

MULTIPLE (n,m) -HYBRID LAPLACE TRANSFORM AND APPLICATIONS TO MULTIDIMENSIONAL HYBRID SYSTEMS. PART II: DETERMINING THE ORIGINAL

Valeriu PREPELIȚĂ¹, Tiberiu VASILACHE²

Acet articol completează studiul transformării (n,m) - Laplace hibride din [11] cu teoremele de integrare și sumă a originalului, integrare a imaginii, conoluție, produs al originalelor, valoare inițială și valoare finală.

Sunt prezentate metode de determinare a originalului. Se obține o formulă de inversiune de tip Mellin-Fourier și se dă o teoremă de dezvoltare generalizată.

This paper completes the study of the (n,m) -Hybrid Laplace Transform from [11] with the theorems regarding integration and sum of the original, integration of the image, convolution, product of originals, initial and final values.

Some methods and formulas for determining the original of a given (n,m) - Hybrid Laplace Transform are provided. A generalized Mellin-Fourier type inversion formula is established and two other formulas are derived using respectively the Residue Theorem and multivariable Laurent series expansions. A generalized Expansion Theorem is also given.

Keywords: Hybrid Laplace Transform, Mellin-Fourier type inversion formula, expansion theorem

1. Introduction

In Part I [11] the multiple hybrid Laplace- z transform was defined and its main properties were proved, including linearity, homothety, two time-delay theorems, translation, differentiation and difference of the original and differentiation of the image. Such a transformation is necessary for the study of the continuous-discrete multidimensional systems [4], [5], [6], [9], [10], which appear as models in many problems, for instance in the study of linear repetitive processes [2], [3], [12] or in the iterative learning control synthesis [7].

This paper completes the study of the (n,m) -Hybrid Laplace Transform from [11] with the theorems given in Section 2 regarding integration and sum of

¹ Prof., Mathematics and Informatics Department I, University POLITEHNICA of Bucharest, Romania, e-mail: vprepelita@mathem.pub.ro

² Lecturer, Mathematics and Informatics Department I, University POLITEHNICA of Bucharest, Romania

the original, integration of the image, convolution, product of originals, initial and final values.

Section 3 provides some methods and formulas for determining the original of a given (n, m) -hybrid Laplace transform. A generalized Mellin-Fourier type inversion formula is established and two other formulas are derived using respectively the Residue Theorem and multivariable Laurent series expansions. A generalized Expansion Theorem is also given.

2. Multiple (n, m) -hybrid Laplace transform

We denote by $\langle n \rangle$ the set $\{1, 2, \dots, n\}$.

Definition 2.1. A function $f: \mathbf{R}^n \times \mathbf{Z}^m \rightarrow \mathbf{C}$ is said to be a *continuous-discrete original function* (or simply an *original*) if f has the following properties:

- (i) $f(t_1, \dots, t_n; k_1, \dots, k_m) = 0$ if $t_i < 0$ or $k_j < 0$ for some $i \in \langle n \rangle$ or $j \in \langle m \rangle$.
- (ii) $f(\cdot, \dots, \cdot; k_1, \dots, k_m)$ is piecewise smooth on \mathbf{R}_+^n for any $(k_1, \dots, k_m) \in \mathbf{Z}_+^m$.
- (iii) $\exists M_j > 0, \sigma_{fj} \geq 0, i \in \langle n \rangle, R_{fj} > 0, j \in \langle m \rangle$ such that

$$|f(t_1, \dots, t_n; k_1, \dots, k_m)| \leq M_f \exp\left(\sum_{i=1}^n \sigma_{fi} t_i\right) \prod_{j=1}^m R_{fj}^{k_j} \quad (2.1)$$

$$\forall t_i > 0, i \in \langle n \rangle, \forall k_j \geq 0, j \in \langle m \rangle.$$

Definition 2.2. For any original f , the function

$$F(s_1, \dots, s_n; z_1, \dots, z_m) = \int_0^\infty \dots \int_0^\infty \sum_{k_1=0}^\infty \dots \sum_{k_m=0}^\infty f(t_1, \dots, t_n; k_1, \dots, k_m) \cdot \cdot e^{-s_1 t_1} \dots e^{-s_n t_n} z_1^{k_1} \dots z_m^{k_m} dt_1 \dots dt_n \quad (2.2)$$

is called the (n, m) -hybrid Laplace transform ((n, m)-HLT) or the *image* of f .

Sometimes we shall use the notations $f(t; k) = f(t_1, \dots, t_n; k_1, \dots, k_m) = 0$ and $F(s; z) = F(s_1, \dots, s_n; z_1, \dots, z_m)$.

Definition 2.3. For $\beta = \{j_1, \dots, j_q\} \subset \langle m \rangle$, the β -sum of the original function $f(t; k)$ is the function

$$S_\beta f(t; k) = \begin{cases} 0 & \text{if } \exists k_j \leq 0, j \in \beta \text{ or } \exists k_j < 0, j \in \bar{\beta} \\ \sum_{l_{j_1}=0}^{k_{j_1}-1} \dots \sum_{l_{j_q}=0}^{k_{j_q}-1} f(t; k_{\bar{\beta}}, l_\beta) & \text{otherwise,} \end{cases} \quad (2.3)$$

where $f(t; k_{\bar{\beta}}, l_\beta) = f(t_1, \dots, t_n; \tilde{k}_1, \dots, \tilde{k}_m)$ with $\tilde{k}_j = \begin{cases} l_j & \text{if } j \in \beta \\ k_j & \text{if } j \in \bar{\beta}. \end{cases}$

