

A TOPOLOGICAL DEGREE OF SET-VALUED MAPS OF TYPE (S)

Silvia FULINA¹

La studiul existenței soluțiilor inegalităților variaționale au fost folosite câteva definiții ale gradului topologic. În cazul operatorilor univalenci tari monotoni este binecunoscută, de exemplu, metoda lui Szulkin [12]. Deoarece inegalitățile variaționale pot fi rescrise ca incluziuni operatoriale, după cum vom arăta mai jos, o abordare mai completă necesită definirea gradelor topologice pentru aplicații multivalente. Vom dezvolta o teorie a gradului topologic pentru aplicații multivalente de tip (S).

Within the study of the solutions of variational inequalities, some definitions of the topological degree are used. So, Szulkin's method [12] is well-known in the case of strongly monotone operators. Since variational inequalities can be converted into operator inclusions, as we reveal below, a more thorough approach is to define an appropriate degree for set-valued maps. We deal with a theory of the topological degree for mappings of type (S).

Key words: Variational inequalities, Set-valued maps. Topological degree, 49J40

1. Introduction

Roughly speaking, all procedures for solving the operator equations on finite-dimensional spaces are based on Brouwer's degree. One can distinguish between two main directions in the construction of topological degrees on infinite-dimensional spaces. The first method defines a degree as the limit of Brouwer's degrees, in the sense of assuring the strong convergence of the solutions of the restricted equations to the finite-dimensional subspaces. This Galerkin approach has been used by Browder [3] in the case of type (S) operators and, more general, by Skrypnik [10] for operators of type (α) , on Banach spaces. The second Hilbertian approach, employing an elliptic super-regularization, takes as starting-point the Leray-Schauder degree in order to define a topological degree for type (S) operators on Banach spaces. In this paper, we will pursue the Melnik method [7], which represents a similar construction like that used by Browder-

¹ PhD Student., Departament of Mathematics, Ovidius University, Constantza, ROMANIA

Petryshyn for the set-valued degree of A-proper maps. With respect to the second approach with applications to problems involving discontinuous nonlinearities, we refer to the Berkovits-Tienari work [2].

Let X be a real reflexive Banach space, X^* its topological dual and $\langle \cdot, \cdot \rangle : X^* \times X \rightarrow R$ the pairing of elements from X^* and X . We denote by 2^{X^*} the totality of all nonempty subset of X^* and consider multivalued or set-valued mapping $A : D(A) \rightarrow 2^{X^*}$ with its *effective domain* $D(A) = \{y \in X \mid A(y) \neq \emptyset\}$.

First, we remind the following equivalence [1]. For a convex, closed subset K of X and element $g \in X^*$, a variational inequality means finding an element $u \in K$ such that

$$\langle Au - g, x - u \rangle \geq 0 \quad \text{for all } x \in K. \quad (1.1)$$

The variational inclusion (1.1) is equivalent to the inclusion

$$u \in K, \quad g \in A(u) + N_K(u), \quad (1.2)$$

where $N_K(x) = \{p \in X^* \mid \sup_{y \in K} \langle p, x - y \rangle \geq 0\}$ is the normal cone to K in $x \in K$.

We notice that N_K is the subdifferential of the indicator function I_K . More general, given a subdifferentiable function $\Psi : X \rightarrow R \cup \{+\infty\}$, the problem of finding a solution $u \in \text{dom } \Psi$ of the (complete) variational inequality:

$$\langle Au - g, x - u \rangle + \Psi(x) - \Psi(u) \geq 0, \quad \forall x \in \text{dom } \Psi, \quad (1.3)$$

which is equivalent to the inclusion

$$u \in \text{dom } \Psi, \quad g \in A(u) + \partial \Psi(u). \quad (1.4)$$

2. Galerkin's set-valued approximants

Let D be an bounded open subset of $D(A)$, with the boundary ∂D , and $\mathcal{F}(X)$ the class of finite-dimensional subspaces of X so that $D \cap F \neq \emptyset$. We choose a base $\{e_1, e_2, \dots, e_n\}$ of every subspace $F \in \mathcal{F}(X)$ and define Galerkin's approximante $A_F : F \rightarrow 2^F$ of $A : D(A) \rightarrow 2^{X^*}$ relative to F by

$$\langle A_F(x), y \rangle_{F \times F} = \langle A(x), y \rangle_{X^* \times X}, \quad \forall x \in \bar{D} \cap F, y \in F.$$

Here the duality on $F \times F$ coincides with the inner product on F . In other words, the set-valued Galerkin restriction A_F of A relative to F have the following structure:

$$A_F(x) = \bigcup_{f \in A(x)} \left\{ \sum_{i=1}^n \langle f, e_i \rangle e_i \right\} = J_F^*(A(J_F x)), \quad \text{for every } x \in \bar{D}_F = \bar{D} \cap F,$$

where $J_F : F \rightarrow X$ is the imedding map and $J_F^* : X^* \rightarrow F$ its adjunct. The above structure does not necessarily depend on the base chosen in F .

