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AN INERTIAL ALGORITHM FOR SOLVING SPLIT
VARIATIONAL INCLUSION PROBLEM

Jin-Lin Guan*!, Yan Tang?, Ye-Yu Zhang?

This paper aims to investigate a new inertial algorithm for solv-
ing a split variational inclusion problem in real Hilbert spaces. Under very
mild conditions, we prove a strong convergence theorem for the proposed al-
gorithm by using self-adaptive stepsizes and demiclosedness principle. Fur-
thermore, an application is given to illustrate the effectiveness of the algo-
rithm. The results improve and extend the corresponding ones announced
by some others in the earlier and recent literature.
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1. Introduction

Throughout this paper, let H be a real Hilbert spaces with inner product
(,-). F(T) is denoted as the set of fixed points of a nonlinear mapping 7. We
use r, — « and x,, — x to indicate the strong convergence and the weak
convergence of the sequence {z,} to x, respectively.

First, we recall some notations which are needed in sequel. A mapping
T : H— H is called nonexpansive if

[Tz = Ty[| < |lz—yl, Yo,y € H.
A mapping T : H — H is called firmly nonexpansive if

A multi-valued mapping B : D(B) C H — 2 is called monotone if, for
all z,y € D(B),u € Bx and v € By such that

(x —y,u—v) >0.

A monotone mapping B is maximal if the graph G(B) is not properly
contained in the graph of any other monotone mapping. It is well known that
a monotone mapping B is maximal if and only if for (z,u) € D(B) x H, (z —
y,u —v) > 0 for every (y,v) € G(B) implies that u € Bzx.
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Let B: D(B) C H — 2% be a multi-valued maximal monotone mapping.
The resolvent operator JP : Hy — D(B) associated with B is defined by

JPx = (I +AB) ! (z), Vx € H,

for some A > 0, where I stands for the identity operator on H;. Observe that
for all A > 0, the resolvent operator J is single-valued, nonexpansive and
firmly nonexpansive.

Split monotone variational inclusion problem has already been used in
practice as a model in intensity-modulated radiation therapy treatment plan-
ning; see e.g., [1, 2, 3]. This formalism is also at the core of the modeling of
many inverse problems arising for phase retrieval and other real-world prob-
lems, further, in sensor networks in computerized tomography and data com-
pression; see e.g., [4, 5] and references therein.

In 2011, Moudafi [6] introduced the following split monotone variational
inclusion problem (in short, SMVIP): find z* € H; such that

0 € fix* + Biz*, (1)
y* = Ax* € Hy: 0 € fou* + Bayy*,

where f; : Hi — H; and fy : Hy — Hs are two given single-valued mappings,
A: Hy — H, is a bounded linear operator, By : H; — 2t and By : Hy — 22
are two multi-valued maximal monotone mappings.

If f{ =0 and f; =0, then the problem (1) reduces to the following split
variational inclusion problem (in short, SVIP): find z* € H; such that

0e BISL’*, (2)
y* = Ax* € Hy : 0 € Boy™.

Subsequently, Byrne et al. [7] proved a weak and strong convergence of
the following iterative method for problem (2): for given xy € H; and A > 0,
compute the following iterative sequence:

Tpp1 = Iy o, + €A (P2 — 1) Ax,].

Very recently, Sumalai et al. [8] studied a new split monotone variational
inclusion problem:
0 e Kz*,
{ Loxz* € H, : 0 € K, (Lyz*),

where L, : H — H, is bounded linear operator for every a = 1,2,--- /N, K :
H — 2" and K, : H, — 29+ are multi-valued maximal monotone mappings.
Moreover, they introduced the following scheme:

N
Zpp1 = J/ﬁ,a[ﬁnv +(1-19,) Z Ono(2n — MLl (I — infa)Lazn)].
a=1

As a result, they proved a strong convergence of the algorithm above under
appropriate assumptions on the parameters.
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Motivated and inspired by the results above, we introduce an inertial
algorithm with adaptive stepsize that does not depend on the norms of the
bounded linear operators. Under some suitable assumptions, a strong con-
vergence of the proposed algorithm is proved for solving a split variational
inclusion problem. Finally, we apply the main results to solve a split feasibil-
ity problem.

