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TWO SIMPLE FORMULAE FOR HALL-GEOMETRY 
FACTOR OF HALL-PLATES WITH 90° SYMMETRY  

Udo AUSSERLECHNER1 

Symmetrical Hall-plates with equal input and output resistance are 
considered. The Hall-geometry factor accounts for the loss of output voltage due to 
finite size of contacts. In the limit of low magnetic field it depends only on the 
effective number of squares (i.e. the ratio of internal resistance over sheet 
resistance). For the first time two simple formulae are given which express the Hall-
geometry factor as a function of effective number of squares. These approximations 
are accurate up to 2% and 0.02%, respectively, for arbitrary contact size. They also 
suggest a symmetry property not mentioned in the literature. The results hold for all 
shapes of Hall-plates with four electrodes which are invariant to rotations of 90°. 
Thus, they can be used for the optimization of spinning current Hall probes by 
electronic circuit design engineers. 
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1. Introduction 

Hall plates are widely used in today’s industry to measure linear or 
rotational position or electric current with galvanic isolation. There the circuit 
design engineer needs to optimize the signal over noise ratio SNR at low magnetic 
field while keeping the power drain low. This calls for Hall-effect devices with 
medium sized contacts, where the influence of the contacts cannot be neglected as 
assumed in most prior approaches [1-3]. However, for medium sized input and 
output contacts there are no closed analytical formulae for the Hall-geometry 
factor, which describes the loss in signal due to short-circuiting effects of the 
electrodes. There are indeed numerical solutions, yet they are not ready to use in 
daily practice [4-6]. Besides, modern Hall plates have a 90° symmetry, where 
input and output contacts are periodically swapped to implement the spinning 
current scheme, which drastically reduces the offset (i.e. the zero point error) [7, 
8]. (In industrial practice this low offset is still one of the main advantages over 
magneto-resistors.) No one seems to have used this symmetry so far to provide 
simple electrical design formulae.  

In contrast to a physical layout engineer a circuit design engineer is 
interested in the Hall-geometry factor versus internal resistance and not versus 
contact size or geometric shape. As known from conformal mapping theory there 
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is a unique relation between the effective number of squares of internal resistance 
and the Hall-geometry factor in the limit of low magnetic field. This applies for 
all kinds of geometry such as disks, squares, rectangles, crosses, octagons, clover 
leaves a.s.o., as long as a conformal mapping exists which transforms one into the 
other. In other words, if e.g. an octagonal Hall plate and a disk shaped Hall plate 
have the same number of squares, then they also have the same Hall-geometry 
factor, the same thermal noise, and the same magnetic sensitivity. They are 
equivalent within the scope of linear electrostatic theory. This led us to the goal of 
looking for a simple formula, which expresses the Hall-geometry factor as a 
function of effective number of squares. Such a formula has not yet been reported 
in literature. However, it would be of significant practical interest, because it is 
much simpler to first compute the effective number of squares and then get the 
Hall-geometry factor thereof with the simple formula, than to compute the Hall 
geometry factor directly. Another benefit is that the effective number of squares 
can be measured easily on wafer level by Van-der-Pauw’s method without need to 
apply a magnetic field.  

2. Definitions 

The output voltage Vout of Hall-plates depends on input current Iin or 
voltage Vin and perpendicular magnetic flux density B⊥. 

ininout VSBISBV VI ⊥⊥ ==   (1) 
SI and SV are current and voltage related magnetic sensitivity, respectively. With 
the input resistance Rin = Vin / Iin it holds 

HHin tRGRSS HVI ==          (2) 
with the plate thickness tH and the Hall-geometry factor GH. The Hall coefficient 
RH depends solely on material properties. Due to symmetry the input resistance 
Rin equals the output resistance Rout. It is given by 

shoutin RRR λ==          (3) 
with the effective number of squares λ  and the sheet resistance Rsh. Thermal 
noise is proportional to the square-root of the internal resistance and low-
frequency noise is cancelled out by the spinning current scheme [9]. Combining 
this with the foregoing equations one obtains 21

