...,zm)-

gt —uy,..ot, —u sk =1, k, —1 )du, ...duﬂ)exp(—HsitiJ(Hij/ ]dtl .dt.
i=1 j=1

By changing the order of integration and of summation and then by the change of
variables of integration # —u; =7;, ie€(n) and the change of the indices of

summation k; —/; =i ;,je(m) , we get

s m[(f*g)(t;k)]=j:...j0°°i..if(ul,...,un;zl,...,lm)-

L Yoy exp( Zs(r +M)J(H (ﬂf”n).

"=l =1,
gt T3 A A,)dT L dT),
formula which becomes, since f and g are 0 for negative arguments:

£,,[(f * 2)t:k)] (J jz zﬂul, el
exp( Zslu,j(nz jdu1 .du JU I Z Zg(rl, T A Ay )
-exp(—ian}(ﬁz/’jdq dr, = £, [f (0L, [gt:h)].

m
Theorem 2.7 (Product of originals). For any original functions f, g and

G5 <a;<Res;—o

|Z.|
; J
gi> ie{ny, Rp<rj<—— we have

1 J-a1+ioo J~a,, +ioo
( )n+m a, —io a, —io

‘ z|dd
(§ .. f‘ F(q;¢ )G(S - %2] ?]d"

where we used the following notations: g =(qy,...,q,), §=(Cy,-...C;,) s

SR k)] =

.7)
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I & 7 SRR S,
H( J’ c s q q1 qn-

Proof. Let us denote Fi(s;k)=F(s],....8,:k,....k,) the multiple
Laplace transform (see [11, Definition 2.14])

R(s;k)=L,[f(60]= L)L f (6:k)] =
= [T S etk expl Y sttt
Then (2.2) can be rewritten as
F(s;z)= Z ZF(S k)Hz (2.8)
k=0
By [11, Theorem 2.16] and (2.8) one obtalns

Ln,m|:exp(z qlt’j(z é’/lj jg(tlﬁ---atn;lla---alm):l =
i=1 Jj=1

:G(Sl_ql""’sn_qn;zlé/lil"" z é/);l): (29)

:Z”'ZGI(SI — G- qn’ 1 Zm)l_[(z é, )
=0 ,=0

where G(s:2) = £ plg(t:k)] and Gi(5:D) = L,[g(:D)].
By Mellin-Fourier formula [1, §2 (25)], [8, Ch. III, §7.2 (10)] and its
generalization for multiple Laplace transform, we get for ¢;>c; and

b,->0f+0 ie(n)

gi>

f(6k)=

(2) j F((],k)exp(zq,,jd'q1 .dg, (2.10)

and

by +io b, +iw &
exp(z q: ljg(t k)= (2 o S J.bn o G, (s—q;k) exp(z; sitijcls1 ...ds,.

. a+io . .
We shall use the notations J. o and §\Q\ . for the multiple integrals
a—i =

ay +io a, +io . <
J- " J. _ and f‘g _ respectively and exp(z siti}:est ’

a)—1o a, —iw [S11=n -
i=

Zlk ! "'Z,]f{” =2k Then, the multiplication of (2.10) by g(¢;k) and the generalized

Mellin-Fourier formula give
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[ F(g:ke g(t.k)dg =

a—ioo

f(R)gtk) =—o
27i)
. .
=L [ R —— [ Gy(s—qieds |dg =
' (2mi)" Tbi*

boi .
=L " ot L[ B (k)G (s - gskda |ds
mi)" b= | (2mi)" T
Again, by the generalized Mellin-Fourier formula we obtain
1 a—+ioo
Llf e l=——[""" F(g:0)Gi(s—g:k)dg (2.1
(2mi)" a7
By employing (2.8) and (2.10) one obtains
1 dg _

Gy e T @ QG(S q’éJ c

1 S ag
- (q:k G(s—ql
@)’ (Z (0 J(Z (o )@ c]

00 o0 1
F(q:k)G(s—q; 1)z ——
ZZ : 1 (271i)
—k.+l. -1

=0
smce§ 77dg; equals 0if —k;+1;-1+#0, i.e. if [; #k; and it equals

ﬁz‘:r e = Z F(q;:k)G,(s—q; k)z ™
2mi if [; = kj, Vj e (m) . Then (2.10) implies

Lyl F(EOZGI] =Y £, (g @)™ =
k=0

1 Iaﬁ@(z F(q;:k)Gi(s—q;k)z qu:

:(2ni)" a-io k=0
1 a+io dc
- F(¢;0)G| s—q;
Gy i (ﬁzr (4:0) [s 4 Cj QJ q

We shall use the notation lim F(s;z) for
§—>0

lim...lim F(s,,...,S,;2;,...,2,,)

Sl—)OO Sn—)w

and a similar notation for z — 0.