For $\alpha = \{i_1, \dots, i_p\} \subset \langle n \rangle$ and $t = \{t_1, \dots, t_n\} \in (\mathbf{R}^+)^n$ with $t_i > 0, \forall i \in \alpha$ we denote by $D_{\alpha, t}$ the cartesian product $D_{\alpha, t} = \prod_{i \in \alpha} [0, t_i]$ and by $\int_{D_{\alpha, t}} f d\tau$ the multiple integral $\int_0^{t_{i_1}} \dots \int_0^{t_{i_p}} f(\tau_1^*, \dots, \tau_n^*; k_1, \dots, k_m) d\tau_{i_1} \dots d\tau_{i_p}$ where

$$\tau_i^* = \begin{cases} \tau_i & \text{if } i \in \alpha \\ t_i & \text{if } i \in \bar{\alpha}. \end{cases}$$

Theorem 2.4 (Integration and sum of the original). For any $\alpha = \{i_1, \dots, i_p\} \subset \langle n \rangle$ and $\beta = \{j_1, \dots, j_q\} \subset \langle m \rangle$,

$$\mathcal{L}_{n, m} \left[\int_{D_{\alpha, t}} S_\beta f(\tau; k) d\tau \right] = \left(\prod_{i \in \alpha} s_i^{-1} \right) \left(\prod_{j \in \beta} (z_j - 1)^{-1} \right) F(s; z). \quad (2.4)$$

Proof. Let us denote by $g(t; k)$ the function $g(t; k) = \int_{D_{\alpha, t}} S_\beta f(\tau; k) d\tau$.

By Definition 2.3 $g(t; k) = 0$ if $k_j = 0$ for some $j \in \beta$ or $t_i = 0$ for some $i \in \alpha$. The $(\beta, 1)$ -difference of $S_\beta f(\tau; k)$ (see [11, Definition 2.19]) is $\Delta_\beta S_\beta f(\tau; k) = f(\tau; k)$, hence $\Delta_\beta g(t; k) = \int_{D_{\alpha, t}} f(\tau; k) d\tau$. By deriving with respect t_{i_1}, \dots, t_{i_p} we obtain $\frac{\partial^p}{\partial t_{i_1} \dots \partial t_{i_p}} \Delta_\beta g(t; k) = f(t; k)$. By applying the operator $\mathcal{L}_{n, m}$ and by [11, Theorem 2.21] this equality becomes

$$\left(\prod_{i \in \alpha} s_i \right) \left(\prod_{j \in \beta} (z_j - 1) \right) G(s; z) = F(s; z)$$

hence

$$\mathcal{L}_{n,m}[g(t;k)] = G(s;z) = \left(\prod_{i \in \alpha} s_i^{-1} \right) \left(\prod_{j \in \beta} (z_j - 1)^{-1} \right) F(s;z).$$

□

Theorem 2.5 (Integration of the image). *If the following multiple improper integral converges, then*

$$\begin{aligned} \mathcal{L}_{n,m} \left[\frac{f(t_1, \dots, t_n; k_1, \dots, k_m)}{t_1 \cdots t_n k_1 \cdots k_m} \right] &= \\ &= \int_{s_1}^{\infty} \cdots \int_{s_n}^{\infty} \int_{z_1}^{\infty} \cdots \int_{z_m}^{\infty} \frac{F(\tau_1, \dots, \tau_n; \zeta_1, \dots, \zeta_m)}{\zeta_1 \cdots \zeta_m} d\tau_1 \cdots d\tau_n d\zeta_1 \cdots d\zeta_m. \end{aligned} \quad (2.5)$$

Proof. Let us denote by $G(s;z) = G(s_1, \dots, s_n; z_1, \dots, z_m)$ the function defined by the multiple improper integral in (2.5) and by $g(t;k)$ its original. By deriving it, one obtains

$$\frac{\partial^{n+m} G(s_1, \dots, s_n; z_1, \dots, z_m)}{\partial s_1 \cdots \partial s_n \partial z_1 \cdots \partial z_m} = (-1)^{n+m} \frac{F(s_1, \dots, s_n; z_1, \dots, z_m)}{z_1 \cdots z_m}.$$

By applying [11, Th. 2.22] with $p = n$, $q = m$, $\gamma_{i_1} = \dots = \gamma_{i_n} = 1$, $b_{j_1} = \dots = b_{j_m} = 1$ we get

$$\begin{aligned} \mathcal{L}_{n,m} \left[(-1)^{n+m} \left(\prod_{i=1}^n t_i \right) \left(\prod_{j=1}^m k_j \right) g(t;k) \right] &= \left(\prod_{j=1}^m z_j \right) \frac{\partial^{n+m} G(s;z)}{\partial s_1 \cdots \partial s_n \partial z_1 \cdots \partial z_m} = \\ &= (-1)^{n+m} F(s;z) = \mathcal{L}_{n,m}[(-1)^{n+m} f(t;k)]. \end{aligned}$$

Therefore $g(t;k) = \frac{f(t;k)}{\left(\prod_{i=1}^n t_i \right) \left(\prod_{j=1}^m k_j \right)}$ and (2.5) results from

$$\mathcal{L}_{n,m}[g(t;k)] = G(s;z).$$

□

Theorem 2.6 (Convolution). *For any original functions f and g ,*

$$\mathcal{L}_{n,m}[(f * g)(t;k)] = F(s;z)G(s;z). \quad (2.6)$$

Proof. Since the originals f and g are null if one of their arguments t_i or k_i is negative, then the definition of the (n,m) -hybrid convolution [11, Definition 2.3] can be written by replacing $\int_0^{t_i}$ and $\sum_{l_j=0}^{k_j}$ by \int_0^{∞} and $\sum_{l_j=0}^{\infty}$. Then

