U.P.B. Sci. Bull., Series C, Vol. 79, Iss. 2, 2017 ISSN 2286-3540

VLAN-PSSR: PORT-SWITCHING BASED SOURCE ROUTING
USING VLAN TAGS IN SDN DATA CENTERS

Ovidiu Mihai PONCEA?, Florica MOLDOVEANU?, Victor ASAVEI®

Source Routing allows a node in the path of a packet to specify partially or
completely the route taken by that packet. The route is appended to packet header as
a list of nodes to traverse, therefore making simple, stateless forwarding decisions.
In this paper, we present a novel approach of Source Routing in SDN that uses
stacked VLAN tags. Our solution was validated in Mininet using the Ryu controller
and proven to have multiple advantages over other forwarding methods.

Keywords: Networking, SDN, Source Routing, Mininet, VLAN
1. Introduction

In Source Routing, routes are usually specified when packets enter a
network either at source or at one of the edge switches. Many custom
implementation of source routing exists (mainly in HPC — High Performance
Computing solutions) such as Myrinet [1], Quadrics [2] and IEEE 1355.

In standard computer networking, IP provides a special header, Loose
Source Routing, which can be used to specify a list of routers that a packet can
take. At each node, packet destinations are replaced with information from this list
so that a packet can tunnel through a network that otherwise is unable to forward
it. This is intended to provide mobility for users through multiple provider
networks. To note here that this option can become a security hazard as it may be
used to piggyback packets to destinations that would otherwise be unreachable.
The solution is limited to IP only and most internet routers disable it.

In SDN, the controller keeps the global view of the network, it controls the
forwarding nodes, and knows what hosts are connected to edge switches.
Therefore, it is much easier for it to build and set routes at the edge of the network
for all the packets entering it. Furthermore, OpenFlow (www.goo.gl/yC79ge) has
the necessary mechanisms to create this kind of behavior without modifications.

1 PhD student, Dept of Computer Science and Engineering, Faculty of Automatic Control and
Computers, University POLITEHNICA of Bucharest, Romania, e-mail:
ovidiu.poncea@cs.pub.ro

2 prof, Dept of Computer Science and Engineering, Faculty of Automatic Control and Computers,
University POLITEHNICA of Bucharest, Romania, e-mail: florica.moldoveanu@cs.pub.ro

3 Lect., Dept of Computer Science and Engineering, Faculty of Automatic Control and Computers,
University POLITEHNICA of Bucharest, Romania, e-mail: victor.asavei@cs.pub.ro

http://www.goo.gl/yC79ge

16 Ovidiu Mihai Poncea, Florica Moldoveanu, Victor Asavei

In Data Center computer networking in general, and SDN in particular,
there are three main techniques for packet forwarding:

1. Destination based forwarding — packets destinations (e.g. MAC or
IP destination addresses) are matched against a list of destinations and, when an
entry matching the searched address is found, packet is forwarded on the correct
port using forwarding information from the matched list entry.

2. Label based forwarding — packets entering the network are
classified and a label is appended to each packet, then forwarded based only on
that label (e.g. ATM and MPLYS).

3. Source routed based forwarding — packets are forwarded based on
a list of nodes specified in the packet itself.

A list of different forwarding techniques is presented in [4]. The paper
analyzes CONGA [5], Shadow MACs [6], XPath [7], FastPass [8], SlickFlow [9]
and SecondNet [10].

The question is, why source routing? SDN can already forward a packet
through the network so, what benefits can source routing bring? The following
sections will explore this and present a novel source routing solution that provides
both unicast and multicast. The proposed source routing solution is based on
stacked VLAN tags that are pushed at edge and popped at each node after
forwarding is decided. A similar solution using MPLS tags is presented in [3].
The main advantage of VLAN stacking over MPLS is that support for MPLS is
limited in core switches while VLAN is much more common. Some switches do
not have MPLS support while the majority only support 3 levels of tags. Even if
this number can be increased it is recommended only for networks with small
diameter. Also, header sizes are smaller with VLAN tags — 2 bytes versus 4 bytes
for MPLS (+2 bytes for header type in both cases).

