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A TOPOLOGICAL DEGREE OF SET-VALUED MAPS OF
TYPE (S)

Silvia FULINA!

La studiul existentei solutilor inegalitatilor variationale au fost folosite
cdateva definitii ale gradului topologic. In cazul operatorilor univalenti tari
monotoni este binecunoscutd, de exemplu, metoda lui Szulkin [12]. Deoarece
inegalitatiile variationale pot fi rescrise ca incluziuni operatoriale, dupa cum vom
ardta mai jos, o abordare mai completd necesita definirea gradelor topologice
pentru aplicatii multivalente. Vom dezvolta o teorie a gradului topologic pentru
aplicatii multivalente de tip (S).

Within the study of the solutions of variational inequalities, some definitions
of the topological degree are used. So, Szulkin’s method [12] is well-known in the
case of strongly monotone operators. Since variational inequalities can be
converted into operator inclusions, as we reveal below, a more thorough approach
is to define an appropiate degree for set-valued maps. We deal with a theory of the

topological degree for mappings of type (S).
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1. Introduction

Roughly speaking, all procedures for solving the operator equations on
finite-dimensional spaces are based on Brouwer’s degree. One can distinguish
between two main directions in the construction of topological degrees on
infinite-dimensional spaces. The first method defines a degree as the limit of
Brouwer’s degrees, in the sense of assuring the strong convergence of the
solutions of the restrictited equations to the finite-dimensional subspaces. This
Galerkin approach has been used by Browder [3] in the case of type (S) operators

and, more general, by Skrypnik [10] for operators of type(a) , on Banach spaces.

The second Hilbertean approach, employing an elliptic super-regularization, takes
as starting-point the Leray-Schauder degree in order to define a topological degree
for type (S) operators on Banach spaces. In this paper, we will pursue the Melnik
method [7], which represents a similar construction like that used by Browder-
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Petryshyn for the set-valued degree of A-proper maps. With respect to the
second approach with applications to problems involving discontinuous
nonlinearities, we refer to the Berkovits-Tienari work [2].

Let X be a real reflexive Banach space, X" its topological dual and
<-, > : X" x X>—— R the pairing of elements from X* and X. We denote by

2% the totality of all nonempty subset of X* and consider multivalued or set-

-2 with  its  effective  domain

valued mapping  A4:D(A)>
D(A)z{yeX |A(y)¢@}.

First, we remind the following equivalence [1]. For a convex, closed subset
K of X and element g e X *, a variational inequality means finding an element

u € K such that
<Au-g,x—u> > 0 forall xeK. (1.1)
The variational inclusion (1.1) is equivalent to the inclusion

uek, ge Alu) + Ng(u), (1.2)

where NK(x)z{peX*| sup < p,x—y> 2> 0} is the normal cone to K in
yekK

xeKk.

We notice that Ny is the subdifferential of the indicator function 7 .

More general, given a subdifferentiable function W¥:.X» - R U {+o0}, the

problem of finding a solution u € dom ¥ of the (complete) variational inequality:

<Au-g,x—-u> +Y¥Y(x) —VY(@u) 2 0, Vxedom V¥,
(1.3)
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which is equivalent to the inclusion

u € domV¥, g€ A(u) + 0¥ (u). (1.4)

2. Galerkin’s set-valued approximants

Let D be an bounded open subset of D(A), with the boundary 0D, and
F(X) the class of finite-dimensional subspaces of X so that DNF #J. We
choose a base {e,e,,...,e,} of every subspace F e F(X) and define Galerkin’s
27 of 4:D(4)>——2" relative to F by
<Ap(X),y >pyp =<AX),y>ysy » VXeDNF, yeF.

approximante Ag : F >

Here the duality on F xF coincides with the inner product on F. In other
words, the set-valued Galerkin restriction 4y of A relative to F have the

following structure:

n
A= |J O.<f.e>e}=Jp(A(Jpx), forevery xeDp=DNF,
fed(x) i=l

where Jp :F»> - X is the imedding map and J : X *> - F its adjunct.

