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INFLUENCE OF RANDOM LEADER APPOINTMENT ON
CONVERGENCE RATE OF NETWORK SIZE ESTIMATION

Martin KENYERES!, Jozef KENYERES?

The information about the network size is crucial for many real-life
applications. It can be obtained by the distributed average consensus algorithm,
whose implementation requires the proper leader appointment, which is an energy
demanding process. The lack of the papers concerned with this aspect motivates us
to verify the influence of a random leader appointment on the convergence rates of
different weight models of average consensus. We examine the range of the achieved
convergence rates in 30 randomly generated networks for different leaders and
show the maximal possible deceleration of the algorithm due to an inappropriate
leader appointment.
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1. Introduction

Typically, the estimations techniques can be divided into two main
categories: the centralized and the decentralized ones.

The centralized estimation techniques are based on the presence of the
fusion center to collect data measured and processed by the geographically
distributed nodes [1]. This approach requires an energy-demanding
communication within a large area or the implementation of a multi-hop routing
protocol, causing a poor scalability of these networks. Other disadvantages of
these techniques are a low robustness, low suitability, the necessity for the fusion
center to know the measurement models, respectively, additional information
about the nodes’ parameters etc. [2].

In contrast to this solution, the decentralized estimation is based on the
absence of the fusion center [3]. This approach does not require any node to be
aware of the network topology and also the implementation of routing
mechanisms is not necessary. Its principle lays in a neighbor-to-neighbor
commutation among the nodes, which optimizes the aspects such as the energy
consumption, the scalability, the natural robustness etc. This is probably the main
reason of why these techniques are preferred to the centralized ones in modern
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real-life applications. The decentralized optimization techniques can be divided
into two subcategories. The first one is based on the transmission of the
information in a sequential manner from one node to another one [3]. The
principle of the other one lays in the diffusion of the local information into the
network [4]. This approach is characterized by a higher robustness but requires a
more complicated communication overhead. This subcategory involves
consensus-based estimation mechanisms, which are based on the usage of
distributed algorithms [5]. The goal of these algorithms is to make the states of all
the nodes identical by local information exchanges [6].

In this paper, we focus on the average consensus algorithm, an iterative
multifunctional distributed algorithm primarily proposed for an estimation of the
average from all the initial values [7]. It is based on a mutual communication
among the adjacent nodes, updating the local state according to the information
from the adjacent area and the current inner state and the asymptotic convergence
to the value of the estimated aggregated function [7]. As mentioned earlier, its
main purpose is to estimate the average value, however, tiny modifications can
ensure the change of its functionality [8]. In this paper, we focus our attention on
an estimation of the network size. Compared with an average estimation, where
the inner states are initialized by (for example) local measurements, the
functionality of a network size estimation requires the appointment of the leader,
whose initial value is initiated to 1, while the other nodes take 0 [8]. As discussed
in [8], it is an energy-demanding process requiring the implementation of another
complementary mechanism to appoint the most appropriate node as the leader.
The lack of the papers focused on this aspect motivates us to compare the chosen
weight models of the average consensus and examine how a random choice of the
leader affects the converge rate of the algorithm. We choose and compare weight
models with static weight matrices, i.e. the weight matrix is invariant over the
iterations during the whole estimation process. As many real-life applications are
proposed with minimal energy demands, our goal is to show how omitting the
implementation of a complementary mechanism to determine the optimal leader
can affect the convergence rate of the algorithm — we mutually compare the
ranges of the convergence rates and the maximal possible decelerations of the
algorithm caused by an inappropriate choice of the leader.

2. Mathematical model of average consensus algorithm

In this section, we introduce mathematical tools used to model the average
consensus algorithm [9]. A network is considered to be an indirect finite graph
consisting of two sets G = (V,E). The set V contains all the vertices, which
represent the particular nodes in a system. The nodes are allocated the unique
identity v;, used for the unambiguous identification. The set E consists of all the
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edges, whose existence indicates the direct connection between two nodes, and
these edges are labeled as ej. We assume the homogeneity of the transmission
range and therefore, the connectivity between every two nodes is always mutual.

Within the spectral graph theory, several descriptive tools for mutual
connectivity are defined. One of the most frequently used ones is the Laplacian
matrix defined as follows [10]:

-1, ife; eE
[Ll,=1d, ifi=j (1)
0, otherwise,

As seen, it is a diagonally symmetric matrix for all the indirect graphs. The
parameter d determines the degree of a node and therefore, the number of its
neighbors.

In our experiments, we assume randomly generated topologies consisting
of 200 nodes. We generate them as follows: each free position within a square
area is allocated the probability of a node placement equaled to the reciprocal of
the number of the free positions. Thus, the placement of a node is a random event
of a uniform distribution. In order to ensure a different average connectivity of the
topologies, the transmission range of the nodes varies. In this paper, we use three
sets of the topologies: weakly, averagely and strongly connected. Representatives
of these sets are shown in Fig. 1, Fig. 2 and Fig. 3.