VLAN based source routing only needs VLAN forwarding and popping —
a common feature in current generation OpenFlow hardware switches. Even
though these switches are usually unable to push more than 4 tags, they are able to
easily pop a single tag and forward based on it while keeping the rest of tags
intact. Pushing many tags is only required by edge switches which usually are
software switches, therefore easier to implement®,

2. Limitations of destination/labels based routing and advantages of
Source Routing

Source routing reduces the following limitations of SDN standard
destination based forwarding or tag based forwarding:

4 Open vSwitch support for multiple VLAN tags is under review and will be available in the next
official release.

VLAN-PSSR: Port-Switched based Source Routing using VLAN tags in SDN Data Centers 17

1. Limitations of flow tables — with source routing table usage drops
dramatically [4]. We will show bellow that our method needs a static number of
flows in core switches. Number of flows increases in edge switches but, since
they are software, this is not a major issue.

2. Slow network updates — network updates can be slow when many
flows need to be updated at once. The slowness come both from the controller and
from the switches themselves. Source routing can reduce this issue as the number
of flows in core switches is reduced. Our approach does not involve any update of
flow tables in switches other than ones from the edge.

3. Traffic engineering can be complex and multipath routing hard to
implement. With source routing flows can easily be scheduled from edge to go on
multiple paths and packet distribution can be better controlled. In fact, the edge
can choose a different route on a per-packet basis.

Limitations of source routing:

1. Failover can be hard to implement, once a device on
the path of a source routed packet fails, the switches neighboring
the failed device no longer know how to forward those packets; a
solution would be to just send them back to the controller but this
may overwhelm it.

2. Source routing based on switch ID’s may be more
resilient to failover than port based ones because, if a port fails,
packets may be forwarded to a neighbor that is aware of the next
ID in the path and may reroute around the failed device so that
packets returns to the previous hop in the route.

Full broadcasts and multicast is not supported with source routing as
multiple destinations are almost impossible to specify. Our solution is partial yet
usable as it covers most use cases in real world Data Centers.

3. Description of the VLAN-PSSR solution

In the Ethernet header, VLAN tags sit between source MAC address and
higher protocols headers, usually IPv4 or IPv6. Multiple tags are appended to the
packet one after the other. In the Ethernet header, these tags are identified by an
Ethertype of 0x8100, therefore each tag contains these two bytes. Only after
Ethertype we have VLAN specific information:

e Priority code point (PCP), a 3 bit-field which maps a packet to a
priority queue,

e Drop Eligible Indicator (DEI) — single bit that indicates if packets
are eligible for dropping in case of congestions and

e VLANID (VID) — a 12 bit field specifying the VLAN to which the
packet belongs.

18 Ovidiu Mihai Poncea, Florica Moldoveanu, Victor Asavei

Our solution, VLAN-PSSR reuses VID for source routing. One bit is used
for specifying if the tag is multicast or unicast. For unicast 8 bits specify the port
number of a switch (0 to 255) while 3 bits are not used (Fig. 1).

Max: Max: N*4+ 20+ N*4 (N-1)*4
- i 20
M'll'U 2 MT|U 2 variable ZIZ 2042 +‘zo +‘ z‘s a z‘a 4 zlu 6 1I4 " zla 3 (IJ
—>| CRC/FCSl Payload | IPv4 header | E | | | Src MAC | Dst MAC I Preamble |->
DEI, Always ‘0’
Un'caSt'|||||||||||||||\I|||||||I|w||||||

/
Unused for ‘0’ for Unicast,
Unicast ‘1’ for Multicast

\
MUIticaSt:||||||||M|||\I|||||||||w||||||

Fig. 1. VLAN-PSSR Packet Format

For multicast, we divide the 11 bits of VID in two parts:

1. Group number — an unsigned integer pointing to a
subset of ports. If we divide the total number of ports of a switch in
groups, this number represents one such division.

2. Port bitflags — a set of bits representing all ports of a
group. Each bit corresponds to a single port. Multiple ports can be
selected at the same time. Therefore, a packet is forwarded on all
ports that are part of that group and have their bits set to 1 in port
bitflags

For example, in Fig. 1, 3 bits are reserved for group number and 8 for port
bitflags. In this configuration, we can define 8 groups, each with 8 ports, for a
total of 64 ports.

Note that we can remove the multicast bit and consider any message that
has a group number higher than ‘0’ to be multicast. In this case, we can multiplex
(duplicate) a packet up to 120 ports. If we need more ports, we can go further and
increase the group bitflag to 5 bits and decrease the port bitflags to 7 bits resulting
in 217 ports. A higher multiplexing also increases the number of tags needed
which increases packet size. Therefore, the optimal number of tags should be
selected based on the number of ports that a switch has.