$$\mathcal{L}_{n,m}[(f * g)(t;k)] = \int_0^{\infty} \cdots \int_0^{\infty} \int_0^{\infty} \cdots \int_0^{\infty} f(t_1, \dots, t_n; k_1, \dots, k_m) g(t_1, \dots, t_n; k_1, \dots, k_m) d\tau_1 \cdots d\tau_n d\zeta_1 \cdots d\zeta_m.$$

$$\begin{aligned}
\mathcal{L}_{n,m}[(f * g)(t_1, \dots, t_n; k_1, \dots, k_m)] &= \\
&= \int_0^\infty \dots \int_0^\infty \sum_{k_1=0}^\infty \dots \sum_{k_m=0}^\infty \left(\int_0^\infty \dots \int_0^\infty \sum_{l_1=0}^\infty \dots \sum_{l_m=0}^\infty f(u_1, \dots, u_n; l_1, \dots, l_m) \cdot \right. \\
&\quad \cdot g(t_1 - u_1, \dots, t_n - u_n; k_1 - l_1, \dots, k_m - l_m) du_1 \dots du_n \left. \exp \left(- \prod_{i=1}^n s_i t_i \right) \left(\prod_{j=1}^m z_j^{-k_j} \right) dt_1 \dots dt_n \right).
\end{aligned}$$

By changing the order of integration and of summation and then by the change of variables of integration $t_i - u_i = \tau_i$, $i \in \langle n \rangle$ and the change of the indices of summation $k_j - l_j = \lambda_j$, $j \in \langle m \rangle$, we get

$$\begin{aligned}
\mathcal{L}_{n,m}[(f * g)(t; k)] &= \int_0^\infty \dots \int_0^\infty \sum_{l_1=0}^\infty \dots \sum_{l_m=0}^\infty f(u_1, \dots, u_n; l_1, \dots, l_m) \cdot \\
&\quad \cdot \left(\int_{-u_1}^\infty \dots \int_{-u_n}^\infty \sum_{\lambda_1=-l_1}^\infty \dots \sum_{\lambda_m=-l_m}^\infty \exp \left(- \sum_{i=1}^n s_i (\tau_i + u_i) \right) \left(\prod_{j=1}^m z_j^{-(\lambda_j + l_j)} \right) \right. \\
&\quad \cdot g(\tau_1, \dots, \tau_n; \lambda_1, \dots, \lambda_m) d\tau_1 \dots d\tau_n,
\end{aligned}$$

formula which becomes, since f and g are 0 for negative arguments:

$$\begin{aligned}
\mathcal{L}_{n,m}[(f * g)(t; k)] &= \left(\int_0^\infty \dots \int_0^\infty \sum_{l_1=0}^\infty \dots \sum_{l_m=0}^\infty f(u_1, \dots, u_n; l_1, \dots, l_m) \cdot \right. \\
&\quad \cdot \exp \left(- \sum_{i=1}^n s_i u_i \right) \left(\prod_{j=1}^m z_j^{-l_j} \right) du_1 \dots du_n \left(\int_0^\infty \dots \int_0^\infty \sum_{\lambda_1=0}^\infty \dots \sum_{\lambda_m=0}^\infty g(\tau_1, \dots, \tau_n; \lambda_1, \dots, \lambda_m) \cdot \right. \\
&\quad \cdot \exp \left(- \sum_{i=1}^n s_i \tau_i \right) \left(\prod_{j=1}^m z_j^{-\lambda_j} \right) d\tau_1 \dots d\tau_n = \mathcal{L}_{n,m}[f(t; k)] \mathcal{L}_{n,m}[g(t; k)].
\end{aligned}$$

□

Theorem 2.7 (Product of originals). *For any original functions f , g and*

$\sigma_{f_i} < a_i < \operatorname{Re} s_i - \sigma_{g_i}$, $i \in \langle n \rangle$, $R_{fj} < r_j < \frac{|z_j|}{R_{gj}}$ we have

$$\begin{aligned}
\mathcal{L}_{n,m}[f(t; k)g(t; k)] &= \frac{1}{(2\pi i)^{n+m}} \int_{a_1-i\infty}^{a_1+i\infty} \dots \int_{a_n-i\infty}^{a_n+i\infty} \\
&\quad \left(\oint_{|z_1|=r_1} \dots \oint_{|z_m|=r_m} F(q; \zeta) G \left(s - q; \frac{z}{\zeta} \right) \frac{d\zeta}{\zeta} \right) dq \tag{2.7}
\end{aligned}$$

where we used the following notations: $q = (q_1, \dots, q_n)$, $\zeta = (\zeta_1, \dots, \zeta_m)$,

$$\frac{z}{\zeta} = \prod_{j=1}^m \left(\frac{z_j}{\zeta_j} \right), \quad \frac{d\zeta}{\zeta} = \frac{d\zeta_1 \dots d\zeta_m}{\zeta_1 \dots \zeta_m}, \quad dq = dq_1 \dots dq_n.$$

Proof. Let us denote $F_1(s; k) = F_1(s_1, \dots, s_n; k_1, \dots, k_m)$ the multiple Laplace transform (see [11, Definition 2.14])

$$\begin{aligned} F_1(s; k) &= \mathcal{L}_n[f(t; k)] = \mathcal{L}_{n,m}^{(n), \phi}[f(t; k)] = \\ &= \int_0^\infty \dots \int_0^\infty f(t_1, \dots, t_n; k_1, \dots, k_m) \exp\left(-\sum s_i t_i\right) dt_1 \dots dt_n. \end{aligned}$$

Then (2.2) can be rewritten as

$$F(s; z) = \sum_{k_1=0}^\infty \dots \sum_{k_m=0}^\infty F_1(s; k) \prod_{j=1}^m z_j^{-k_j} \quad (2.8)$$