The main elements of the Brouwer and Leray-Schauder degree theory for set-valued maps are presented in the chapter VI of Lloyd's monography [6].

With a view to simplification, let $C(X^*)$ be the family of the non-empty, convex, closed subsets of X^* , and we consider the following definition:

The map $A : D \rightarrow C(X^*)$ is said to be *of type S(D)*, if any sequence $y_n \in D$ with $y_n \rightarrow y$ in X and $f_n \in A(y_n)$ with $f_n \rightarrow f$ in X^* , such that

$$\limsup_{n \rightarrow \infty} \langle A(y_n), y_n - y \rangle \leq 0 \quad (2.1)$$

implies the strong convergence $y_n \rightarrow y$ in X .

The condition (2.1) can be re-written as $\limsup_{n \rightarrow \infty} \langle A(y_n), y_n \rangle \leq \langle f, y \rangle$ and maps of type $S(D)$ coincide with those of type (α) .

3. Topological degree for set-valued maps of type S.

With a view of a general definition to the (S) degree, let us consider that the following hypotheses hold:

- (i) $A : D \rightarrow C(X^*)$
- (ii) $A \in S(D)$;
- (iii) $0 \notin A(y)$ for every $y \in \partial D$.

Like in the univalent case (Skrypnik [10], p.39), we can establish the existence of a finite-dimensional space $F_o \in \mathcal{F}(X)$ with the following features:

- (A) $0 \notin A_F(y)$ for every $y \in \partial D$ and
- (B) $\deg(A_F, D, 0) = \deg(A_{F_o}, D, 0)$, for any space $F \in \mathcal{F}(X)$ with $F_o \subseteq F$.

The word *deg* refers here to the Brouwer degree.

Under the hypotheses (i)-(iii), we take by definition

$$d_S(A, D, 0) = \deg(A_{F_o}, D, 0),$$

as the degree (*S*) of the set-valued map $A : D \rightarrow C(X^*)$ on the D subset with respect to $0 \in X^*$. Moreover, due to the invariance of Brouwer's degree under translations, for any $f \in X^* \setminus A(\partial D)$, we have

$$d_S(A, D, f) = \deg(A - f, D, 0).$$

The above-defined degree verifies all the axioms of the classic topological degree (Pascali [9]). We say that $A_t : [0,1] \times \bar{D} \rightarrow C(X^*)$ is a homotopy of type $S(D)$ if every sequence $\{y_n\} \subset D$ with $y_n \rightarrow y_0$ in X , $\{t_n\} \subset [0,1]$ with $t_n \rightarrow t$ and $f_n \in A(t_n, y_n)$ with $f_n \rightarrow f$ in X^* and the condition

$$\limsup_{n \rightarrow \infty} \langle A_{t_n}(y_n), y_n \rangle \leq \langle f, y \rangle$$

is in fact the strongly convergent $y_n \rightarrow y_0$ in X and $A_{t_n}(y_n) \rightarrow A_t(y)$ results in X^* .

Maps $A_0, A_1 : \bar{D} \subset X \rightarrow C(X^*)$ belonging to the class $S(D)$ and satisfying condition $0 \notin A_i(y)$, for $i = 1, 2$, for each $y \in \partial D$, are called *homotopic* on \bar{D} if there is a bounded map $A : [0,1] \times \bar{D} \rightarrow 2^{X^*}$ satisfying the following conditions:

- (i) $A(0, \cdot) = A_0$, $A(1, \cdot) = A_1$;
- (ii) A satisfies condition $S(D)$;
- (iii) $0 \notin A(t, y)$ for any $t \in [0,1]$ and any $y \in \partial D$;
- (iv) A is demiclosed; i.e., if $t_n \rightarrow t_0$ and $y_n \rightarrow y_0$ strongly in X , and $d_n \rightarrow d_0$ in X^* , for any $d_n \in A(t_n, y_n)$, then $d_0 \in A(t_0, y_0)$.

If A_0 and A_1 are homotopic on \overline{D} , then

$$\deg(A_0, \overline{D}, 0) = \deg(A_1, \overline{D}, 0).$$

If $A: \overline{D} \subset X \rightarrow 2^{X^*}$ is a map of class $S(D)$ and $0 \notin A(y)$ for any $y \in \overline{D}$, then $\deg(A, \overline{D}, 0) = 0$.