Hin
−∝ λGISNR , 

1
Hinin

−∝ λGIVSNR , and 23
Hin

−∝ λGVSNR , which need to be maximized 
depending on whether supply current, power, or voltage is limited [10]. For this 
kind of optimization we are interested in the low-field limit of the Hall-geometry 
factor only: ( )

H0

0
H lim GG

B →⊥

= . The magnetic field is considered to be low if 
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1<<⊥Bhμ  holds. For Hall-plates with 90° symmetry the field dependence of the 
Hall-geometry factor is approximated by [11] 

( )( ) ( )
⊥

⊥−−≅
B

BGG
H

H0
HH

arctan11
μ

μ          (4) 

3. An approximate fit formula 

Let us consider disk shaped Hall-plates with four equal contacts, each one 
covering an aperture angle of 2θ [4]. First we compute the internal resistance and 
then the Hall-geometry factor. 

Following the method of [12] we reduce the number of contacts from four to 
two: in the absence of magnetic fields the potential distribution is symmetric and 
so one needs only consider a quarter of the circular Hall plate. If e.g. 1V is applied 
at two diametrically opposite contacts of the original plate, the output contacts 
would be at 0.5V. Fig. 1(a) shows the lower right quarter of such a circular Hall 
plate. The half of the right output contact between Z3 and Z4 is at 0.5V and the 
right half of the ground contact between Z1 and Z2 is at 0V. Due to symmetry the 
potential along the line Z4-Z5 is also at 0.5V and so we can place a contact there 
and connect it to the output contact without changing potential and current 
distributions. Due to symmetry half of the current through the original device 
flows through Z1-Z2 and also between Z3-Z5. Hence, the total resistance of the 
plate is the ratio of voltage between Z1 and Z5 divided by the current through Z1-
Z2. Next we map the interior of this quarter disk in fig. 1(a) to the interior of a 
rectangle in fig. 1(d) such that one edge corresponds to Z1-Z2 and the opposite 
edge corresponds to Z3-Z5. The ratio of the lengths of these edges  |Q2Q3|/|Q3Q5| 
is the number of squares of both rectangle and circular disk. The first 
transformation w = (1-z²)²/(1+z²)² maps the interior of the quarter disk in the z-
plane to the upper half-space of the w-plane in fig. 1(b) [13]. Then the contacts lie 
on the real axis in the w-plane: the ground contact extends from w = −∞  at W1 to 
w = −1/(tanθ)² at W2 and the output contact extends from w = −(tanθ)² at W3 to w 
= 1 at W5. Thereby W1 corresponds to Z1, W2 corresponds to Z2, and so on. By 
a subsequent bilinear transformation t = (A+Bw)/(C+Dw) these asymmetric points 
in the w-plane are mapped into symmetric position in the t-plane in fig. 1(c), such 
that t = −1/k at T1, t = −1 at T2, t = 1 at T3, and t = 1/k at T5 with 0 < k < 1. We 
choose B = −1, from which follows D = k, A = 1 – 2/sin(2θ), and C = (sinθ 
tanθ−cosθ /tanθ)/ (sinθ+cosθ). For k we get a quadratic equation, from which we 
choose the solution with k < 1 
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( )( ) ( )θθ 2cos2sin1−=k              (5) 
It was verified that the bilinear transformation maps the upper half-space of the w-
plane onto the upper half-space of the t-plane. According to [12] the 

transformation ( )( )( )∫
−

−−=
t

dxxkxq
0

21222 11  maps the upper half space of the t-

plane onto the interior of the rectangle in the q-plane in fig. 1(d). Obviously the 
ratio of the lengths of both edges of this rectangle is equal to its effective number 
of squares  

( ) ( )kKkKQQQQ ′== 25332λ          (6) 

with ( ) ( )( )2121 kKkK −=′  and ( ) ( ) ( )∫
−−

−−=
1

0

2122212 11 dttktkK  is the complete 

elliptical integral of the first kind. In the computation of |Q3Q5| we used the 

identity ( ) ( ) ( )( )∫=

−−
−−−=′

1

0
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−−
−−=
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1
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which is proven by the substitution (1-k²)t² = 1–k²τ².  
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Fig. 1 (a-d). Sequence of conformal transformations that map the interior of a quarter circle onto 
the interior of a rectangle 