By [11, Theorem 2.16] and (2.8) one obtains

$$\begin{aligned} \mathcal{L}_{n,m} \left[\exp\left(\sum_{i=1}^n q_i t_i\right) \left(\sum_{j=1}^m \zeta_j^{l_j} \right) g(t_1, \dots, t_n; l_1, \dots, l_m) \right] &= \\ &= G(s_1 - q_1, \dots, s_n - q_n; z_1 \zeta_1^{-1}, \dots, z_m \zeta_m^{-1}) = \\ &= \sum_{l_1=0}^\infty \dots \sum_{l_m=0}^\infty G_1(s_1 - q_1, \dots, s_n - q_n; l_1, \dots, l_m) \prod_{j=1}^m (z_j \zeta_j^{-1})^{l_j} \end{aligned} \quad (2.9)$$

where $G(s; z) = \mathcal{L}_{n,m}[g(t; k)]$ and $G_1(s; l) = \mathcal{L}_n[g(t; l)]$.

By Mellin-Fourier formula [1, §2 (25)], [8, Ch. III, §7.2 (10)] and its generalization for multiple Laplace transform, we get for $a_i > \sigma_{f_i}$ and $b_i > \sigma_{f_i} + \sigma_{g_i}$, $i \in \langle n \rangle$

$$f(t; k) = \frac{1}{(2\pi)^n} \int_{a_1-i\infty}^{a_1+i\infty} \dots \int_{a_n-i\infty}^{a_n+i\infty} F_1(q; k) \exp\left(\sum_{i=1}^n q_i t_i\right) dq_1 \dots dq_n \quad (2.10)$$

and

$$\exp\left(\sum_{i=1}^n q_i t_i\right) g(t; k) = \frac{1}{(2\pi)^n} \int_{b_1-i\infty}^{b_1+i\infty} \dots \int_{b_n-i\infty}^{b_n+i\infty} G_1(s - q; k) \exp\left(\sum_{i=1}^n s_i t_i\right) ds_1 \dots ds_n.$$

We shall use the notations $\int_{a-i\infty}^{a+i\infty}$ and $\oint_{|\zeta|=r}$ for the multiple integrals

$$\int_{a_1-i\infty}^{a_1+i\infty} \dots \int_{a_n-i\infty}^{a_n+i\infty} \quad \text{and} \quad \oint_{|\zeta_1|=r_1} \dots \oint_{|\zeta_m|=r_m} \quad \text{respectively} \quad \text{and} \quad \exp\left(\sum_{i=1}^n s_i t_i\right) = e^{st},$$

$z_1^{k_1} \dots z_m^{k_m} = z^k$. Then, the multiplication of (2.10) by $g(t; k)$ and the generalized Mellin-Fourier formula give

$$\begin{aligned}
f(t; k)g(t; k) &= \frac{1}{(2\pi i)^n} \int_{a-i\infty}^{a+i\infty} F_1(q; k) e^{qt} g(t, k) dq = \\
&= \frac{1}{(2\pi i)^n} \int_{a-i\infty}^{a+i\infty} F_1(q; k) \left(\frac{1}{(2\pi i)^n} \int_{b-i\infty}^{b+i\infty} G_1(s-q; k) e^{st} ds \right) dq = \\
&= \frac{1}{(2\pi i)^n} \int_{b-i\infty}^{b+i\infty} e^{st} \left(\frac{1}{(2\pi i)^n} \int_{a-i\infty}^{a+i\infty} F_1(q; k) G_1(s-q; k) dq \right) ds.
\end{aligned}$$

Again, by the generalized Mellin-Fourier formula we obtain

$$\mathcal{L}_n[f(t, k)g(t, k)] = \frac{1}{(2\pi i)^n} \int_{a-i\infty}^{a+i\infty} F_1(q; k) G_1(s-q; k) dq \quad (2.11)$$

By employing (2.8) and (2.10) one obtains

$$\begin{aligned}
&\frac{1}{(2\pi i)^m} \oint_{|z|=r} F(q; \zeta) G\left(s-q; \frac{z}{\zeta}\right) \frac{d\zeta}{\zeta} = \\
&= \frac{1}{(2\pi i)^m} \oint_{|z|=r} \left(\sum_{k=0}^{\infty} F_1(q; k) \zeta^{-k} \right) \left(\sum_{l=0}^{\infty} G_1(s-q; l) \left(\frac{z}{\zeta}\right)^{-l} \frac{d\zeta}{\zeta} \right) = \\
&= \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} F_1(q; k) G_1(s-q; l) z^{-l} \frac{1}{(2\pi i)^m} \oint_{|\zeta|=r} \zeta^{-k+l-1} d\zeta = \sum_{k=0}^{\infty} F_1(q; k) G_1(s-q; k) z^{-k} \\
&\text{since } \oint_{|\zeta_j|=r_j} \zeta_j^{-k_j+l_j-1} d\zeta_j \text{ equals } 0 \text{ if } -k_j + l_j - 1 \neq 0, \text{ i.e. if } l_j \neq k_j \text{ and it equals} \\
&2\pi i \text{ if } l_j = k_j, \forall j \in \langle m \rangle. \text{ Then (2.10) implies}
\end{aligned}$$

$$\begin{aligned}
\mathcal{L}_{n,m}[f(t; k)g(t; k)] &= \sum_{k=0}^{\infty} \mathcal{L}_n[f(t; k)g(t; k)] z^{-k} = \\
&= \frac{1}{(2\pi i)^n} \int_{a-i\infty}^{a+i\infty} \left(\sum_{k=0}^{\infty} F_1(q; k) G_1(s-q; k) z^{-k} \right) dq = \\
&= \frac{1}{(2\pi i)^{n+m}} \int_{a-i\infty}^{a+i\infty} \left(\oint_{|\zeta|=r} F(q; \zeta) G\left(s-q; \frac{z}{\zeta}\right) \frac{d\zeta}{\zeta} \right) dq.
\end{aligned}$$

□

We shall use the notation $\lim_{s \rightarrow \infty} F(s; z)$ for

$$\lim_{s_1 \rightarrow \infty} \dots \lim_{s_n \rightarrow \infty} F(s_1, \dots, s_n; z_1, \dots, z_m)$$

and a similar notation for $z \rightarrow \infty$.

