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DYNAMIC FRICTION IN COULOMBIAN RUBBER DAMPER 

AT LOW VELOCITIES   

Haider WAHAD1, 2, Andrei TUDOR3, Kussay SUBHI1 

This paper describes a study of the dynamic friction between the rubber and 

steel ball at low sliding velocities. The highest velocity did not exceed a few 

millimeters per minute so that frictional heating was negligible. The results show 

that the friction decreases with the sliding velocity to a minimum value. Therefore, 

that friction appears from normal force and sliding velocity, and that both are 

directly related to the viscoelastic properties of the rubber. In the sliding contact of 

rubber (viscoelastic material) on a rigid substrate, the coefficient of friction may 

depend on normal force, sliding velocity. The friction is characterized by a Striebeck 

curve type (friction coefficient  versus sliding speed v). Theoretical model and 

experimental results of friction coefficient between the rubber and steel ball on 

sliding velocities for different values is investigated.  

 

Keywords: sliding velocity, rubber, coefficient of friction, normal load. 

1. Introduction 

Friction exists everywhere in both nature and man-made objects. It can be 

beneficial, such as book flipping or product transportation on conveyor system 

[1,2]. Sometimes friction is expected to be reduced because it causes the 

unwanted loss of energy [3, 4, 5]. A simple but today still widely used law of 

friction is Amontons’ law which states that friction force is proportional to the 

normal force, the ratio is known as coefficient of friction. However, since 

Coulomb it has been already known that coefficient of friction may depend also 

on material, normal load, system size, time, sliding velocity [6, 7]. It is well 

known that for rubber like viscoelastic materials friction in a contact with a hard 

counter surface is velocity-dependent [8]. A large number of studies have shown 

that friction between viscoelastic material and hard surface depends on loading 

parameters and material parameters, in particular strongly on sliding velocity, 

normal load and temperature [9, 10]. The phenomena of friction between rubber 
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and rigid materials have many applications. The rubber has elasticity makes it 

suitable for various kinds of shock absorbers and for specialized machinery 

mountings designed to reduce vibration.  

The aim of this work is to determine the friction force and friction 

coefficient for the rubber against steel ball at very low sliding velocities. 

2. Theoretical Model of the Friction  

In spite of the obvious practical importance, recently it was argued that, 

although there is a large number of parameters which affect the friction, the 

number of parameters can have reduced by choosing corresponding parameter 

combinations which mostly directly and robustly determine friction, lubricant 

viscosity (η), and coefficient of friction (0), dependent on the lubricant rheology. 

In the area of low sliding speed, at zero velocity, there is static friction 

characterized by static coefficient of friction μs, which is dependent on the real 

contact pressure, couple materials [11]. The coefficient of friction is maintained 

constant until a certain velocity v0: 

 𝜇𝑜 = 𝜇𝑠   𝑓𝑜𝑟   0 ≤ 𝑣 ≤ 𝑣𝑜 .   (1) 

When the sliding velocity increases over v0 limit, the normal force is 

transmitted through the real area, in this case the friction coefficient decreases 

curvilinear until it reaches a limit value m [12]. It is accepted in the zone of limit, 

mixed and dry friction a parabolic variation as:  

 𝜇 = 𝑎𝑣2 + 𝑏𝑣 + 𝑐     𝑓𝑜𝑟  𝑣𝑜 < 𝑣 < 𝑣𝑐𝑟  ,         (2) 

where vcr is the critical velocity and a, b, c are constants for certain known points 

(v0, S), (vm, m) minimum point.                                             

For velocities higher than vm, a fluid friction begins. In this case the 

friction coefficient having an analytical form: 

 𝜇 = 𝑐ℎ𝑣𝑎 + 𝜇𝑜    𝑓𝑜𝑟 𝑣𝑎 ≥ 𝑣𝑐𝑟 .   (3) 

The following notations are made: a=/s; ma=m/s; vam=v/vm; v0m=v0/vm ; 

v0a=v0/vm ; va cr=vcr/vm ;  cha=ch vm/s.   

Putting the continuity conditions everywhere and derivability in the zone 

of dry, limit and mixed of friction coefficient function, Striebeck type, the 

constants a, b, c, 0 can be determined.  

Thus, the relative friction-sliding coefficient has the expression 

 

𝜇𝑎 = {

                𝜇𝑠 = 𝜇𝑜                         𝑖𝑓 𝑜 ≤  𝑣𝑎𝑚 ≤  𝑣𝑜𝑚

𝑎𝑎𝑣𝑎𝑚
2 + 𝑏𝑎𝑣𝑎𝑚 + 𝑐𝑎               𝑖𝑓 𝑣𝑜𝑚 < 𝑣𝑎𝑚 < 𝑣𝑎𝑐𝑟 

𝑐ℎ𝑎𝑣𝑎𝑚 + 𝜇𝑜                 𝑖𝑓 𝑣𝑎𝑚 ≥ 𝑣𝑐𝑟

. 