Let $A: \overline{D} \subset X \rightarrow 2^{X^*}$ be a map of class $S(D)$ and $f \in X^*$ satisfying condition $f \notin A(y)$ for any $y \in \partial D$. In order that the inclusion $A(y) \ni f$ to have a solution in D , it is sufficient that $\deg(A, \overline{D}, f) \neq 0$.

Moreover, let $A: \overline{D} \subset X \rightarrow C(X^*)$ is a map of class $S(D)$ coercive with respect to $f \in X^*$, i.e., $\langle A(y) - f, y \rangle \geq 0$, for any $y \in \partial D$. In this case, we have $\deg(A, \overline{D}, f) \neq 0$ and so the inclusion $A(y) \ni f$ has solutions in D .

Furthermore, the next result of the theory of the topological degree can be generalised. Suppose that D is a symmetric bounded neighborhood of zero,

$A: \overline{D} \subset X \rightarrow C(X^*)$ is a map of class $S(D)$ and $0 \notin A(\partial D)$. Suppose, in addition, that

$$A(y) \cap \lambda A(-y) = \emptyset \quad \text{for } y \in \partial D \text{ and } \lambda \in [0, 1],$$

then $\deg(A, \overline{D}, 0)$ is an odd number.

The above-mentioned approach is also valid in the case of variational inequalities of Solonoukha type [11] if we consider the next definition:

The $A: D \rightarrow C(X^*)$ is a map of type $S_-(D)$, if for any sequence $\{y_n\}$ in D converging weakly to some $y \in X$ and for any sequence $f_n \in A(y_n)$ converging weakly to some $f \in X^*$ such that

$$\limsup_{n \rightarrow \infty} [A(y_n), y_n - y]_- \leq 0$$

it follows that $y_n \rightarrow y$ in X .

4. Degree for pseudomonotone maps.

We will now take the line traced by the definition presented at the end of the previous chapter and we define

A mapping A from D into $C(X^*)$ is *weakly pseudomonotone* or $PM_-(D)$ if for any sequence $\{y_n\}$ in D converging weakly to some $y \in X$ and for any sequence $f_n \in A(y_n)$ converging weakly to some $f \in X^*$ such that

$$\limsup_{n \rightarrow \infty} [A(y_n), y_n - y]_- \leq 0$$

it follows that $f \in A(y)$ and $\langle f_n, y_n \rangle \rightarrow \langle f, y \rangle$.

We remark that if A is weakly pseudomonotone, then

$$\limsup_{n \rightarrow \infty} \langle Ay_n - Ay, y_n - y \rangle = 0.$$

We extend a basic relation due to B. Calvert and J.R.L. Webb (see [9]) between the pseudomonotone operators and those of type S .

Theorem 4.1. *Let $D \subset X$ be a open, bounded subset and $A_0 : \overline{D} \subset X \rightarrow C(X^*)$ satisfies condition $S_-(D)$. Then demicontinuous operator $A : \overline{D} \subset X \rightarrow C(X^*)$ is pseudomonotone and $0 \notin \overline{A(\partial D)}$ if and only if $A_\varepsilon = \varepsilon A_0 + A : \overline{D} \subset X \rightarrow C(X^*)$ satisfies condition $S_-(D)$, for each $\varepsilon > 0$.*

Proof. The ‘‘if’’ part. Let A be a weakly pseudomonotone operator and assume that

$$\limsup_{n \rightarrow \infty} [(\varepsilon A_0 + A)x_n - (\varepsilon A_0 + A)x, x_n - x]_- \leq 0$$

whenever $x_n \rightarrow x$ in X . Since $A \in PM_-(D)$, we have $\limsup_{n \rightarrow \infty} [A_0 x_n - A_0 x, x_n - x]_- \leq 0$, we infer that $x_n \rightarrow x$ in X , that is, $\varepsilon A_0 + A$ is of type $S_-(D)$.

The ‘‘only if’’ part. Assume that $\varepsilon A_0 + A$ is of type $S_-(D)$ for each $\varepsilon > 0$. If A is not pseudomonotone, then there exists a sequence $\{x_n\}$ such that $x_n \rightarrow x$ and $\limsup_{n \rightarrow \infty} [Ax_n - Ax, x_n - x]_- = -\delta$ with $\delta > 0$. Then, since A is demicontinuous $\{x_n\}$ can not be strongly convergent to x . On the other side, because $\{x_n\}$ is bounded, there is an $M > 0$ such that $\|x_n\| \leq M$ and $|\varepsilon [A_0 x_n - A_0 x, x_n - x]_-| < 4\varepsilon M^2$. Take $\varepsilon < \frac{\delta}{8M^2}$ and have

$$\limsup_{n \rightarrow \infty} [(\varepsilon A_0 + A)x_n - (\varepsilon A_0 + A)x, x_n - x]_- \leq -\frac{1}{2}\delta < 0$$

and $\{x_n\}$ doesn't converge strongly to x , which contradict our initial assumption that $\varepsilon A_0 + A$ is of type $S_-(D)$. \square