The maximum number of ports (P) and max groups (G) can be computed
with:

P = (2% —1) = Ppg
G =26 (1)
Gs+ Ppg =11

VLAN-PSSR: Port-Switched based Source Routing using VLAN tags in SDN Data Centers 19

Where Gs is the number of bits reserved for group number, Ppg is the number of
bits in Port bitflag (i.e. ports per group) and 11 is the number of bits in VID.

4. VLAN-PSSR functional validation for unicast

To validate our solution, we first implemented it in Mininet
(www.mininet.org) with a small configuration (Fig. 2) and verified that ping is
successful and that UDP and TCP data connections can be successfully
established. We then wvalidated the message content with Wireshark
(www.wireshark.org). To make the setup work we used the latest version of Open
vSwitch (www.openvswitch.org) from the development branch (v 2.5) and
applied a patch for allowing multiple VLAN tags®. Open vSwitch was then
connected to Ryu SDN controller (https://osrg.github.io/ryu/) and on top of Ryu
we implemented our VLAN-PSSR application.

Mininet setup consists of three hosts Hi, H2 and Hs and 5 switches Si, S2
and Ss at the edge and C11 and Ci2 at core. Hosts are Linux containers instances®
and switches are Open vSwitch instances (bridges) connected to Ryu controller.
Flows are then managed by our VLAN-PSSR implemented on top of Ryu.

We configured Ethernet MAC addresses equal to host number (for easier
identification) and OpenFlow datapath IDs (dpid) to the switch number (1, 2, 3,
11=0xb & 12=0xc). Communication between H. and Hs uses destination based
forwarding, without source routing, as they are only one hop away while
communication between H1 < H2 and H1<& H3 uses Source Routing. The
validation configuration is presented in Fig. 2.

Simple forwarding, Switch S Host H.
e Request PR 1
no tags left ~.]

Response
Port Number

00:00:00:00:00:02
Host Hy Switch S1 Switch C17 Switch Cq

00:00:00:00:00:01

7
Push 2 Unicast Unicast
tags forwarding, pop forwarding, pop
one tag another tag

00:0(;:00:00:00:03
Fig. 2. VLAN-PSSR unicast validation setup

PSSR tags are added in the edge switches (S1, S2 and S3) and removed
(popped) in core at each switch. As an example, in Fig 2, we have a request and

S This patch is currently under review and will be available in next official Open vSwitch release

® This is an operating system level virtualization solution provided by the Linux kernel. It offers
logical isolation of process, networking and file system resources between containers so that
any one container is unable to access resources from other containers.

http://www.mininet.org/
http://www.wireshark.org/
http://www.openvswitch.org/
https://osrg.github.io/ryu/

20 Ovidiu Mihai Poncea, Florica Moldoveanu, Victor Asavei

response path between source Hi and destination H, where tags are pushed in Sy,
with the flows in Table 1, and forwarded between core switches, with flows in
Table 2. Flows in blue are used for management and the other ones implement
VLAN-PSSR. Management flows forward packets to controller if no match is
found, flood ARP requests and allow LLDP neighbor discovery.

Table 1 shows the process of matching a packet header and pushing all
needed VLAN-PSSR tags. When a packet enters the switch it is matched against
its destination (e.g. request in Fig. 2 has a destination address of
00:00:00:00:00:02) and a tag is added, then it is sent to the next table in the
pipeline, matched again and another tag added. In the end it is forwarded to next
hop (C11) that is connected to port 2:

o flow #3: destination 00:00:00:00:00:02 is matched, first tag is
added (for crossing C11 = Ci12) & sent to table 1
e flow #7: destination matched again, second tag is added (for

crossing Ci2 2 S2) & packet is sent to port 2.
Table 1
Unicast flow table of switch S;

