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The information about the network size is crucial for many real-life 

applications. It can be obtained by the distributed average consensus algorithm, 

whose implementation requires the proper leader appointment, which is an energy 

demanding process. The lack of the papers concerned with this aspect motivates us 

to verify the influence of a random leader appointment on the convergence rates of 
different weight models of average consensus. We examine the range of the achieved 

convergence rates in 30 randomly generated networks for different leaders and 

show the maximal possible deceleration of the algorithm due to an inappropriate 

leader appointment.  
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1. Introduction 

Typically, the estimations techniques can be divided into two main 

categories: the centralized and the decentralized ones.  

The centralized estimation techniques are based on the presence of the 

fusion center to collect data measured and processed by the geographically 

distributed nodes [1]. This approach requires an energy-demanding 

communication within a large area or the implementation of a multi-hop routing 

protocol, causing a poor scalability of these networks. Other disadvantages of 

these techniques are a low robustness, low suitability, the necessity for the fusion 

center to know the measurement models, respectively, additional information 

about the nodes’ parameters etc. [2].  

In contrast to this solution, the decentralized estimation is based on the 

absence of the fusion center [3]. This approach does not require any node to be 

aware of the network topology and also the implementation of routing 

mechanisms is not necessary. Its principle lays in a neighbor-to-neighbor 

commutation among the nodes, which optimizes the aspects such as the energy 

consumption, the scalability, the natural robustness etc. This is probably the main 

reason of why these techniques are preferred to the centralized ones in modern 
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real-life applications. The decentralized optimization techniques can be divided 

into two subcategories. The first one is based on the transmission of the 

information in a sequential manner from one node to another one [3]. The 

principle of the other one lays in the diffusion of the local information into the 

network [4]. This approach is characterized by a higher robustness but requires a 

more complicated communication overhead. This subcategory involves 

consensus-based estimation mechanisms, which are based on the usage of 

distributed algorithms [5]. The goal of these algorithms is to make the states of all 

the nodes identical by local information exchanges [6]. 

In this paper, we focus on the average consensus algorithm, an iterative 

multifunctional distributed algorithm primarily proposed for an estimation of the 

average from all the initial values [7]. It is based on a mutual communication 

among the adjacent nodes, updating the local state according to the information 

from the adjacent area and the current inner state and the asymptotic convergence 

to the value of the estimated aggregated function [7]. As mentioned earlier, its 

main purpose is to estimate the average value, however, tiny modifications can 

ensure the change of its functionality [8]. In this paper, we focus our attention on 

an estimation of the network size. Compared with an average estimation, where 

the inner states are initialized by (for example) local measurements, the 

functionality of a network size estimation requires the appointment of the leader, 

whose initial value is initiated to 1, while the other nodes take 0 [8]. As discussed 

in [8], it is an energy-demanding process requiring the implementation of another 

complementary mechanism to appoint the most appropriate node as the leader. 

The lack of the papers focused on this aspect motivates us to compare the chosen 

weight models of the average consensus and examine how a random choice of the 

leader affects the converge rate of the algorithm. We choose and compare weight 

models with static weight matrices, i.e. the weight matrix is invariant over the 

iterations during the whole estimation process. As many real-life applications are 

proposed with minimal energy demands, our goal is to show how omitting the 

implementation of a complementary mechanism to determine the optimal leader 

can affect the convergence rate of the algorithm – we mutually compare the 

ranges of the convergence rates and the maximal possible decelerations of the 

algorithm caused by an inappropriate choice of the leader.  

2. Mathematical model of average consensus algorithm  

In this section, we introduce mathematical tools used to model the average 

consensus algorithm [9]. A network is considered to be an indirect finite graph 

consisting of two sets G = (V,E). The set V contains all the vertices, which 

represent the particular nodes in a system. The nodes are allocated the unique 

identity vi, used for the unambiguous identification. The set E consists of all the 
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edges, whose existence indicates the direct connection between two nodes, and 

these edges are labeled as eij. We assume the homogeneity of the transmission 

range and therefore, the connectivity between every two nodes is always mutual.   