The above structure does not necessarily depend on the base chosen in F.

The main elements of the Brouwer and Leray-Schauder degree theory for
set-valued maps are presented in the chapter VI of Lloyd’s monography [6].

With a view to simplification, let C(X*) be the family of the non-empty,

convex, closed subsets of X, and we consider the following definition:

The map A:D>—— C(X*) is said to be of fype S(D), if any sequence
v, €D with y, >y in X and f, € A(y,) with f,— f in X", such that
limsup <4(y,),y, -y > <0 2.1

n—>0

implies the strong convergence y, — y in X.

The condition (2.1) can be re-written as limsup <4(y,),y, > < <f,y>

n—®

and maps of type S (D) coincide with those of type ().

3.Topological degree for set-valued maps of type S.

With a view of a general definition to the (S) degree, let us consider that
the following hypotheses hold:
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(1) A:D>
(i) A4eS(D);
(iii) 0 ¢ A(y) forevery yedD.
Like in the univalent case (Skrypnik [10], p.39), we can establish the
existence of a finite-dimensional space F, € F(X) with the following features:
(A) 0¢ Agp(y) forevery y oD and
(B) deg(Ar,D,0) = deg(AFO,D,O), for any space F e F(X) with
F,cF.

The word deg refers here to the Brouwer degree.
Under the hypotheses (i)-(ii1). we take by definition
ds(4,D,0) = deg(4g ,D,0),

as the degree (S) of the set-valued map 4 : D>—— C(X*) on the D subset with

- C(X*)

respect to 0 e X" . Moreover, due to the invariance of Brouwer’s degree under
translations, for any f € X"\ 4(0D), we have
dg(A,D, )= deg(A-f,D,0).

The above-defined degree verifies all the axioms of the classic topological
degree (Pascali [9]). We say that 4, :[0,1]x D> - C(X*) is a homotopy of
type S(D) if every sequence {y,} =D with y,—>y, inX, {¢,}<[0,1] with
t,—>t and f, € A(t,y,) with f,— f In X" and the condition

limsup <4, (v,),y,> < <,y>

n—>0

is in fact the strongly convergent y, =y, In X and 4, (y,)—> 4,(y)results in
X *.

Maps A4,, 4, :Dc X> - C(X*) belonging to the class S(D) and
satisfying condition 0 ¢ 4, ( y) , for i =1,2, for each y € 0D, are called homotopic

on D if there is a bounded map A: [0,1]x5>
conditions:

(1) A(O,-) =4y, A(L,-)=4;

(i) A satisfies condition § (D);

(i) O¢ A(t,y) forany ¢ e [0,1] and any yedD;

-2"" satisfying the following

(iv) A4 is demiclosed; i.e., if ¢, —>¢, and y — y, strongly in X, and
d,—d, inX", forany d, e A(t,,y,), then d, e A(t,,y,).
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If A4, and A, are homotopic on D, then
deg(AO,B,O)zdeg(Al,B,O).
If 4:Dc X>

2" is a map of class S(D) and OeA(y) for any
yeB,thendeg(A,B,O)zO.

Let A:Dc X> -2" bea map of class S(D) and f € X * satisfying
condition f ¢ A(y) forany y e D . In order that the inclusion A(y)> f to have

a solution in D, it is sufficient that deg (A, 5, f ) #0.

Moreover, let A4 :Dc X> -C (X *) is a map of class S(D) coercive
with respect to f e X *, i.e., <A(y)—f,y> >0, for any y€0D . In this case, we
have deg(A,B, f ) #0 and so the inclusion A(y)> f has solutions in D.
Furthermore, the next result of the theory of the topological degree can be
generalised. Suppose that D is a symmetric bounded neighborhood of zero,

A:Dc X>—>C(X*) is a map of class S(D) and 0¢ A(0D). Suppose, in

addition, that
A(y)m/lA(—y) = for yedD and Ae [0,1],
then deg(A,l_),O) is an odd number.