Let E' be the family of the unvoid subsets $\varepsilon = \{\varepsilon_1, \dots, \varepsilon_l\}$ of $\langle n \rangle$, $\varepsilon \neq \langle n \rangle$.

Theorem 2.8 (Initial value). For $s_i \in \mathbf{C}$ with $\operatorname{Arg} s_i \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, $\forall i \in \langle n \rangle$

$$\begin{aligned} f(0+, \dots, 0+; 0, \dots, 0) &= \lim_{s \rightarrow \infty} \lim_{z \rightarrow \infty} \left((-1)^n [s_1 \cdots s_n] F(s; z) + \right. \\ &\quad \left. + \sum_{\varepsilon \in E'} (-1)^{|\varepsilon|} \left(\prod_{j \in \bar{\varepsilon}} s_j \right) \mathcal{L}_{n,m}^{\bar{\varepsilon}, \langle m \rangle} \left[\frac{\partial^{|\varepsilon|}}{\partial t_{\varepsilon_1} \cdots \partial t_{\varepsilon_l}} f(0_{\varepsilon}^+; 0) \right] \right) \end{aligned} \quad (2.12)$$

Proof. By [11, Definition 2.14 and Theorem 2.17]

$$\begin{aligned} \mathcal{L}_{n,m} \left[\frac{\partial^n}{\partial t_1 \cdots \partial t_n} f(t; k) \right] &= s_1 \cdots s_n F(s; z) + \\ &\quad + \sum_{\varepsilon \in E'} (-1)^{|\varepsilon|} \left(\prod_{j \in \bar{\varepsilon}} s_j \right) \mathcal{L}_{n,m}^{\bar{\varepsilon}, \langle m \rangle} \left[\frac{\partial^{|\varepsilon|}}{\partial t_{\varepsilon_1} \cdots \partial t_{\varepsilon_l}} f(0_{\varepsilon}^+; k) \right] + (-1)^n \mathcal{Z}_m f(0^+; k) \end{aligned} \quad (2.13)$$

By [11, Remark 2.9] the left hand member of (2.13) tends to 0 as $s_1 \rightarrow \infty, \dots, s_n \rightarrow \infty$. We can write

$$\mathcal{Z}_m [f(0^+; k)] = f(0^+; 0) + \sum_{j=1}^m z_j^{-1} H_j(z)$$

where $H_j(z) = H_j(z_1, \dots, z_m)$ are analytic functions on the domain $|z_j| > R_{fj}$, $j \in \langle m \rangle$; therefore $\lim_{z \rightarrow \infty} \mathcal{Z}_m [f(0^+; k)] = f(0^+; 0)$. Similarly,

$$\lim_{z \rightarrow \infty} \mathcal{L}_{n,m}^{\bar{\varepsilon}, \langle m \rangle} \left[\frac{\partial^{|\varepsilon|}}{\partial t_{\varepsilon_1} \cdots \partial t_{\varepsilon_l}} f(0_{\varepsilon}^+; k) \right] = \mathcal{L}_{n,m}^{\bar{\varepsilon}, \langle m \rangle} \left[\frac{\partial^{|\varepsilon|}}{\partial t_{\varepsilon_1} \cdots \partial t_{\varepsilon_l}} f(0_{\varepsilon}^+; 0) \right]$$

and (2.12) results by taking the limit in (2.13) as $s_i \rightarrow \infty$, $\forall i \in \langle n \rangle$ and $z_j \rightarrow \infty$, $\forall j \in \langle m \rangle$.

□

Theorem 2.9 (Final value). If the following limits exist, then

$$\lim_{t_1 \rightarrow \infty} \dots \lim_{t_n \rightarrow \infty} \lim_{k_1 \rightarrow \infty} \dots \lim_{k_m \rightarrow \infty} f(t; k) = \lim_{s_1 \rightarrow 0} \dots \lim_{s_n \rightarrow 0} \lim_{z_1 \rightarrow 1+} \dots \lim_{z_m \rightarrow 1+} s_1 \cdots s_n (z_1 - 1) \cdots (z_m - 1) F(s; z) \quad (2.14)$$

Proof. By [11, Theorem 2.18, formula (2.15) with $\gamma = \beta = 1$] we get

$$\begin{aligned} \mathcal{L}_{1,1} \left[\frac{\partial}{\partial t} \Delta f(t; k) \right] &= s(z-1) F(s, z) - sz \mathcal{L}[f(t, 0)] - \\ &\quad - (z-1) \mathcal{Z}[f(0^+; k)] + zf(0^+, 0) \end{aligned} \quad (2.15)$$

where \mathcal{L} and \mathcal{Z} are the usual (1-dimensional) Laplace and z transformations. For $s \rightarrow 0$, $z \rightarrow 1+$, the left hand member of (2.15) can be written as a series

whose sum can be expressed as the limit of the sequence of its partial sums; by reducing some terms we obtain