Flow entries

zZ
©

table=0, priority=65535,dl_dst=01:80:c2:00:00:0e,d|_type=0x88cc actions=CONTROLLER:65535

table=0, priority=60000,dI_dst=ff:ff.ff:ff:ff:ff actions=FLOOD

table=0, in_port=1,dl_dst=00:00:00:00:00:02 actions=push_vlan:0x8100,set_field:4097->vlan_vid,goto_table:1
table=0, in_port=1,dl_dst=00:00:00:00:00:03 actions=push_vlan:0x8100,set_field:4098->vlan_vid,goto_table:1
table=0, in_port=2,dl_dst=00:00:00:00:00:01 actions=output:1

table=0, priority=0 actions=CONTROLLER:65535

table=1, in_port=1,dl_dst=00:00:00:00:00:02 actions=push_vlan:0x8100,set_field:4098->vlan_vid,output:2
table=1, in_port=1,d|_dst=00:00:00:00:00:03 actions=push_vlan:0x8100,set_field:4098->vlan_vid,output:2

QO IN|D AW IN =

At core switches, in Table 2, packets are matched against their VLAN tags
and forwarded to corresponding ports (e.g. match on VID 1 will forward to Port
1); see flows #3 to #17. Before forwarding packets to their outputs a tag is poped
from the stacked list of VLANS.

Table 2
Unicast flow table of switch C11 & C12
No. Flow entries

1. | table=0, priority=65535,dl_dst=01:80:c2:00:00:0e,d|_type=0x88cc actions=CONTROLLER:65535
2. | table=0, priority=60000,d|_dst=ff:ff:ff:ff:ff:ff actions=FLOOD
3. | table=0, dl_vlan=1 actions=pop_vlan,output:1
4. | table=0, dI_vlan=2 actions=pop_vlan,output:2
5. | table=0, dI_vlan=3 actions=pop_vlan,output:3
[cut 12 entries]

17. | table=0, dI_vlan=15 actions=pop_vlan,output:15

18. table=0, priority=0 actions=CONTROLLER:65535

Looking at the tables in core switches we see that they are static in size
and depend linearly on the number of ports, so for a 64 port switch only 64 static
entries are needed. With destination or label based forwarding managing

VLAN-PSSR: Port-Switched based Source Routing using VLAN tags in SDN Data Centers 21

thousands of flows in each core switch is normal but, with source routing, we can
substantially reduce this number to a maximum of a few hundred.

5. VLAN-PSSR functional validation for multicast

For VLAN-PSSR multicast packets are transmitted on a unicast path until
penultimate hop where packets are multiplied and sent to the last hop for final
forwarding. The reason for doing this is that VLAN-PSSR can only do a single
multiplication and this needs to be close to the packet destination. In data centers
usually the penultimate hop is the Top of Rack (ToR) switch while last hop is the
virtual switch of servers. Therefore, our solution is providing multicast inside a
single rack but, since we are targeting multitenant Data Centers with edge virtual
switches, multicasting inside the same rack represents the majority of use cases.
Broadcast domains are usually small in multitenant Data Centers with only a few
VMs connected to the same domain (around 10 - 20) which, to reduce bandwidth
usage of the core network, are kept closely together, rarely spanning multiple
racks.

For validating our approach, we used the same setup as before, with a
multicast stream originating in H1 and sent to both H> and Hs (Fig. 3). From H: to
C12 packets are transmitted using unicast and multiplication is done by Cio.

At edge switch S1 both unicast and multicast tags are added, unicast first
and multicast last so that, when packet arrive at C12, only the multicast tags are
left. Then Ci2 multiplies the packet and forwards it to both destination edge
switches. To note that C12 is unable to drop multicast tags so the edge switches
need to pop any remaining tags before sending the packet to the destination host’.

Multicast Switch S Host H,

=== Multicast Stream Packet

@ Port Number

duplication
\ 00:00:00:00:00:02
Host Hj Switch S1 Switch C11 Switch C15 x
E ‘O O O —— *-_.‘ﬂ_, Pop any
remaining tags

00:06:00:00:60:01 \
Push tags Unicast
forwarding

00:00:00:00:00:03

Fig. 3. VLAN-PSSR Multicast setup

" This is only valid for OpenFlow 1.3. Higher versions have two pipelines one on ingress, which
processes packets when they enter the switch and another one on egress, which processes
packets after output port action has been decided. Therefore, multiplication is done on ingress
and VLAN tag drop can happen on egress. We used version 1.3 capabilities as these are more
widespread.

22 Ovidiu Mihai Poncea, Florica Moldoveanu, Victor Asavei

Flow table of edge switch S; is presented in Table 3. Management flows
are in blue, flows that add VLAN tags in black, flows that drop all VLAN tags

remaining are in red.