2. Preliminaries
In this section, we first recall some lemmas which are needed in sequel.

Lemma 2.1. (]9]) Let a multivalued mapping K : D(K) C H — 2% be
monotone, then the following statements are satisfied:

(i) For positive numbers p < p and for any z € R(I + uK)NR(I + pK),
we get

e = J22]) < 2]z = )

where R(I + pK) and R(I + pK) denote the range of the operators I + pkK
and I + pK, respectively.

(ii) For all z,Z € R(I 4+ pK) with pu > 0, we have

1Tz = JRZ|? < (2 — 2,52 — T 2);
(I —=J5)z— (1= JOz? < (T = JN)z— (I = J5)z, 2 —2);
152 = s> <l = s|® = [l2 = T2,
where s € T = K~1(0) # 0.
Lemma 2.2. ([10]) Let K be a nonexpansive mapping on a closed conver
subset C' of a real Hilbert space H. The mapping [ — K s said to be demiclosed

on C, if for any sequence z, in C, such that z, — s € C and (I — K)(z,) — s*,
we have (I — K)(s) = s*.

Lemma 2.3. ([11]) Let {r,} be a sequence of nonnegative numbers, {9, } be
a sequence in (0,1), and {q,} be a sequence of real numbers. Let the following
conditions be satisfied:

Tn+1 S (1 - 1971)7“” + 19nQn>
> U = 400 and limsup,,_,o ¢, < 0. Then, lim,_,o 1, = 0.

Lemma 2.4. ([12]) Let {r,} be a sequence of real numbers which does not
decrease at infinity; that is, there is a subsequence {ry } of {rn} such that, for
some jo € N,
Tn;, < Tn;41 for all j > jo.
For some ay large enough, define a sequence of integers {o(n)} by
o(n) :=max{ag <j<n:r; <rj}.

Then, lim,_, o(n) = oo and for all n > g, Max{ry(m), ™} < Tom)+1.
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3. Main results

In this section, we introduce a new inertial algorithm to approximating
a solution of the following split variational inclusion problem:
0 € Bx*, (3)
Agx* € H, 1 0 € By(Ayx™).
Let T" denote the solution set of problem (3). Subsequently, we give the main
results about our algorithm.

Lemma 3.1. Let H,H,,ao = 1,2,--- , N be real Hilbert spaces. Assume that
B:H — 2" B, : H, — 2" are marimal monotone operators, and A, : H —
H, is a bounded linear operator with adjoint operator A%, Define the following
algorithm :

Algorithm 1 Let u € H be a fized point and choose two arbitrary initial
guesses xg,x1 € H. Forn € N, let {x,} be a sequence of H generated by:

Yn = Tp + Hn(xn - xnfl)a
3 (4)

Tp+1 = Jﬁha[ﬁnu + (1 - Bn) 21 n,o (yn - nn,aAZ(I - Jﬁga)Aayn)]a

where
0, = min{”znfﬁﬁ}’ |20 — Tp—1]| # 0,
0, otherwise;
||( J;iaa) ayn||2

HAE(I - J,Ufn,a) ayn||2 + 6”,(1
and the parameters satisfy the following conditions:
i)0<&, <1,0>0;

i) {pna} C [ C (0.1), 32 pua = 1

(iii) {Bn}, {tna} C (0,1), Iffi:nl{liminfum} =4 > 0,{Cra} Cle,d] C(0,2);
(iv) €na >0 max{hmsupena} N1 < 00.

n,a ‘= Cma

Then, for any p € T, the following inequality holds:
ltn = plI? < llzn = Pl + 6n(2llen — pllllan = 2n1ll + Onllen —2n1]?)
(1 = T2 ) Aaynll*
1A5( = Jge) Aanll? + €nja’

N
- Z pn,a(n,a(2 - Cn,a)
a=1

N
where [, = z pn,a(yn - nn,aAZ(I - Jiaa)Aayn)'
a=1 '

Proof. Take p = Pru. From the conclusion studied in [6], we have x € " &
v e F(J7 ) and Agx € F(JJ= ), which implies that J7 p = p and (I —
JB«YA,p=0. By (4), we get