The above-mentioned approach is also valid in the case of variational
inequalities of Solonoukha type [11] if we consider the next definition:

The A4:D>

->C(X*) is a map of type S_(D), if for any sequence
{ yn} in D onverging weakly to some y e X and for any sequence f, € A(y,)
converging weakly to some f € X~ such that

limsup[A(yn),yn —y] <0

n—w

it follows that y — yin X.

4. Degree for pseudomonotone maps.

We will now take the line traced by the definition presented at the end of
the previous chapter and we define
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A mapping 4 from D into C(X *) is weakly pseudomonotone or
PM_(D) if for any sequence { yn} in D converging weakly to some y e X and

for any sequence f, € A(y,) converging weakly to some f € X" such that
limsup[A(yn),yn —y} <0

it follows that fe A(y) and < f,,y,> — <f,y>.

We remark that if 4 is weakly pseudomonotone, then
limsup < 4y, —Ay,y,—y> = 0.

n—>0

We extend a basic relation due to B Calvert and J.R.L. Webb (see [9})
between the pseudomonotones operators and those of type S.

Theorem 4.1. Let Dc X be a open, bounded subset and
AO:DCX)—»C(X*) satisfies condition S_(D). Then demicontinuous

operator A :Dc X )—»C(X*) is pseudomonoton and 0 ¢ A(@D) if and only
if A, =cAdy+A: Dc X)—»C(X*) satisfies condition S_ (D) for each

e>0.
Proof. The “if” part. Let 4 be a weakly pseudomonotone operator and
assume that
limsupl:(gA0 +A)x, — (4, +A4)x,x, —x:l <0

n—>0

whenever X, —>X in X. Since Ae PM_(D), we have
limsup[ 4,x, — 4,x,x, —x] <0, we infer that x, —> x in X, that is, £4,+ 4 is of
type S_ (D) .

The ,,only if” part. Assume that €4, + A4 is of type S_ (D) for each £ > 0.
If 4 is not pseudomonotone, then there exists a sequence {x,} such that x,—x

and limsup[Ax, — Ax,x, —x] =-6 with  6>0. Then, since 4 is

demicontinuous {x,}can not be strongly convergent to x. On the other side,
because {x,} is bounded, there is an M >0 such that |x,|<A and

and have

2

‘8[140)6” — Ayx, x, —x]i‘ <4eM’. Take ¢ < : J

limsup[(gA0 +A)x, —(e4,+ A) x,x, —x] < —%5 <0

n—>0
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and {x,} doesn’t converge strongly to x, which contradict our initial assumption
that £4,+ A4 is of type S_(D). U

Moreover, 0¢ A4, (y) for any y €0D . Thus, deg(Ag,E,O) is defined if

0<&<8,M™". Let us show that the degree defined in this way does not depend
on ¢. Suppose that O<g <5,M~" for i=1,2 and consider the
corresponding 4, . Put A(t,y) =(y82 +(1-1) gl)Ao(y)+A(y). We have

A(O,y) =4, (y), A(l,y) =4, (y), and O¢ A(t,y) for any te [0,1] and any
y € 0D . Consequently,
deg(Ag] ,B,O) = deg(Ag2 ,5,0).

Hence, the limit glgrgo deg(Ag,E,O) exists, we call it the degree of the
pseudo-monotone map 4 on the domain D with respect to 0 € X* and denote it
by deg(A,B,O).

We notice that in the above construction the limit does not depend on map
A, and therefore the degree of the weak pseudomonotones maps is well-defined.

A similar degree theory of the S(D) mappings was elaborated in the book
of D. O’Regan, Y. J. Cho, Y.-Q. Chen [8] in 2006. Applications of the (S)-degree

for perturbations of maximal monotone operators in the theory of variational
inequalities have been tackled in [8] as well.
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