Within the spectral graph theory, several descriptive tools for mutual 

connectivity are defined. One of the most frequently used ones is the Laplacian 

matrix defined as follows [10]:  
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As seen, it is a diagonally symmetric matrix for all the indirect graphs. The 

parameter d determines the degree of a node and therefore, the number of its 

neighbors. 

In our experiments, we assume randomly generated topologies consisting 

of 200 nodes. We generate them as follows: each free position within a square 

area is allocated the probability of a node placement equaled to the reciprocal of 

the number of the free positions. Thus, the placement of a node is a random event 

of a uniform distribution. In order to ensure a different average connectivity of the 

topologies, the transmission range of the nodes varies. In this paper, we use three 

sets of the topologies: weakly, averagely and strongly connected. Representatives 

of these sets are shown in Fig. 1, Fig. 2 and Fig. 3.  

Let us focus on modeling the average consensus algorithm in a network. 

The nodes update their inner states according to the states collected from the 

adjacent area and the inner state from the previous iteration. The described 

procedure can be modeled using the following difference equation [11]:  

)()1( kk xWx                                                   (2) 

Here, x(k) is a column vector variant over the iterations containing the 

inner values of all the nodes at each iteration. W is the weight matrix, whose 

elements vary for different weight models. According to [12], for all the static 

systems, the following conditions have to hold:  
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Here, ρ is the spectral radius of the matrix determined as the difference of 

the weight matrix W and the matrix defined as 1/N.1×1
T 

[12]. Preserving 

condition (5) ensures the asymptotic convergence of the algorithm, while 

conditions (3–4) determine the convergence point as well as ensure that the 

weight matrix is bistochastic [12].  
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As previously mentioned, the average consensus is an iterative algorithm 

that asymptotically converges to the value of an aggregate function. So, we can 

write the following [11]:  
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Only the existence of this limit guarantees the proper functionality of the 

algorithm and is achieved by the preservation of (3-5). Since we assume the 

execution of the algorithm in a finite time, we define an indicator of the consensus 

achievement as follows:  

 )}(min{)}(max{ kk xx                                      (7) 

Here, δ determines the precision of the final estimates as well as the 

convergence rate of the algorithm. We set this value to 0.0001 and kept it constant 

for all the experiments. 

  
Fig. 1. Representative of networks with weak 

connectivity 

Fig. 2. Representative of networks with 

average connectivity 

 
Fig. 3. Representative of networks with strong connectivity 
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3. Examined weight models of average consensus algorithm  

We choose the following six weight models for an examination: the 

Constant weight model (abbreviated as CW), the Maximum Degree weight model 

(abbreviated as MD), the Metropolis-Hasting weight model (abbreviated as MH), 

the Local Degree weight model (abbreviated as LD), the Best Constant weight 

model (abbreviated as BC), and the Biphasically configured Metropolis-Hasting 

weight model (abbreviated as BMH). All these models are characterized by a 

constant weight matrix, which simplifies the implementation into real-life 

applications.  

The Constant weight model is characterized by uniform weights and is 

defined as follows [13]:  
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Here, ε is the mixing parameter, whose value determines the convergence 

rate of the algorithm. Its higher values ensure a higher convergence rate but too 

high values result in the divergence of the algorithm [14]. According to [13], the 

convergence is achieved for each ε from the interval:  

max

1
0

d
                                                 (9) 

Note that the equality is possible only if the graph is neither regular nor 

bipartite. Here, dmax is the degree of the best-connected node. In this paper, we 

consider the Constant weight model to take the value of ε equaled to 0.5*1/dmax.  

Another model of our interest is the Maximum Degree weight model. 

Actually, it is the Constant weight model with the value of ε set to the maximal 

possible value and so, ε = 1/dmax. Thus, it poses the maximally optimized Constant 

weight model [15]. As we do not assume regular bipartite graphs in our 

experiments, we use this value in each network. 