  (4) 

The Striebeck curves depend on the minimum value of the friction 

coefficient ma, lubricant viscosity (cha), and minimum sliding velocity (vom). The 

Fig. 1 shows the theoretical curve for minimum values of the friction coefficient. 
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Fig. 1 Striebeck curves for some minimum friction coefficients 

  

The rubber can be approximated by a Standard solid type, characterized by 

local stiffness k1 and k2 and the local parameter of viscosity η as shown in Fig. 

2,b.When considering the case of the steady motion for the rubber medium base in 

the coordinates system Oxyz (Fig.2,a).  

 

  

 

(a) 

 

(b)  

 

Fig. 2 The forces system (a) and Standard solid model (b) 
The constitutive equations of the Standard solid model are  

 
𝜂

𝑑𝑤1𝜉

𝑑𝑡
+ 𝑘1 𝑤1𝜉(𝑡) = 𝑝𝜉(𝑡);  𝑘2 𝑤2𝜉(𝑡) = 𝑝𝜉(𝑡) , 

(5) 
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where w1 and w2 are the material displacements in a point (𝜉) of the viscoelastic 

zone (viscosity η and spring k1) and the elastic zone (spring k2), t the time,  pξ  the 

contact pressure in the point (𝜉) [14]. 

In the direction of sliding with velocity V, the time of each point in contact 

surface is t = (b-x)/V. Thus, the constitutive equation (5) takes the form as in 

equation (6): 

 
𝑤1(𝑥) = 𝑤1𝜉 (

(𝑏 − 𝑥)

𝑉
) ; 𝑤2(𝑥) = 𝑤2𝜉 (

(𝑏 − 𝑥)

𝑉
) , 

 

(6) 

 
−𝜂

𝑑𝑤1

𝑑𝑥
+ 𝑘1 𝑤1(𝑥) = 𝑝(𝑥); 𝑘2 𝑤2(𝑥) = 𝑝(𝑥) . 

(7) 

The conditions that the punch moves regularly and progressively, that it is 

static in the plane Oxy, are the known conditions of the equilibrium: the equality 

to the zero of the forces sum affecting the punch (F, P, the base response) and the 

equality to the zero of the sum of their moments with respect to an arbitrary point 

on the plane Oxy [13].The interaction between moving rigid punch and the fixed 

viscoelastic base is manifested by the external normal forces P and tangential F 

(Fig. 2,a). In y- direction (perpendicular to the plane xOz) the forces P and F are 

considered uniformly distributed. Under the constant speed of the punch, the 

tangential force F is the friction force component. The profile of spherical shape  

is  

 𝑔(𝑥, 𝑦) = (𝑥2 + 𝑦2)/2𝑅 , (8) 

where x , y are coordinates of contact point and R is the radius of ball is shown in 

Fig. 2,a. At any point (x) on the profile of the punch the p (x) radial pressure acts 

with the two components [14]. 

 𝑝(𝑥) = 𝑝𝑛 (𝑥) cos  𝛼(𝑥); 𝜏 (𝑥) = 𝑝𝑛 (𝑥)sin 𝛼(𝑥) = 𝑝(𝑥)tan 𝛼(𝑥) .  (9) 

Taking into account the angle 𝛼(𝑥) defined by the derivative of the function of the 

profile 𝑔̇(𝑥) = 𝑡𝑎𝑛 𝛼, result of the tangential tension on the sliding directions is  

 𝜏(𝑥) = 𝑝𝑥 (𝑥) = 𝑝𝑛(𝑥). 𝑔̇(𝑥). (10) 

Thus, the two forces P and F are the results of the pressures in the direction z 

respective to x. 

 
𝑃 = ∫ 𝑝(𝑥)𝑑𝑥

𝑏

−𝑎

; 
 (11a) 

 𝐹 = ∫ 𝜏(𝑥)𝑑𝑥 = ∫ 𝑔̇(𝑥)
𝑏

−𝑎
𝑝(𝑥)𝑑𝑥,

𝑏

−𝑎
                                                    (11b) 

under the assumption of a uniform movement, the tangential force is a 

deformation friction force (hysteresis component) and the deformation component 

of friction coefficient (𝜇ℎ) between the viscoelastic material with a rigid material.  