Hn,o
lyn — 2l = |20 + On(2n — Tn1) — D
< lzn = pll + Onllzn — 2n-1]- (5)
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N
Settlng ln = Z pn,a(yn_nn,aAZ<[_J£Laa)Aayn>- For each a = 1, 27 cee ]\[7
a=1 '

by the convexity of || - ||?, we obtain
2 - B 2
Il —pl= = Zl pn,a(yn - nn,aAZ(I - Junofa)Aayn) el
a=
- B 2
< 21 Pn,aHyn - nn,aAZ(I - Junofa)Aayn —pl*. (6)
a=

From (ii) of Lemma 2.1, condition (iv), the definition of 7, , and (5), we
estimate

lyn — 1,0 AL (I — J e YAayn — p||2

bn,a
= llyn = plI” = 2nn,a (AL = T2 VAayn, yn —p) + 17 o |ALT = JZ¢ ) Aaynl?
= llyn = plI”> = 20,0 (I = J22 ) Aayn, Aayn — Aap) + mp ol AL = T2 ) Aayall®

= |lyn — plI® = 20m,a (I — JBx YAayn — (I — JB> YAap, Aayn — Aap)

Hn, o Hn,a

+TI$L,(¥||AZ((I — JBe YAaynl?

Hn, o

= llyn = plI> = 20n,a({(I = JP> )Aayn — (I = JE> ) Aap, Aayn — Aap)

Hn, o Mn, o

+77$L,C¥||AZ(I —JBe YAaynl?

Hn, o
<lyn = plI? = 20,0l = J22 ) Aaynl® + ni,a(IIAZ(I —JB> YAayn|® +ena)

Hn,o Hn,o
(I — T2 ) Aaynl* (T = T2 ) Aaynllt

Hn, o
A5 (I = 722 ) Aaynl|? + en.a A% (I = J22 ) Aaynl|? + €n.a

bn,a

(1 — Joe )Aayn||4

Mn,o

IAZ(I = e ) Aaynl® + ena

Bn,a

< |lyn = plI* = 2n,a +32 o

< llyn —p||2 = ¢nyal(2 = Gnia)

< llen = plI* + On2llen — pllllzn — @01l + Onllzn —zn-1]?)

H(I - J/ﬁ?,a)Aayn”‘l (7)
A5 (T = T2 ) Aaynll? + en.a

B, o

_CTL,CV(Q - Cn,a)

Combining (6) with (7) yields that

I —p”2 < o, - pH2 + 0n (2l — pll|2n — 2pa || + Onll2n — xn71H2)

N B, 4
(I — J,u,a )Aan|
- pn,OzCn,a 2 — Cn,a == . 8
2 proeel® = GV S e

O

Theorem 3.1. Let H,H,,ao = 1,2,--- ,N be real Hilbert spaces. Assume
that B + H — 27 B, : H, — 2"« are two mazimal monotone operators.
Let A, : H — H, be bounded linear operators with adjoint operators A,
Assume that T' # (), conditions (i)-(iv) hold and lim, .. B, = lim, g—z =
0,> 2, By = 400. Then the sequence {z,} generated by algorithm 1 converges
strongly to the point p = Pru.
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Proof. First, we claim that the sequence {x,} generated by (4) is bounded.
Indeed, take p = Pru, from (4) and (5), we deduce

N
H-Tn—i-l _pH = Hj;ia[ﬁnu + (1 - 571) Z pn,oz(yn - nn,aAZ(I - JNBTSQ)Aayn)] _pH
a=1

< ||Bnu + (1 = Bn)ln — pl|

< Bullw = pll + (L = Bn)[lln — pll

< Bullu —pll + (L= Bo)llzn — pll + (1 = Bn)bnllzn — zp—1l
< Bullw = pll + (1 = Bo)llzn — pll + Onllan =zl

< Bullu = pll + (L = Ba)llzn — pll + &

< max{|[u — pl|, lzn — p[} +1

< max{|lu —p|, ||zo — p||} + 1,

which implies that {z,} is bounded, and so are {y,} and {l,}.
Next, we show that lim,, ,« ||z, —p|| = 0, where p = Pru. Indeed, setting
Zpn = Pt + (1 — Bn)l,, we have