Moreover, $0 \notin A_\varepsilon(y)$ for any $y \in \partial D$. Thus, $\deg(A_\varepsilon, \overline{D}, 0)$ is defined if $0 < \varepsilon < \delta_0 M^{-1}$. Let us show that the degree defined in this way does not depend on ε . Suppose that $0 < \varepsilon_i < \delta_0 M^{-1}$ for $i = 1, 2$ and consider the corresponding A_{ε_i} . Put $A(t, y) = (y\varepsilon_2 + (1-t)\varepsilon_1)A_0(y) + A(y)$. We have $A(0, y) = A_{\varepsilon_1}(y)$, $A(1, y) = A_{\varepsilon_2}(y)$, and $0 \notin A(t, y)$ for any $t \in [0, 1]$ and any $y \in \partial D$. Consequently,

$$\deg(A_{\varepsilon_1}, \overline{D}, 0) = \deg(A_{\varepsilon_2}, \overline{D}, 0).$$

Hence, the limit $\lim_{\varepsilon \rightarrow \infty} \deg(A_\varepsilon, \overline{D}, 0)$ exists, we call it the degree of the pseudo-monotone map A on the domain \overline{D} with respect to $0 \in X^*$ and denote it by $\deg(A, \overline{D}, 0)$.

We notice that in the above construction the limit does not depend on map A_0 and therefore the degree of the weak pseudomonotone maps is well-defined.

A similar degree theory of the $S(D)$ mappings was elaborated in the book of D. O'Regan, Y. J. Cho, Y.-Q. Chen [8] in 2006. Applications of the (S) -degree for perturbations of maximal monotone operators in the theory of variational inequalities have been tackled in [8] as well.

Acknowledgment

The author thanks to the advisor Prof. Dan Pascali, who managed her research and supplied recent references.

R E F E R E N C E S

- [1] P. Anghel, Monotone variational inequalities revisited, Math. Reports, 2007. (to appear)
- [2] J. Berkovits – M. Tienari, Topological degree theory for some classes of multis with applications to hyperbolic and elliptic problems involving discontinuous nonlinearities, Dynam. Systems Appl., **5** (1996), no. 1, 1-18; MR 96m:47112.
- [3] F. E. Browder, Nonlinear eigenvalue problems and Galerkin approximations, Bull. Amer. Math. Soc., **74** (1968), 651-656.
- [4] F.E. Browder – W. V. Petryshyn, Approximation methods and the generalized topological degree for nonlinear mappings in Banach spaces, J. Funct. Anal., **3** (1969), 217-274.

- [5] *S. Fulina*, On pseudomonotone variational inequalities, *An. St. Univ. Ovidius Constantza, Ser. Mat.*, **14**, 1, (2006), 83-90.
- [6] *N. G. Lloyd*, Degree theory, Cambridge University Press , 1978.
- [7] *V. S. Mel'nik*, Multivariational inequalities and operator inclusions in Banach spaces with mappings of the class $(S)_+$, *Ukrainian Mathematical Journal*, **52** (2000), no. 11, MR 2002f:47135.
- [8] *D. O'Regan - Y. J. Cho - Y. Q. Chen*, Topological degree theory and applications, Series Math. Anal. Appl.10, Chapman & Hall CRC, Bocca Raton,2006; MR 2007b; 47168
- [9] *D. Pascali*, Topological Methods in Nonlinear Analysis: Topological degree for monotone mappings, Ovidius Univ. Constanța and Courant Institute, New York University, 2001.
- [10] *I.V. Skrypnik*, Methods of Analysis of Nonlinear Elliptic Boundary Value Problems, (translated from the 1990 Russian original by Dan Pascali), Translations of Math. Monographs **139**, Amer. Math. Soc., Providence, RI, 1994, MR 95i:35109.
- [11] *O. V. Solonoukha*, On the stationary variational inequalities with the generalized pseudomonotone operators, *Methods of Functional Analysis and Topology*, **3** (1997), no. 3, 81-95; MR 2002d:47091.
- [12] *A. Szulkin*, Positive solutions of variational inequalities: A degree-theoretic approach, *J. Diff. Equations*, **57** (1985), 90-111: MR 86i:47072.