24 Valeriu Prepelita, Tiberiu Vasilache

Let E' be the family of the unvoid subsets € ={g|,...,g;} of (n), €= (n).
Theorem 2.8 (Initial value). For s; € C with Args; € (—ggj Vie(n)
£(0+,...,040,.....0) = lim lim((=1)[s, ---5, ]F (s;.2) +
’ o) o (2.12)
+ > DO s, g | =———— (070
VT | 5 100
Proof. By [11, Definition 2.14 and Theorem 2.17]

an
L""m{ét, o f(t;k)} =s,--8,F(s;2)+

(2.13)

o' . o N
Wf <°wk>]+< 1)z, /(07 )

€

oz e[ s Jar

eekE’ jee

By [11, Remark 2.9] the left hand member of (2.13) tends to 0 as
S| —>0,...,5, —> 0. We can write

2L/ (O0+:0)]= F00) + Y H (2)

where H ;(z)=H ;(z,...,z,) are analytic functions on the domain |z;[> Ry,
Jj €(m) ; therefore lim Z [ f(0+;k)]= f(0+;0). Similarly,

ot -0t ot, -0t
and (2.12) results by taking the limit in (2.13) as s; >0, Vie(n) and z; - o,
Vje(m).

) o ) "
lim £, {a_ f (Ol;k)} = L‘ijfn'”[a— £(0; ;O)}

m
Theorem 2.9 (Final value). If the following limits exist, then

lim...lim klim ...klim f(t:k)= lirré...lim0 lirrll lirrll §;o08,(z, =D-+(z,, =) F(s;2)
1y —>© t, >0k —>0 m—>® g s, >0z =1+ z, =1+
(2.14)

Proof. By [11, Theorem 2.18, formula (2.15) with y = =1] we get
L, {% Af(t; k)} =s(z—-1DF(s,z)—szL[ f(¢,0)] -

—(z=DZ[f(0+;k)]+ 2/ (0+,0)
where £ and Z are the usual (1-dimensional) Laplace and z transformations.
For s >0, z—>1+, the left hand member of (2.15) can be written as a series

(2.15)
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whose sum can be expressed as the limit of the sequence of its partial sums; by
reducing some terms we obtain

lim lim £, 1[ A(t; k)} ==lim llmI Z( (t,k+ 1)— o (t k)j Rt =

50 z>1+ 50 z>1+

_zj( (tk+1)——(t k)j dt =lm[(f(t.) - f(1.0)]; +

@)~ FD)] ++ (fk =D~ fk -2 +
R - £k -0 1= lim{ b, - O )=
— limim /(0.) - lim £ (0+,&) ~lim /(0.0) + f(0+.0).

By the final value theorems for 1D Laplace and z -transformations we
have lim f(#;0)= lim s£[ f(¢;0)] and lir]n(z -D)Z[0+; k] = ll{imf(0+;k) .

t—>0 §—>0
By taking the limit as s >, z—>1+ in (2.15) and by reducing these
terms, one obtains (2.14).
i

3. Methods for determining the original

We  consider the following problem: given a  function
F(s;2)=F(s],....8,5215---,Z,) Which is analytic on a domain D(f) as in [15,
(2.4)], determine an original function f(#;k) such that £, ,[f(#;k)]=F(s;z).
Firstly we shall establish an inversion formula for the (n,m)-hybrid Laplace
transform.

Theorem 3.1. Iff(t;k) is the original of F'(s;z), then

ay+io  a,+io

f(tl,...,tn;kl,m,km):( ntm aJ j ﬁz,\ r1§\z I=r,

11111

(3.1)
L (SprerrS,3 21 2, ) 20 e 2 ...dzn)exp(Zs,.tijdsl ...ds,
i=l1

where a; >0y, Vieln) and r,>R,;, V je{m).

Proof. We shall define by induction the following 1D Laplace transforms
and Z-transforms :
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Fty,..ootyikys.. s kys81) = LLE (s by stk K )1(51) =
o0
= [, S(ttastyihisen k) exp(=sit)dny

ﬁ(ti+l:"'aln;kl:"'akm;sla"'>sl') =
:L[F(fi,ti+1,...,tn;kl,...,km;Sl,...,Si_l)](Sl') = (33)

(3.2)

00 ~
=j0 Ftisti 10tk K310 Si_) Xp(=sit; )dlt; i € (1)

Fky,.. kSt sSpiz)) = ZIF (k.o ki Sys - 8,)1(21) =

L~ _ 34
= z F(kyse ks s15e80)7 k (34)
k=0
ﬁ(kj“,...,km;sl,...,sn;zl,...,zj)=
= ZIF (koK itk St s Sy 200 2 DI(z) = (3.5)
o k.
= D Flkjokjutseeos ks Stoeossps 2150222, i€ (m).
k;=0
Obviously
F(S15eees8p321ee00Zi) = ZLF (kpyy3 S1s e 805215 o5 Zipe)D1(Z0) =
o0
. —k (3.6)
= z F(kypsStsesSp3 215005 Zm—1)2] "
k, =0
By using the formula ¢, =L§ L)ldz for the coefficients of a
T T (Z_a)n+
o0
Laurent series f(z)= Z ¢,(z—a)", by the Mellin-Fourier formula applied to
n=—oo

the Laplace transforms (3.3) and (3.2) and by taking for the closed contour I' the

a, —i

circles | z | |= rj,we obtain from the Laurent series (3.6) and (3.5)
1 ay +ion a,+io ~
Fltstibnk) = o o Flhkyis.s,):