20 — lu]| = Bullu — 1,]] = 0 as n — oo, 9)
it follows that {z,} is bounded. From the definition of z, and (8), we estimate

llzn — pII?
= [Bnu+ (1 = Bn)ln — plI?
= [1Ba(u—p) + (1 = Ba)(ln — P)|1?
< (1= Bn)llln — plI* + 28n(u — p, 20 — p)
<@ =Bu)llzn — ol + 0nQllzn — pllllzn — zn-1]l + Onllzn — zn_1]%)
I = Ji2e ) Aayall®
AL (T = T2 ) Aaynll? + ena

Hn, o

N
+26n<u — Dy 2n — p) - (1 - 571) Z pn,aCn,a(Q - Cn,a)

a=1

Due to (ii) of Lemma 2.1 and (10), one has

(10)

[

=77

Hn,o

N
[Bru+ (1= Bn) D pra(yn = maAZ( = J2¢ ) Aayn)] - plI?
a=1

=172, () = JI2, .pl?

<z —pl? =11 = J2, Dzall®

< (1 - 5n)||$n —PH2 +2B8n(u —p,2n —p) + en(ngn - p||||acn — Tp—1]l + eonn - $n71||2)
(e Y

A5 (I = T2 ) Aaynll? + en,a e

Hn,a

)z, (11)

N
7(1 - Bn) Z Pn,a(n,a(Q — Cn,a)

a1
and consequently

at1 < (1= Bu)rn + Budy, (12)
where r, = ||z, — p||* and g, = 2(u — p, 2, — p) + &= (2[|wn — pllllzn — T 1|l +
Oullzn — 2 [?)-
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In addition, we note that

0,
Gn =2(u—p,2p —p) + 3 (2H$n plllzn — 21| + Onl|lzn — xn—lHQ)

0,
< 2llu = pllllzn = pll + - Cllen = pllllzn = Tu-all + Onllzn — 20al®),

B
by lim,, Z—Z = 0 and the boundedness of {x,} and {z,}, it follows that g, is
bounded.

We divide the rest of the proof into two cases.
Case 1. If the sequence {r,} is decreasing, i.e., for an integer number
no, the sequence {r,} is decreasing for all n > ny. Thus, the sequence {r,}
eventually must converges. Moreover, from (11), we have
- I = T ) Aayn | )
(1—Bn) Z pr,aln,a(2 = Cn,a) A% (1 — Jun NAaynl? + ena + I - /,Ln Q)ZTL”
< (1= Ba)llzn — 2 = [ns1 = Pl + 280 (u — p, 20 — B) + 0n @l — Pllllen — 21|+ Onllzn — 2a—1]|?)
<lzn = plI* = lZnt1 — Pl + 28n(u — p, 20 — D) + O (2llen — pllllen — Tl + Onllzn — zn—1]?)
< = Tnt1 + 260 (u = p, 20 — p) + On(2]|zn — pllllTn — Tp—1]l + Onllen — zn-1]?). (13)

a=1

From conditions (ii), (iii), the boundedness of {z,},{z,} and lim, ., 5, =
lim,, o % = 0, we infer that

lim ||(I ‘]B ) ozynH = nlgglon(j_ ‘]pﬁha)znn = O,Voz =12,--- aN- (14)

n—o0 Hnsa
Furthermore, for every @ = 1,2,--- | N, from (i) of Lemma 2.1 and condition
(iii), we obtain
B Ba
(1 = J,)*)Aaynll < 2[|(1 = T2 ) Aaynll — 0 as n — oo (15)
and

B B
(1 — J, Vzull <2||(1 = J; )ynl| — 0 as n — 0.

Hn,a

By the definition of {l,} and (14), we deduce that

17n = yall _HzpnannaA* (I = Tz ) Aayn]

< an allmn,a A (I — JB“a)AaynH — 0 as n — oo.