 
µℎ =

𝐹

𝑃
  ; 

(12a) 

therefore   
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µℎ =

𝐹

𝑃
=

∫ 𝑔̇(𝑥
𝑏

−𝑎
)𝑝(𝑥)𝑑𝑥

∫ 𝑝(𝑥)𝑑𝑥
𝑏

−𝑎

. 
(12b) 

To analyze the friction coefficient between rigid ball and band rubber it is 

necessary to use the dimenisionless parameters:  

- The dimensionless sliding velocity is  

 
𝑉𝑎 =

𝜂𝑉

𝑘1𝑅
  , 

   (13) 

where V is the sliding velocity; R is the radius of the ball; k1 is the rigidity of the 

rubber in the Standard solid model;  

- The dimenisionless coordinates of boundary points of the contact are  

𝑏𝑎 =
𝑏

𝑅
 ,       𝑎𝑎 =

𝑎

𝑅
 ; 

- The dimensionless depth is  𝛿𝑎 = 𝛿/𝑅; 

- The coordinates of any point in the contact area are 𝑥𝑎 = 𝑥 𝑅⁄ ,  𝑦𝑎 = 𝑦 𝑅⁄  ; 

- The ratio of local rigidity of rubber is  𝑟 = 𝑘2 𝑘1;⁄  

- The parameter of velocity displacement of rubber is 𝜌𝑎 = 𝜂 𝜌 and  

𝜌 = 𝑉 𝑐𝑛⁄  , where 𝑐𝑛 is the stiffness of the rubber in the normal direction of the 

contact surface.  

The second order linear differential equation of contact pressure is 

 𝑑2𝑝𝑎

𝑑𝑥𝑎
2

+ 𝐶1

𝑑𝑝𝑎

𝑑𝑥𝑎
+ 𝐶𝑜𝑝𝑎 = −𝑟 (1 +

𝑥𝑎

𝑉𝑎
), 

    (14) 

where 

 
𝐶1 =

𝑟𝜌𝑎 + 𝑟 + 1

𝑉𝑎
, 𝐶𝑜 =

𝑟𝜌𝑎

𝑉𝑎
2

, 
(15) 

where 𝑝𝑎 = 𝑝/𝑘1𝑅 is dimensionaless contact pressure.  

The solution of this differential equation is determined on the basis of the 

characteristic equation and the particular solution: 

 𝜆2 + 𝐶1𝜆 + 𝐶𝑜 = 0 ,     (16) 

 𝑝𝑜𝑎 = 𝑑1(exp(𝜆1𝑥𝑎)) + 𝑑2(exp(𝜆2𝑥𝑎)),      (17) 

when 𝜆1, 𝜆2 are solutions of the equation (16), and  𝑑1, 𝑑2 are constants that are 

determined from the boundary conditions. The particular solution will be 

  
𝑝𝑝𝑎 =

−𝑟

𝐶𝑜
(

𝑥𝑎

𝑉𝑎
+ 1 −

𝑟𝐶1

𝐶𝑜𝑉𝑎
), 

    (18) 

thus, dimensionless pressure has expression        

 𝑝𝑎𝑡 = 𝑝𝑜𝑎 + 𝑝𝑝𝑎 .     (19) 
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Fig. 3 The variation of dimensionaless pressure for different values of the sliding velocity 

  

 In the Fig. 3 shows the dimenssionless pressure values at some values of 

velocity parameter. We note that the maximum contact pressure value depends on 

the sliding velocity parameter.  

The dimensionaless normal load is defined by expression  

  
𝑃𝑛𝑟 =

𝑃

𝑘1𝑅3
 , 

(20) 

where P is the normal force. 

The hysterezis coefficient of friction in equation (12) is shown in Fig. 4 

and 5. The hysterezie coefficient of friction depends on the dimensionaless normal 

load Pnr and  velocity displacement parameter ρa. 

 

 

Fig. 4 The hysterezis coefficient of friction vs. the normal load 
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Fig. 5 The hysterezis coefficient of friction vs.velocity displacement parameter (b) 
 

In Fig. 4 shows the hysteresis friction coefficient values increase when the 

normal loads increase and in Fig. 5 the coefficient of friction decreases when 

velocity parameter increases. The contact between rubber and rigid materials 

depends on the properties of the materials and the adhesion properties. The 

adhesion component of the friction force (Ffa) is determined on the basis of the 

contact area (Ac) and the adhesion stress (τf) between the rubber and the steel ball. 

The contact area is appreciated by the area of ball calotte of radius R and height δ. 

This height is the penetration of the ball in the viscoelastic material as a result of 

the normal force P. From the mechanical equilibrium condition of the pressure on 

the contact area (normal force P), the penetration δa= 𝛿/R is determined. For 

example, in Fig. 6 is shown the penetration dependence of the dimensionless load 

parameter Pnr with the pressure distribution of the equation (19). These 

dependences are obtained by Matchad 2000 program. 