Table 3

Flow Table of Edge switch S1 in multicast case
Flow entries

zZ
o

table=0, priority=65535,dl_dst=01:80:c2:00:00:0e,d|_type=0x88cc actions=CONTROLLER:65535

table=0, priority=65535,vlan_tci=0x1800/0x1800 actions=pop_vlan, TABLE

table=0, priority=60000,dI_dst=ff:ff.ff:ff:ff:ff actions=FLOOD

table=0, priority=0 actions=CONTROLLER:65535

table=0, in_port=1,dl_dst=00:00:00:00:00:02 actions=push_vlan:0x8100,set_field:4097->vlan_vid,goto_table:1
table=0, in_port=1,dl_dst=00:00:00:00:00:03 actions=push_vlan:0x8100,set_field:4098->vlan_vid,goto_table:1
table=0, in_port=1,dl_dst=01:00:5e:00:00:01 actions=push_vlan:0x8100,set_field:6150->vlan_vid,goto_table:1
table=0, in_port=2,dl_dst=00:00:00:00:00:01 actions=output:1

table=1, in_port=1,dl_dst=00:00:00:00:00:02 actions=push_vlan:0x8100,set_field:4098->vlan_vid,output:2
table=1, in_port=1,d|_dst=00:00:00:00:00:03 actions=push_vlan:0x8100,set_field:4098->vlan_vid,output:2
table=1, in_port=1,dl_dst=01:00:5e:00:00:01 actions=push_vlan:0x8100,set_field:4098->vlan_vid,output:2

PO[O0INIO LA IWIN (=

P

Flow tables of nodes doing multicast forwarding (penultimate hops) are
complex (Fig. 4). Processing is done in a pipeline starting at table 0 and each pass
processes a single multicast tag, therefore if multiple tags are present multiple
passes of the same packet through the pipeline are needed, which decreases
performance when used in software.

Processing takes the following steps (P is the number of ports in a group
and G the number of groups):

1. Intable #0, multicast tag is identified. If the packet is multicast tagged
processing continues in table 10;

2. Intable #10 packet is matched against a single entry and sent to a port,
otherwise it is sent to next table;

3. Intable #11 to #10 + (P-1) packet is matched against other group/port
pair until reaching end of pipeline;

4. In table #10 + P, if packet still contains multicast tags it is sent back to the
beginning of pipeline to process another tag otherwise it is considered
processed and dropped.

Edge switch tables (Table 4) only pop VLAN and provide destination
based forwarding to H1; for our experiments we used multicast Ethernet group
01:00:5e:00:00:01. With blue we marked management flows, with red unicast
flows and with black are the two multicast flows.

VLAN-PSSR: Port-Switched based Source Routing using VLAN tags in SDN Data Centers 23

Receive

A

Group 0, port 0? Group 0, port 1?
Output port 0 & Output port 1 &
GOTO table 11 GOTO table 12

Multicast tag? Group 1, port 0? Group 1, port 1?
GOTO table 10 Output port 8 & Output port 9 &

Group 0, port P?
OutportG+0&
GOTO table P
Group 2, port P?
Out port 9 &
GOTO table 11 GOTO table 12 GOTO table P
Group 2, port 0? Group 2, port 1? Group 3, port 1?
Output port 16 & Output port 17 & Out port 17 &
GOTO table 11 GOTO table 12 GOTO table P :
Multicast tag?
o o * GOTO beginning
Table 0

Group G-1, port 0? Group G-1, port 1? Group G-1, port 0?

Out port (G-1)*P+0 & Output port (G-1)*P+1 & Out port (G-1)*P+(P-1) &
GOTO table P
Pop Vlan tag,
GOTO table 10 + P
Table 10 + (P-1) Table 10 +P

GOTO table 11 GOTO table 12

GOTO table 11 GOTO table 12

Table 10 Table 11

Fig. 4. Multicast flow entries of core switches

Table 4
Flow Table of Edge switch Sz in multicast case
No. Flow entries
1. | table=0, priority=65535,d|_dst=01:80:c2:00:00:0e,dl_type=0x88cc actions=CONTROLLER:65535
2. | table=0, priority=60000,d|_dst=ff:ff:ff:ffff:ff actions=FLOOD
3. | table=0, priority=0 actions=CONTROLLER:65535
4. | table=0, priority=65535,vlan_tci=0x1800/0x1800 actions=pop_vlan, TABLE
5. | table=0, dl_dst=01:00:5e:00:00:01 actions=output:1
6. | table=0, in_port=1,dl_dst=00:00:00:00:00:03 actions=push_vlan:0x8100,set_field:4098->vlan_vid,output:2
7. | table=0, in_port=1,dl_dst=00:00:00:00:00:01 actions=push_vlan:0x8100,set_field:4097->vlan_vid,goto_table:1
8. | table=0, in_port=2,dl_dst=00:00:00:00:00:02 actions=output:1
9. | table=1, in_port=1,dl_dst=00:00:00:00:00:01 actions=push_vlan:0x8100,set_field:4099->vlan_vid,output:2