$$\begin{aligned}
\lim_{s \rightarrow 0} \lim_{z \rightarrow 1+} \left[\frac{\partial}{\partial t} \Delta(t; k) \right] &= \lim_{s \rightarrow 0} \lim_{z \rightarrow 1+} \int_0^\infty \sum_{k=0}^\infty \left(\frac{\partial f}{\partial t}(t, k+1) - \frac{\partial f}{\partial t}(t; k) \right) e^{-st} z^{-k} dt = \\
&= \sum_{k=0}^\infty \int_0^\infty \left(\frac{\partial f}{\partial t}(t, k+1) - \frac{\partial f}{\partial t}(t; k) \right) dt = \lim_{k \rightarrow \infty} [(f(t, 1) - f(t, 0))]_0^\infty + \\
&\quad + [(f(t, 2) - f(t, 1))]_0^\infty + \dots + [(f(t, k-1) - f(t, k-2))]_0^\infty + \\
&\quad + [(f(t, k) - f(t, k-1))]_0^\infty = \lim_{k \rightarrow \infty} (f(t, k)_0^\infty - f(t, 0)_0^\infty) = \\
&= \lim_{k \rightarrow \infty} \lim_{t \rightarrow \infty} f(t, k) - \lim_{k \rightarrow \infty} f(0+, k) - \lim_{t \rightarrow \infty} f(t, 0) + f(0+, 0).
\end{aligned}$$

By the final value theorems for 1D Laplace and z -transformations we have $\lim_{t \rightarrow \infty} f(t, 0) = \lim_{s \rightarrow \infty} s\mathcal{L}[f(t, 0)]$ and $\lim_{z \rightarrow 1+} (z-1)\mathcal{Z}[0+; k] = \lim_{k \rightarrow \infty} f(0+, k)$.

By taking the limit as $s \rightarrow \infty$, $z \rightarrow 1+$ in (2.15) and by reducing these terms, one obtains (2.14). □

3. Methods for determining the original

We consider the following problem: given a function $F(s; z) = F(s_1, \dots, s_n; z_1, \dots, z_m)$ which is analytic on a domain $D(f)$ as in [15, (2.4)], determine an original function $f(t; k)$ such that $\mathcal{L}_{n,m}[f(t; k)] = F(s; z)$. Firstly we shall establish an inversion formula for the (n, m) -hybrid Laplace transform.

Theorem 3.1. *If $f(t; k)$ is the original of $F(s; z)$, then*

$$\begin{aligned}
f(t_1, \dots, t_n; k_1, \dots, k_m) &= \frac{1}{(2\pi i)^{n+m}} \int_{a_1-i\infty}^{a_1+i\infty} \dots \int_{a_n-i\infty}^{a_n+i\infty} \left(\oint_{|z_1|=r_1} \dots \oint_{|z_m|=r_m} \right. \\
&\quad \left. \cdot f(s_1, \dots, s_n; z_1, \dots, z_m) z_1^{k_1-1} \dots z_m^{k_m-1} dz_1 \dots dz_n \right) \exp\left(\sum_{i=1}^n s_i t_i\right) ds_1 \dots ds_n
\end{aligned} \tag{3.1}$$

where $a_i > \sigma_{g_i}$, $\forall i \in \langle n \rangle$ and $r_j > R_{f_j}$, $\forall j \in \langle m \rangle$.

Proof. We shall define by induction the following 1D Laplace transforms and Z -transforms :

$$\begin{aligned}\widetilde{F}(t_2, \dots, t_n; k_1, \dots, k_m; s_1) &= \mathcal{L}[f(t_1, t_2, \dots, t_n; k_1, \dots, k_m)](s_1) = \\ &= \int_0^\infty f(t_1, t_2, \dots, t_n; k_1, \dots, k_m) \exp(-s_1 t_1) dt_1\end{aligned}\tag{3.2}$$

$$\begin{aligned}\widetilde{F}(t_{i+1}, \dots, t_n; k_1, \dots, k_m; s_1, \dots, s_i) &= \\ &= \mathcal{L}[\widetilde{F}(t_i, t_{i+1}, \dots, t_n; k_1, \dots, k_m; s_1, \dots, s_{i-1})](s_i) = \\ &= \int_0^\infty \widetilde{F}(t_i, t_{i+1}, \dots, t_n; k_1, \dots, k_m; s_1, \dots, s_{i-1}) \exp(-s_i t_i) dt_i, i \in \langle n \rangle\end{aligned}\tag{3.3}$$

$$\begin{aligned}\hat{F}(k_2, \dots, k_m; s_1, \dots, s_n; z_1) &= \mathcal{Z}[\widetilde{F}(k_1, \dots, k_m; s_1, \dots, s_n)](z_1) = \\ &= \sum_{k_1=0}^{\infty} \widetilde{F}(k_1, \dots, k_m; s_1, \dots, s_n) z_1^{-k_1}\end{aligned}\tag{3.4}$$

$$\begin{aligned}\hat{F}(k_{j+1}, \dots, k_m; s_1, \dots, s_n; z_1, \dots, z_j) &= \\ &= \mathcal{Z}[\hat{F}(k_j, k_{j+1}, \dots, k_m; s_1, \dots, s_n; z_1, \dots, z_{j-1})](z_j) = \\ &= \sum_{k_j=0}^{\infty} \hat{F}(k_j, k_{j+1}, \dots, k_m; s_1, \dots, s_n; z_1, \dots, z_{j-1}) z_j^{-k_j}, i \in \langle m \rangle.\end{aligned}\tag{3.5}$$

Obviously

$$\begin{aligned}F(s_1, \dots, s_n; z_1, \dots, z_m) &= \mathcal{Z}[\hat{F}(k_m; s_1, \dots, s_n; z_1, \dots, z_{m-1})](z_m) = \\ &= \sum_{k_m=0}^{\infty} \hat{F}(k_m; s_1, \dots, s_n; z_1, \dots, z_{m-1}) z_1^{-k_m}.\end{aligned}\tag{3.6}$$