 
The Hall-geometry factor for disk shaped Hall-plates with four equal contacts 

of medium size can be computed numerically according to [4]. To this end the 
relation between λ  and θ  according to (5) and (6) is used. Yet for too small or 
too large contacts numerical problems show up. In the limit of small contacts and 
small magnetic field one can derive an analytical formula with (27) in [4] 
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( ) ( )2exp321 20
H πλπ −−≅ −G          (7) 

 
The error of (7) is +0%/-0.32% for 1.83 < λ. In the limit of large contacts and 
small magnetic field one can derive from [4] (with appreciable effort) 

( )

( ) ( ) ( )λπλπλπλπ
πλ

−−−−
≅

exp2ln24
1

exp73
1

2
3 220

HG          (8) 

with an error bound of +1.4%/-0% for λ < 0.51. 
With the foregoing equations one can obtain numerical data for the Hall-

geometry factor over a wide range of number of squares. A plot of the resulting 
curve is given in Fig. 2 in both (a) linear and (b) logarithmic scale. Figure 2(b) 
shows GH×(1-GH) in order to magnify the curves at small and large λ. Numerical 
data for 0.4 < λ < 5 was obtained from [4].  This curve can be approximated by 
the astonishingly simple fit formula  

42242
H,1 ++≅ λλλG          (9) 

 
Equation (9) is accurate for large and medium sized contacts, yet for small 
contacts (λ > 2.5) the error is visible in fig. 2(b). In general (9) slightly 
underestimates the Hall-geometry factor, as it is shown in Fig. 3. There as 
reference we took numerical data obtained from [4] in the range where they are 
reliable (notice first signs of round-off “noise” at λ ≈ 0.4 and λ ≈ 5). Outside this 
range we used the more accurate analytical limit formulas (7, 8). (9) has no error 
at λ = 21/2 and it has -1% error at λ = 0.355, 1, 2, 5.43.  The curve is symmetric to 
λ = 21/2. An additional factor improves the accuracy by two orders in magnitude  

( ) ( ) ( )( )( ) H,1
6

6
4

4
2

20
2

H,2 exp1 GccccG ×Λ−Λ+Λ−−Λ+≅       (10) 
 

with Λ = ln(λ /21/2) and c0 = 2.279, c2 = 1.394, c4 = 0.6699, c6 = 0.4543.  The 
error of (10) is between -6×10-5 and 2×10-4 for 0 < λ < ∞ as shown in fig. 4. There 
the abscissa axis covers effective numbers of squares from 0.002 to 500 in 
logarithmic scale. Note again the striking symmetry of the curve with respect to  λ 
= 21/2 where the approximation error vanishes.  
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(a) 

 
(b) 

Fig. 2 (a-b). Hall-geometry factor GH for symmetric Hall plates at small magnetic field versus 
effective number of squares λ: (a) linear scale, (b) logarithmic scale. 

 

 
Fig. 3. The error of fit (9) for GH versus λ. 

 
Fig. 4. Ratio of approximate Hall-geometry factor after (10) over the exact one (GH,2/GH). 
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4. Conclusions 

For the first time the Hall-geometry factor of 90°-symmetric Hall-plates in 
the low magnetic field limit is given as a function of the effective number of 
squares λ. It is approximated by two simple formulae (9, 10) with 2% and 0.02% 
accuracy, respectively. They suggest an apparent symmetry between small and 
large contacts GH(λ = 21/2x) = x² GH(λ = 21/2/x) for x > 0. This symmetry has not 
yet been reported in the literature and we have no rigorous proof for it.  

Equations (9, 10) are of practical relevance for concept engineers of Hall 
sensors systems, because they allow for an optimization of the electronic system 
in terms of a single degree of freedom (namely the effective number of squares λ) 
regardless of the specific geometry of the Hall plate. 

Equations (9, 10) are also useful in the characterization of Hall-mobility. 
There one can measure the effective number of squares with Van-der-Pauw’s 
method, determine the Hall-geometry factor with (9, 10) and use this result in the 
mobility measurement.  
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