Flow table size (Tsize) in penultimate hops (i.e. the Top of Rack switch) is
proportional with number of groups used (Gu) from the total (G), ports per group
(Ppg) and total number of ports of that switch (P):

[e
Gu = [Ppg] (2)
Tsize =3+ (Gu+1) = Ppg 3)
Ntables=Gu+ 2 4)

Therefore, for a 64 ports Top of rack switch, where Ppg = 8, Tsize = 75,
which is an easily manageable number.

6. Conclusions

Source Routing based on VLAN tagging can easily be implemented using
existing OpenFlow 1.3 functionality. This solution can be enabled by default in an
entire Data Center, thus simplifying flow tables in core switches or, if packet size
is an issue, only when the number of flows approaches the maximum capacity
(flow resources are limited by hardware). The controller can decide when to apply

24 Ovidiu Mihai Poncea, Florica Moldoveanu, Victor Asavei

it. This may also be used to improve multipath routing, as packets can be directed
on different paths from the source using fine grained distribution algorithms and
switches in the core will not even be aware of it.

Also, given the fact that switching tables are static and if hardware
customizations are possible, then very simple and fast hardware that only needs to
support VLAN-PSSR can be built and this would provide an impressive cost
reduction per switching unit.

REFERENCES

[1] N.J.Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz, J. N. Seizovic, and W.-K.
Su., “Adaptive Routing Strategies for Modern High Performance Networks”, in 16th IEEE
Symposium on High Performance Interconnects, 2008, pp. 165-172

[2] F. Petrini, W.C. Feng, A. Hoisie, S. Coll and E. Frachtenberg. “The quadrics network
(gsnet): High-performance clustering technology”, in Hot Interconnects 9, 2001, pp. 125-
130

[3] M. Soliman, B. Nandy, I. Lambadaris and P. Ashwood-Smith, "Source routed forwarding
with software defined control, considerations and implications”, in Proceedings of the 2012
ACM conference on CONEXT student workshop, 2012, Nice, France

[4] S. A. Jyothi, M. Dong and P. Godfrey, "Towards a flexible data center fabric with source
routing," in Proceedings of the 1st ACM SIGCOMM Symposium on Software Defined
Networking Research, 2015, Santa Clara, CA, US.

[5] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu, A. Fingerhut, F. Matus,
R. Pan, N. Yadav and G. a. 0. Varghese, "CONGA: Distributed congestion-aware load
balancing for datacenters”, ACM SIGCOMM Computer Communication Review, 2014,
vol. 44, no. 4, pp. 503-514

[6] K. Agarwal, C. Dixon, E. Rozner and J. Carter, "Shadow macs: Scalable label-switching for
commodity ethernet,” in Proceedings of the third workshop on Hot topics in software
defined networking, 2014, Chicago, IL, US

[71 S. Hu, K. Chen, H. Wu, W. Bai, C. Lan, H. Wang, H. Zhao and C. Guo, "Explicit path control
in commodity data centers: Design and applications,” in 12th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 15), 2015, Santa Clara, CA, US.

[8] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah and H. Fugal, "Fastpass: A centralized
zero-queue datacenter network”, ACM SIGCOMM Computer Communication Review,
2014, vol. 44, no. 4, pp. 307-318.

[91 R. M. Ramos, M. Martinello and C. E. Rothenberg, "SlickFlow: Resilient source routing in
data center networks unlocked by OpenFlow", in Local Computer Networks (LCN), 2013
IEEE 38th Conference on, Sydney, Australia.

[10] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu and Y. Zhang, "Secondnet: a
data center network virtualization architecture with bandwidth guarantees,” in Co-NEXT
'10 Proceedings of the 6th International COnference, 2010, New York, NY, US