 

Fig. 6 The penetration of the rigid ball in the viscoelastic material 
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 The adhesion component of friction is  

 𝐹𝑓𝑎 = 𝐴𝑐 𝜏𝑓 = 2𝜋𝑅𝛿𝜏𝑓 , (21) 

and the adhesion component of friction coefficient has expression 

 
𝜇𝑎 =

𝐹𝑓𝑎

𝑃
=

𝐴𝑐𝜏𝑓

𝑃
=

2𝜋𝑅2𝜏𝑓𝛿𝑎

𝑃
  . 

     (22) 

The total coefficient of friction is 

 

µ𝑡 = µℎ + 𝜇𝑎 =
∫ 𝑔̇(𝑥

𝑏

−𝑎
)𝑝(𝑥)𝑑𝑥

∫ 𝑝(𝑥)𝑑𝑥
𝑏

−𝑎

+
2𝜋𝑅2𝜏𝑓𝛿𝑎

𝑃
  . 

(23) 

The dimensionless shear strength of rubber is   𝜏𝑎𝑓 =
𝜏𝑓

𝑘1𝑅
 . 

Fig. 7 shows the values of friction coefficient of adhesion component with 

the normal load for two dimensionless velocities parameter 𝜌a.  

We assumed (𝜌a = 1 and 𝜌a = 2), rigidity ratio r = 0.8 and dimensionless 

shear resistance τaf = 0.003. We observe the friction coefficient decreases when 

the normal load increases.  

 

Fig. 7 The variation of the adhesion component on a steel ball with normal load 
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Fig. 8 Total coefficient of friction versus normal load 

In Fig. 8 the deformation component of the friction coefficient (hysteresis 

component) is very small compared to the adhesion component. In this case, the 

effect of hysteresis component is very small. 

3. Experimental method  

The experimental set-up for measurement of rubber friction with steel ball 

is shown in Fig.9.  

• The material of the band is rubber, which is used in coulombian 

damper for washing machine. 

• The rubber band with a size of 30*12*4 mm was fixedly glued.  

• The steel ball has a radius R = 10 mm and is much harder than the 

rubber band. It was mounted on a force sensor.  

During the measurement, the steel ball was pressed into the rubber band 

with a given constant normal force which was applied in the device, and then the 

rubber band was moved horizontally with a constant velocity. The frictional force 

and normal force were measured by a tangential sensor and force cell sensor 

respectively. We experimentally investigated the friction coefficient of a steel ball 

sliding on a rubber base for different sliding velocities. The sliding velocities (2.5, 

3.75, 5 mm/min) and the normal loads (4.5, 9 N) are used. Data for any parameter 

set (velocity, normal load) were averaged over 10 measurements. 
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Fig. 9 Experimental set-up for measurement of coefficient of friction between a steel ball and a 

rubber 

4. Results  

The experimental results show friction parameters evolution. Fig. 10 and 

11 represent experimental values obtained for the friction force at normal loads 

4.5 N, 9 N and different sliding velocities 2.5, 3.75, 5mm/min. 

 

 
  Fig. 10 Friction force vs. time at normal load 4.5N 
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Fig. 11 Friction force vs. time at normal load 9N 

 

Fig. 12 and 13 represent the experimental values for that the friction 

coefficient of viscoelastic material againest steel ball at normal load 4.5 N, 9 N 

and different sliding velocities. The coefficient of friction decreases when the 

sliding velocity increases. This variation can be a necessary condition to appear 

the stick-slip phenomena.  

 

 
 

Fig. 12 Coefficient of friction vs. sliding velocity at normal load 4.5 N 
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Fig. 13 Coefficient of friction vs. sliding velocity at normal load 9 N 

Fig. 14 shows values of the total coefficient of friction with two 

penetration velocities and four experimental points (two velocities and two normal 

loads) which were mentioned in the experiments paragraph. This gives good 

matching between theoretical and experimental results. 

Fig. 14 Theoretical and experimental total coefficient of friction vs. normal load 
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e 3.9 9 ( )
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t k Va a Pnr af 
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5. Conclusions  

In this paper a theoretical and experimental study concerning the 

coefficient of friction between rubber material and steel ball are presented. We 

analyzed the coefficient of friction of rubber (viscoelastic material) contacting 

with steel ball. The solutions shown the friction coefficient depends on sliding 

velocity and normal load. The Striebeck curve of the friction coefficient 

dependents on the relative sliding velocity is simulated as a parabola for the dry, 

limit and mixed friction regime, and being tangent to a line for the Newtonian 

fluid friction. The friction coefficient of hysteresis component increases when the 

normal load increases, but the friction coefficient of adhesion component 

decreases when the normal load increases. The friction coefficient of hysteresis 

component is very small compared to the friction coefficient of adhesion 

component. A good agreement between theoretical and experimental results is 

obtained.  
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