Both the Metropolis-Hasting [16] and the Local degree [12] weight models 

require only locally available information for their proper initial configuration and 

neither of them is characterized by uniform weights. Their weight matrices are 

defined as follows:  
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The Best Constant weight model is considered to be the fastest model with 

uniform weights. In order to be optimally configured, it requires the knowledge 

about the largest and the second smallest eigenvalue of the Laplacian matrix 

corresponding to the graph. Its weight matrix is defined as [12]:  
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The last examined model is the Biphasically configured Metropolis-

Hasting weight model [17]. It is derived from the Metropolis-Hasting weight 

model by adding an additional phase into the initial configuration. Its principle 

lays in an increase of the weights allocated to a node’s neighbors at the cost of 

decreasing the weight of the current inner state. As discussed in [17], the 

convergence rate of this weight model depends on the distribution of the identity 

numbers. Therefore, we randomly shuffle the position of the identity numbers and 

repeat the execution of this weight model 100 times for each topology and for 

each leader. As a representative of the obtained set of the convergence rates, we 

choose the scenario with the widest range (and so, the worst case scenario).  

4. Experimental part 

In the experimental part, we execute two experiments. As previously 

mentioned, we verify how a random appointment of the leader affects the 

convergence rates of the chosen weight models of the average consensus 

algorithm. We demonstrate this on three randomly generated sets of networks 

with the size of 200 nodes. For each weight model, we repeat the experiments 200 

times - the executions differ from each other in the appointment of a different 

node as the leader (except for BMH, where the experiments are repeated 100 

times for each leader appointment (20 000 repetitions) and subsequently the 

scenario with the widest range (and so, the worst result) is chosen as a 

representative of this data set). This procedure is repeated for each topology. 

In the first experiment, we examine how a random appointment of the 

leader affects the range of the convergence rates of the chosen weight models. In 

Tab. 1, we show the ranges for all six models. We can see from the results that the 

narrowest range is achieved for the BMH (in seven weakly connected, seven 

averagely connected and five strongly connected networks), for LD (in three 

weakly connected, one averagely connected and three strongly connected 

networks) and in two averagely and two strongly connected networks, these two 
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weight models have the identical range. Regarding the widest range (and so, the 

most negatively affected weight model), CW achieves worse results compared 

with the other examined weight models in all 30 networks. 

In the next experiment, we examine the maximal possible deceleration 

caused by an inappropriate appointment of the leader, i.e. we express the relative 

difference between the fastest and the slowest execution (for example: 100 % 

deceleration means that the slowest execution needs twice as many iterations as 

the fastest one in the corresponding network and for corresponding weight 

model). The results have been depicted in Fig. 4, Fig. 5, Fig. 6 and Tab. 2. 

In the weakly connected networks, we can see that CW is the least 

decelerated from all the examined weight models in four networks, MD in two, 

Table 1 

Comparison of influence of random leader appointment on range of convergence 

rates for examined weight models 

Range of convergence rates 

 CW MD MH LD BC BMH 

W #1 2092 it. 1046 it. 1074 it. 947 it. 1177 it. 829 it. 

W #2 2198 it. 1098 it. 580 it. 520 it. 988 it. 493 it. 

W #3 2569 it. 1284 it. 774 it. 696 it. 1238 it. 579 it. 

W #4 2036 it. 1018 it. 713 it. 639 it. 1047 it. 647 it. 

W #5 1575 it. 787 it. 385 it. 329 it. 667 it. 293 it. 

W #6 1316 it. 657 it. 464 it. 424 it. 910 it. 427 it. 

W #7 2922 it. 1461 it. 779 it. 689 it. 1353 it. 677 it. 

W #8 3685 it. 1841 it. 953 it. 800 it. 1668 it. 713 it. 

W #9 12671 it. 6335 it. 3173 it. 2713 it. 4494 it. 2788 it. 

W #10 5359 it. 2679 it. 1719 it. 1532 it. 2461 it. 1510 it. 

A #1 792 it. 395 it. 208 it. 199 it. 285 it. 196 it. 
A #2 692 it. 345 it. 205 it. 194 it. 267 it. 196 it. 

A #3 374 it. 187 it. 122 it. 122 it. 228 it. 103 it. 

A #4 829 it. 414 it. 162 it. 147 it. 299 it. 145 it. 