By using the formula $c_n = \frac{1}{2\pi i} \oint_{\Gamma} \frac{f(z)}{(z-a)^{n+1}} dz$ for the coefficients of a

Laurent series $f(z) = \sum_{n=-\infty}^{\infty} c_n (z-a)^n$, by the Mellin-Fourier formula applied to the Laplace transforms (3.3) and (3.2) and by taking for the closed contour Γ the circles $|z_j| = r_j$, we obtain from the Laurent series (3.6) and (3.5)

$$\begin{aligned}f(t_1, \dots, t_n; k_1, \dots, k_m) &= \frac{1}{(2\pi i)^n} \int_{a_1-i\infty}^{a_1+i\infty} \dots \int_{a_n-i\infty}^{a_n+i\infty} \widetilde{F}(k_1, \dots, k_m; s_1, \dots, s_n) \cdot \\ &\quad \cdot \exp\left(\sum_{i=1}^n s_i t_i\right) ds_1 \dots ds_n.\end{aligned}\tag{3.7}$$

By replacing in (3.7) the recurrent \mathcal{Z} -transforms one obtains the inversion formula (3.1). \square

Remark 3.2. Under certain conditions imposed by Jordan's Lemma, the multiple complex integrals in (3.1) can be calculated using Residue Theorem.

Theorem 3.3. *The original of $F(s_1, \dots, s_n; z_1, \dots, z_n)$ is given by*

$$\begin{aligned} f(t_1, \dots, t_n; k_1, \dots, k_m) &= \\ &= \frac{1}{(2\pi i)^n k_1! \dots k_m!} \int_{a_1-i\infty}^{a_1+i\infty} \dots \int_{a_n-i\infty}^{a_n+i\infty} \frac{\partial^{k_1+\dots+k_m}}{\partial z_1^{k_1} \dots \partial z_m^{k_m}} \\ &\quad \cdot F(s_1, \dots, s_n; z_1^{-1}, \dots, z_m^{-1})|_{z=0} \exp\left(\sum_{i=1}^n s_i t_i\right) ds_1 \dots ds_n \end{aligned} \quad (3.8)$$

where $z=0$ indicates that the integrand is calculated at $z_1=0, \dots, z_m=0$.

Proof. If z_m is replaced by z_m^{-1} , (3.6) becomes

$$\begin{aligned} F(s_1, \dots, s_n; z_1, \dots, z_{m-1}, z_m^{-1}) &= \\ &= \sum_{k_m=0}^{\infty} \hat{F}(k_m; s_1, \dots, s_n; z_1, \dots, z_{m-1}) z_1^{k_m}, \end{aligned}$$

hence \hat{F} can be considered as the set of the coefficients of the Taylor series expansion of $F(s; z)$ about $z_m=0$, and the usual formula for the Taylor series

coefficients of function f , namely $c_n = \frac{f^{(n)}(a)}{n!}$ gives

$$\hat{F}(k_n; s_1, \dots, s_n; z_1, \dots, z_{m-1}) = \frac{1}{k_m!} \frac{\partial^{k_m}}{\partial z_m^{k_m}} F(s; z_1, \dots, z_{m-1}, z_m^{-1})|_{z_m=0}.$$

Similar formulas can be obtained by replacing z_j by z_j^{-1} , $j \in \langle m-1 \rangle$ in formulas (3.4) and (3.5); finally we get

$$\begin{aligned} \tilde{F}(k_1, \dots, k_m; s_1, \dots, s_n) &= \\ &= \frac{1}{k_1! \dots k_m!} \frac{\partial^{k_1+\dots+k_m}}{\partial z_1^{k_1} \dots \partial z_m^{k_m}} F(s_1, \dots, s_n; z_1^{-1}, \dots, z_m^{-1})|_{z=0} \end{aligned} \quad (3.9)$$

and (3.2) can be obtained by replacing \tilde{F} given by (3.9) in (3.7). \square

Now let us assume that the transform F is separable with respect to s_1, \dots, s_n , that is $F(s_1, \dots, s_n; z_1, \dots, z_n) = \prod_{i=1}^n F_i(s_i; z_1, \dots, z_m)$, where each F_i fulfil the conditions of Jordan's Lemma on a suitable domain and F_i has the singular points $s_{i,l}$, $l \in \langle n_i \rangle$, $n_i \in \mathbf{N}^*$ such that $\operatorname{Re} s_{i,l} < a_i$, $i \in \langle n \rangle$. By applying the Residue Theorem to the integrals in (3.8) we get:

Corollary 3.4. If $F(s_1, \dots, s_n; z_1, \dots, z_n)$ is separable with respect to s_1, \dots, s_n , then its original is

$$f(t_1, \dots, t_n; k_1, \dots, k_m) = \frac{1}{k_1! \cdots k_m!} \sum_{i=1}^n \sum_{l=1}^{n_i} \cdot \operatorname{res} \left(\frac{\partial^{k_1 + \cdots + k_m}}{\partial z_1^{k_1} \cdots \partial z_m^{k_m}} F(s_1, \dots, s_n; z_1^{-1}, \dots, z_m^{-1}) \exp \left(\sum_{i=1}^n s_i t_i \right) \right|_{z=0}, s_{i,l} \right).$$

Let us denote by δ_j , $j \in \langle m \rangle$ the discrete impulse function $\delta_j(k_j) = \begin{cases} 1 & \text{if } k_j = 0 \\ 0 & \text{if } k_j \neq 0 \end{cases}$ and by $\delta(k)$, $k = (k_1, \dots, k_m) \in \mathbf{Z}^m$ the function $\delta(k) = \prod_{j=1}^m \delta_j(k_j)$.