(3.7)

i=1

. exp(z Sl.tljalsl ...ds,.
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By replacing in (3.7) the recurrent Z -transforms one obtains the inversion
formula (3.1).

m
Remark 3.2. Under certain conditions imposed by Jordan's Lemma, the
multiple complex integrals in (3.1) can be calculated using Residue Theorem.

Theorem 3.3. The original of F(sy,...,8,;2],...,2,) is given by
f(t,. ot sk, k)=

8k‘ +-+k,

1 aj +ioo a, +io
= - — 3.8
2m)" k! k) J.a] —io J.a” —io0 azlkl ,_,azr/;,,, (3-8)

0 CRTOIT- - | I exp(Zsitijdsl ...ds,
i=1
where z =0 indicates that the integrand is calculated at z; =0,...,z,, =0.
Proof. If z,, is replaced by z,;l , (3.6) becomes

. -1
F(Sl,...,Sn,Zl,...,Zm_l,Zm )=
0

A k
= z F(kyy3S15e 58052150005 Zm—1)71 " »
k, =0

hence F can be considered as the set of the coefficients of the Taylor series
expansion of F(s;z) about z,, =0, and the usual formula for the Taylor series

. . M) .
coefficients of function f, namely ¢, = . gives
n!
no ' 1 ofn ) -1
F(ky; 815 os8p3 215 Zmm-1) =T F(852150 052152 )|z, =0 -
m- ame

Similar formulas can be obtained by replacing z; by z}l , j€{m—1) in formulas
(3.4) and (3.5); finally we get
F(kyy..k,;8,,...,8,) =
1 ol . . (3.9)
= F(Syees8,520 5eesZ, )|
k\ok ! zh ..ozt (s : o

and (3.2) can be obtained by replacing F given by (3.9) in (3.7).
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Now let us assume that the transform F is separable with respect to

n
S1seees Sy, thatis F(s1,...,8,521,...,2,) =H F(s;321,...,2,,), where each F; fulfil
i=1
the conditions of Jordan's Lemma on a suitable domain and F; has the singular
points s;;, [ e€(m;), n;je N* such that Res;; <a;, ie(n). By applying the

Residue Theorem to the integrals in (3.8) we get:

Corollary 3.4. If F(sy,...,8,52],.--,2,) 1is separable with respect to

81,...,8,, then its original is

1 n n;
f(tl,...,zn;kl,...,km):_Z Z
kl--kVT S
akl ++k, .,
| —1
- T€S WF(SI,...,Sn,ZI seresZy, )exp ZSJ,- ,Si |
Z1 e Zm - »

Let us denote by &;, je(m) the discrete impulse function
siky=t- KT g by 8, k= (hpsky) e 2™ the funct
j( j)_ 0 if kj;tO an y 0o(k), =(k1,....k,) e the function
sty=]] 6,(k,).

Jj=1

Another method for determining the original is given by the following
expansion theorem:

Theorem 3.5. If the image F(s;z) has the Laurent series expansion about

infinity
F(s;2)= z Z aOLBs_OLZ_[3
o=l B>0
then its original has the Taylor series expansion

. _ aaﬁ a-1 _
f(tk)= ;;(0{1 D, —1)!t o(k—p)

where a.=(ay,...,a,)eN", B=(B,...,B,,) e N", Ao =dg,. .., BB, €C

- _ 0y O
s =8 Sp

a; 21, Vie(n) and B>0 means B,20, Vje(m).
Proof. By [11, Definitions 2.6 and 2.10]

n, Z_Bzzl_ﬁl-nz,zﬁm, ta_lztal_l---t,?”_l oa=1 means
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£, 118 P =( ([ 1 e ) [ et )

((25 (k= B)z")+( i‘ﬁm(km =Bz, )j =

k=0

=((a, =Dls; ™) (@, = Dls, ")z, P evez, P

m

By linearity, one obtains

dop a-lgr _ayi—
1= X 3 o oy el 500

= Z Z aOLBs_OLz_[3 = F(s;2).

4. Conclusion

In this paper and in [11] a complete theory of a multiple (n,m)-Hybrid

Laplace transformation has been developed. In a subsequent paper its applications
will be provided, including solutions of differential-difference and integral
equations, as well as the frequency-domain representation of multidimensional
hybrid control systems.
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