A #5 462 it. 231 it. 177 it. 165 it. 231 it. 165 it. 

A #6 1193 it. 595 it. 206 it. 190 it. 567 it. 180 it. 

A #7 394 it. 196 it. 148 it. 138 it. 211 it. 138 it. 

A #8 663 it. 331 it. 257 it. 239 it. 292 it. 232 it. 

A #9 1056 it. 527 it. 262 it. 242 it. 573 it. 235 it. 

A #10 652 it. 325 it. 112 it. 98 it. 147 it. 92 it. 

S #1 394 it. 196 it. 126 it. 159 it. 121 it. 118 it. 

S #2 316 it. 158 it. 99 it. 94 it. 156 it. 95 it. 

S #3 486 it. 242 it. 126 it. 119 it. 189 it. 114 it. 

S #4 423 it. 211 it. 143 it. 139 it. 211 it. 138 it. 
S #5 317 it. 158 it. 129 it. 123 it. 179 it. 124 it. 

S #6 269 it. 134 it. 83 it. 79 it. 129 it. 80 it. 

S #7 263 it. 131 it. 64 it. 60 it. 135 it. 60 it. 

S #8 239 it. 119 it. 73 it. 69 it. 99 it. 69 it. 

S #9 417 it. 207 it. 147 it. 143 it. 284 it. 135 it. 

S #10 277 it. 138 it. 98 it. 94 it. 140 it. 89 it. 
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LD in one and BMH in three. In the averagely connected networks, CW achieves 

the best result in one network, MD in two, MH in two, LD in two and the BMH 

also in two. In one network, CW and MD equally achieve the smallest maximal 

relative deceleration of the algorithm. In the strongly connected networks, CW 

achieves the best result in two networks, MD in one, MH in one, LD in three, BC 

in one and the BMH in two. 

Regarding the models with the worst results: in the weakly connected 

networks, MD achieves the largest deceleration in two networks, MH in one, LD 

 
Fig. 4. Comparison of maximal possible deceleration – weakly connected networks 

 
Fig. 5.  Comparison of maximal possible deceleration – averagely connected networks 
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in one, and BC in six. In the averagely connected, CW achieves the worst result in 

one network, BC in seven and BMH in two. In the strongly connected, BC is the 

worst in nine networks and BMH in one. 

In Fig. 7, Fig. 8, and Fig. 9 and Fig. 10 (the most and the least maximal 

possible deceleration of the average consensus algorithm for each topology), we 

express in percentages in how many networks the weight models achieve the best 

and the worst result within both experiments.  

5. Future research 

The average consensus algorithm is frequently used as a distributed 

estimation technique in many real-life applications, especially in those based on 

wireless sensor devices. The design of these devices is significantly affected by 

cost constraints, which often results in limited energy sources. Thus, the modern 

algorithms for wireless sensor networks have to take into account this aspect. Our 

research shows that a random appointment of the leader can significantly affect 

the convergence rate of the algorithm (a slower rate causes also an increased 

energy consumption), but also a complementary mechanism for its best 

determination is a significant energy redundancy. Our future work is going to be 

focused on an optimization of this aspect and the results presented in this paper 

reason the relevance of this planned research. 

 
Fig. 6.  Comparison of maximal possible deceleration – strongly connected networks 
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6. Conclusion  

We experimentally verified the influence of a random leader appointment 

on the convergence rates of CW, MD, MH, LD, BC, and BMH weight model of 

average consensus. In the first part, we changed the leader in a network and 

showed the range of the gained convergence rates. We could have seen from the 

results that the LD (in 32 % networks) and the BMH (in 68 % networks) weight 

model achieved the narrowest range from all the examined weight models. So, the 

range of these two weight models was the least affected by an inappropriate 

appointment of the leader. The most negatively affected weight model was CW, 

which reached the worst results in all 30 networks. 