In view of (9) and (1 ), it turns out that
120 = Ynll < llzn = lall + 11w — yall = 0 as n — oo. (16)

Meanwhile, since the sequence {z,} is bounded, there is a subsequence
{zn,} of {2,}, such that z,, — p* (without loss of generality, we may denote
zp — p*). It follows from (14) and Lemma 2.2 that p* € F(J? ). On the other
hand, since A, is bounded linear operator, we obtain from (16) and z, — p*
that Ay, — Ap*. By (14) and Lemma 2.2, it follows that A.p* € F(J2= ).
Thus p* € T'.
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Now, since p = Pru, utilizing the characterization of metric projection,
we deduce

limsup(u — p, z, — p) = (u — p,p* — p) = (u — Pru,p* — Pru) <0,

n—0o0

this together with lim,,_,. 2= 7 =0, implies that limsup,, .. ¢, < 0. Applying

Lemma 2.3 to (12), we obtain lim,_,o 7, = 0, i.e., lim, . ||z, — p|| = 0.
Case 2. If the sequence {r,} does not decrease at infinity. Then, using

Lemma 2.4, for large enough n > «ap, we defined a integer sequence {o,} by

op =max{ag <j<n:r; <rj}.

It is easily seen that {o,} is increasing and lim,, .., 0,, = +00. Moreover, for
all n > ag, 75, < 75,11. From (12), we have

O S Tcrn—‘,-l ran = /BCanO'n

We obtain from lim,,_, S, = 0 and the boundedness of ¢, that

lim (ry,+1 —75,) = 0. (17)

n—oo

By using the similar arguments as case 1 above, we obtain
r0n+1 S (1 - /Bo'n)/r.o'n + /Bo'nqo'n7

I(Z = J;7*) Aayor, | = 0 and (T — J,/)z, || = 0 as n — oo,

and limsup,,_, . ¢»,, < 0, this together with r, < r, 41 and lim, , 5,, = 0,
we infer that

Ton < Bonlo, — 0 as n — oo. (18)
It follows from (17), (18) and Lemma 2.4 that

0 <r, <max{r,,,m} <71, 11 — 0asn— occ.

That is, lim,, .« ||z, — p|| = 0. This completes the proof.
U

Remark 3.1. Compared with Theorem 3.2 of Sumalai et al. [8], our Theorem
3.1 extends, improves and develops it in the following aspects:

(i) Our iterative scheme is more general than it in [8]. Especially, a self-
adaptive inertial scheme is added to construct our iteration process, which s
not applied in [8].

(11) There is a gap in the proof of Theorem 3.2 in [8]. That is, after (26) in
[8], from the boundedness of the sequences {z,} and {l,}, we can not obtain
that ||zn, 41 — || = Un,|lv — In,]]. So we modify the proof, which makes the
results more applicable and valid.
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4. Application

In this section, by applying Lemma 3.1 and Theorem 3.1, we prove a
strong convergence theorem for solving a split feasibility problem.

Let H H,,aa = 1,2,--- | N be Hilbert spaces and C, ), be nonempty
closed convex subsets of H and H, respectively. Suppose that A, : H — H,
is a bounded linear operator and A} is the adjoint of A,. The split feasibility
problem (SFP) is the problem of finding a point with the property:

x € C and Ayx € Q,. (19)
We denote the solution of SFP (19) by I'.

Theorem 4.1. Let Po be the metric projection from H onto C and Py, be
the metric projection from H, onto Q.. Choose u € H and arbitrary initial
guesses xg,x1 € H. Forn € N, let {z,} be a sequence of H generated by:

{ Yn = Tp + en(ajn - mn—l)

Tn+l = PC[Bnu + (1 - /Bn) Pn,o (yn - nn,aAZ(I - PQ(X)Aozyn)]; necN,

&MZ

where
0, — min{ 22—, 0}, [lzn — 201l #0,
0, otherwise;
AL = Po,)A aynu + €na
and the following conditions hold:
i) 0<&,<1,0>0,{Cua} Cle,d C(0,2);

(i) {pna) C [a.8] € (0,1), % o = 1

(iv) €na >0 max{hmsupsna} N, < 0.

Assume that T # (), then the sequence {x,} generated above converges strongly
to the point p = Pru.

Proof. Taking J7 = Po and JJ= = Py, in (4), by using the same method
of Lemma 3.1 and Theorem 3.1, we obtain the desired conclusion directly. [

5. Conclusions

We not only extend the iterative algorithm of [8] by adding a self-adaptive
inertial scheme to construct our iteration process but also modify the proof
of Theorem 3.2 in [8], which makes our results more applicable and valid. At
last, we give an application of the modified algorithm.
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