Another method for determining the original is given by the following expansion theorem:

Theorem 3.5. If the image $F(s; z)$ has the Laurent series expansion about infinity

$$F(s; z) = \sum_{\alpha \geq 1} \sum_{\beta \geq 0} a_{\alpha\beta} s^{-\alpha} z^{-\beta}$$

then its original has the Taylor series expansion

$$f(t; k) = \sum_{\alpha \geq 1} \sum_{\beta \geq 0} \frac{a_{\alpha\beta}}{(\alpha_1 - 1)! \cdots (\alpha_n - 1)!} t^{\alpha-1} \delta(k - \beta)$$

where $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbf{N}^n$, $\beta = (\beta_1, \dots, \beta_m) \in \mathbf{N}^m$, $a_{\alpha\beta} = a_{\alpha_1, \dots, \alpha_n; \beta_1, \dots, \beta_m} \in \mathbf{C}$, $s^{-\alpha} = s_1^{-\alpha_1} \cdots s_n^{-\alpha_n}$, $z^{-\beta} = z_1^{-\beta_1} \cdots z_m^{-\beta_m}$, $t^{\alpha-1} = t_1^{\alpha_1-1} \cdots t_n^{\alpha_n-1}$; $\alpha \geq 1$ means $\alpha_i \geq 1$, $\forall i \in \langle n \rangle$ and $\beta \geq 0$ means $\beta_j \geq 0$, $\forall j \in \langle m \rangle$.

Proof. By [11, Definitions 2.6 and 2.10]

$$\begin{aligned}
\mathcal{L}_{n,m}[t^{\alpha-1}\delta(k-\beta)] &= \left(\left(\int_0^\infty t_1^{\alpha_1-1} e^{-\alpha_1 t_1} dt_1 \right) \cdots \left(\int_0^\infty t_n^{\alpha_n-1} e^{-\alpha_n t_n} dt_n \right) \right) \cdot \\
&\cdot \left(\left(\sum_{k_1=0}^{\infty} \delta_1(k_1 - \beta_1) z_1^{-k_1} \right) \cdots \left(\sum_{k_m=0}^{\infty} \delta_m(k_m - \beta_m) z_m^{-k_m} \right) \right) = \\
&= ((\alpha_1 - 1)! s_1^{-\alpha_1}) \cdots ((\alpha_n - 1)! s_n^{-\alpha_n}) z_1^{-\beta_1} \cdots z_m^{-\beta_m}.
\end{aligned}$$

By linearity, one obtains

$$\begin{aligned}
\mathcal{L}_{n,m}[f(t; k)] &= \sum_{\alpha \geq \mathbf{1}} \sum_{\beta \geq \mathbf{0}} \frac{a_{\alpha\beta}}{(\alpha_1 - 1)! \cdots (\alpha_n - 1)!} \mathcal{L}_{n,m}[t^{\alpha-1}\delta(k-\beta)] = \\
&= \sum_{\alpha \geq \mathbf{1}} \sum_{\beta \geq \mathbf{0}} a_{\alpha\beta} s^{-\alpha} z^{-\beta} = F(s; z).
\end{aligned}$$

□

4. Conclusion

In this paper and in [11] a complete theory of a multiple (n, m) -Hybrid Laplace transformation has been developed. In a subsequent paper its applications will be provided, including solutions of differential-difference and integral equations, as well as the frequency-domain representation of multidimensional hybrid control systems.

R E F E R E N C E S

- [1] *B. Davies*, Integral Transforms and Their Applications, Springer Verlag, 1978.
- [2] *M. Dymkov, F. Gaishun, K. Galkovski, E. Rogers, D.H. Owens*, Exponential stability of discrete linear repetitive processes, Int. J. Control 75, **12** (2002), 861-869.
- [3] *K. Galkovski, E. Rogers, D.H. Owens*, New 2D models and a transition matrix for discrete linear repetitive processes, Int. J. Control, **72**, **15** (1999), 1365-1380.
- [4] *K. Galkovski*, State-space Realizations of Linear 2-D Systems with Extensions to the General n D ($n > 2$) Case, Lecture Notes in Control and Information Sciences, 263, Springer Verlag London, 2001.
- [5] *T. Kaczorek*, Controllability and minimum energy control of 2D continuous-discrete linear systems, Appl. Math. and Comp. Sci., **5**, **1** (1995), 5-21.
- [6] *T. Kaczorek*, Singular two-dimensional continuous-discrete linear systems, Dynamics of Continuous, Discrete and Impulsive Systems, **2** (1996), 193-204.
- [7] *J. Kurek, M.B. Zaremba*, Iterative learning control synthesis on 2D system theory, IEEE Trans. Aut. Control, AC-38, **1** (1993), 121-125.

- [8] *V. Olariu, V. Prepeliță*, Teoria distribuțiilor, funcții complexe și aplicații, Ed. Științifică și Enciclopedică, 1986.
- [9] *V. Prepeliță*, Criteria of reachability for 2D continuous-discrete separable systems, Rev. Roumaine Math. Pures Appl., 48, 1 (2003), 81-93.
- [10] *V. Prepeliță*, 2D Continuous-Discrete Laplace Transformation and Applications to 2D Systems, Rev. Roum. Math. Pures Appl., 49 (2004), 4, 355-376.
- [11] *V. Prepeliță*, Multiple (n, m) -Hybrid Laplace Transformation and Applications to Multidimensional Hybrid Systems. Part I (to appear).
- [12] *E. Rogers, D.H. Owens*, Stability Analysis for Linear Repetitive Processes, Lecture Notes in Control and Information Sciences, 175, Ed. Thoma H, Wyner W., Springer Verlag Berlin, 1999.