Table 2 

Comparison of maximal possible deceleration of algorithm caused by 

inappropriate leader appointment 

Maximal possible deceleration of algorithm 

 CW MD MH LD BC BMH 

W #1 116.03 % 116.09 % 291.06 % 268.27 % 225.48 % 188.84 % 

W #2 84.38 % 84.33 % 117.89 % 128.71 % 133.15 % 111.04 % 

W #3 130.87 % 130.89 % 118.71 % 123.40 % 224.28 % 113.98 % 

W #4 101.85 % 101.90 % 123.14 % 126.04 % 182.40 % 139.14 % 

W #5 137.31 % 137.35 % 88.71 % 83.72 % 133.67 % 77.11 % 

W #6 38.82 % 38.76 % 52.08 % 53.54 % 94.01 % 57.86 % 

W #7 186.71 % 186.83 % 193.78 % 192.46 % 323.68 % 208.95 % 

W #8 141.03 % 140.86 % 91.28 % 85.56 % 222.70 % 77.50 % 

W #9 445.06 % 445.19 % 326.10 % 324.52 % 345.69 % 388.30 % 

W #10 162.34 % 162.36 % 287.46 % 310.75 % 268.38 % 296.08 % 

A #1 108.49 % 108.22 % 166.40 % 180.91 % 115.85 % 186.67 % 
A #2 155.51 % 154.71 % 144.37 % 152.76 % 148.33 % 168.97 % 

A #3 57.63 % 57.72 % 57.01 % 56.57 % 119.37 % 54.79 % 

A #4 156.12 % 156.23 % 84.38 % 82.58 % 156.54 % 84.80 % 

A #5 74.76 % 74.76 % 85.51 % 86.39 % 113.79 % 89.67 % 

A #6 172.40 % 171.97 % 90.75 % 92.68 % 308.15 % 100.00 % 

A #7 78.17 % 77.78 % 80.43 % 80.70 % 125.60 % 87.34 % 

A #8 149.66 % 149.77 % 202.36 % 207.83 % 211.59 % 209.01 % 

A #9 130.05 % 129.80 % 124.06 % 122.84 % 266.51 % 123.04 % 

A #10 151.63 % 151.16 % 60.22 % 56.00 % 89.63 % 51.98 % 

S #1 144.85 % 144.12 % 163.64 % 168.06 % 135.90 % 168.57 % 

S #2 85.64 % 85.87 % 84.62 % 84.68 % 148.57 % 90.48 % 

S #3 158.82 % 158.17 % 128.57 % 126.60 % 164.35 % 125.27 % 

S #4 136.01 % 136.13 % 181.01 % 190.41 % 248.24 % 202.94 % 
S #5 112.01 % 112.06 % 124.04 % 124.24 % 220.99 % 130.53 % 

S #6 93.40 % 93.06 % 79.81 % 79.80 % 130.30 % 82.47 % 

S #7 73.46 % 73.18 % 48.12 % 47.24 % 139.18 % 50.00 % 

S #8 74.92 % 74.84 % 59.35 % 58.97 % 98.02 % 60.53 % 

S #9 90.85 % 90.00 % 170.93 % 183.33 % 234.71 % 164.63 % 

S #10 105.73 % 105.34 % 98.00 % 98.95 % 134.62 % 91.75 % 
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In the next experiment, we examined the maximal possible deceleration of 

the algorithm caused by an inappropriate leader appointment, i.e. we compared 

the difference between the fastest and the slowest execution of the algorithm for 

each weight model. Here, CW achieved the best result, which was the least 

decelerated in 26 % networks. The second best was BMH with 23 %, then LD and 

MD equally with 19 %, MH with 10 %, and BC with 3 %. The worst one was the 

BC, which was the most decelerated in 73 % networks. According to the obtained 

results, we can conclude that BMH is the least affected by an inappropriate leader 

appointment. Nevertheless, it was decelerated in the range 47.24% - 24.52 % and 

so, we experimentally proved the necessity of a complementary mechanism to 

determine the most appropriate node as the leader.  

CW MD MH LD BC BMH
 

  
Fig. 7. Range of convergence rates – weight 

models with narrowest range 

Fig. 8. Range of convergence rates – weight 

models with widest range 

  
Fig. 9. Maximal possible deceleration – least 

negatively affected weight models 

Fig. 10. Maximal possible deceleration – most   

negatively affected weight models 
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