Let us focus on modeling the average consensus algorithm in a network.
The nodes update their inner states according to the states collected from the
adjacent area and the inner state from the previous iteration. The described
procedure can be modeled using the following difference equation [11]:

x(k +1) = Wxx(K) (2)

Here, x(k) is a column vector variant over the iterations containing the
inner values of all the nodes at each iteration. W is the weight matrix, whose
elements vary for different weight models. According to [12], for all the static
systems, the following conditions have to hold:

Wx1=1 (3)
1TxW=1" (4)
p(W—%.lxlT)<1 (5)

Here, p is the spectral radius of the matrix determined as the difference of
the weight matrix W and the matrix defined as 1/N.1x1" [12]. Preserving
condition (5) ensures the asymptotic convergence of the algorithm, while
conditions (3-4) determine the convergence point as well as ensure that the
weight matrix is bistochastic [12].
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Fig. 1. Representative of networks with weak Fig. 2. Representative of networks with
connectivity average connectivity

Fig. 3. Representative of networks with strong connectivity

As previously mentioned, the average consensus is an iterative algorithm
that asymptotically converges to the value of an aggregate function. So, we can
write the following [11]:

;
Iimx(k):i!imW"’lxx(l):%xx(l) (6)

k—

Only the existence of this limit guarantees the proper functionality of the
algorithm and is achieved by the preservation of (3-5). Since we assume the
execution of the algorithm in a finite time, we define an indicator of the consensus
achievement as follows:

Imax{x(k)}—min{x(k)} < & (7)
Here, ¢ determines the precision of the final estimates as well as the

convergence rate of the algorithm. We set this value to 0.0001 and kept it constant
for all the experiments.
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3. Examined weight models of average consensus algorithm

We choose the following six weight models for an examination: the
Constant weight model (abbreviated as CW), the Maximum Degree weight model
(abbreviated as MD), the Metropolis-Hasting weight model (abbreviated as MH),
the Local Degree weight model (abbreviated as LD), the Best Constant weight
model (abbreviated as BC), and the Biphasically configured Metropolis-Hasting
weight model (abbreviated as BMH). All these models are characterized by a
constant weight matrix, which simplifies the implementation into real-life
applications.

The Constant weight model is characterized by uniform weights and is
defined as follows [13]:

g, if (vi,vj)eE
W), ={1-d,.6, ifi=]j (8)
0, otherwise,

Here, ¢ is the mixing parameter, whose value determines the convergence
rate of the algorithm. Its higher values ensure a higher convergence rate but too
high values result in the divergence of the algorithm [14]. According to [13], the
convergence is achieved for each ¢ from the interval:

omdi 9)

max

Note that the equality is possible only if the graph is neither regular nor
bipartite. Here, dmax is the degree of the best-connected node. In this paper, we
consider the Constant weight model to take the value of ¢ equaled to 0.5*1/dmax.

Another model of our interest is the Maximum Degree weight model.
Actually, it is the Constant weight model with the value of ¢ set to the maximal
possible value and so, ¢ = 1/dmax. Thus, it poses the maximally optimized Constant
weight model [15]. As we do not assume regular bipartite graphs in our
experiments, we use this value in each network.

Both the Metropolis-Hasting [16] and the Local degree [12] weight models
require only locally available information for their proper initial configuration and
neither of them is characterized by uniform weights. Their weight matrices are
defined as follows:

(@+max{d;, d; )7 if (v,v,) €E
WM =41=2 WM, ] (10)

0, otherwise,
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max{d;,d;}", if (v,,v;)eE
WY =41->" W'Y, ifi=] (11)

0, otherwise,

The Best Constant weight model is considered to be the fastest model with
uniform weights. In order to be optimally configured, it requires the knowledge
about the largest and the second smallest eigenvalue of the Laplacian matrix
corresponding to the graph. Its weight matrix is defined as [12]:

21(4(L) + A4 (L), i (v,v;) €E
WY, = 41— 2.d, /(A (L) + Ay (L)),  ifi=j (12)
0, otherwise,

The last examined model is the Biphasically configured Metropolis-
Hasting weight model [17]. It is derived from the Metropolis-Hasting weight
model by adding an additional phase into the initial configuration. Its principle
lays in an increase of the weights allocated to a node’s neighbors at the cost of
decreasing the weight of the current inner state. As discussed in [17], the
convergence rate of this weight model depends on the distribution of the identity
numbers. Therefore, we randomly shuffle the position of the identity numbers and
repeat the execution of this weight model 100 times for each topology and for
each leader. As a representative of the obtained set of the convergence rates, we
choose the scenario with the widest range (and so, the worst case scenario).

4. Experimental part

In the experimental part, we execute two experiments. As previously
mentioned, we verify how a random appointment of the leader affects the
convergence rates of the chosen weight models of the average consensus
algorithm. We demonstrate this on three randomly generated sets of networks
with the size of 200 nodes. For each weight model, we repeat the experiments 200
times - the executions differ from each other in the appointment of a different
node as the leader (except for BMH, where the experiments are repeated 100
times for each leader appointment (20 000 repetitions) and subsequently the
scenario with the widest range (and so, the worst result) is chosen as a
representative of this data set). This procedure is repeated for each topology.

In the first experiment, we examine how a random appointment of the
leader affects the range of the convergence rates of the chosen weight models. In
Tab. 1, we show the ranges for all six models. We can see from the results that the
narrowest range is achieved for the BMH (in seven weakly connected, seven
averagely connected and five strongly connected networks), for LD (in three
weakly connected, one averagely connected and three strongly connected
networks) and in two averagely and two strongly connected networks, these two
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Table 1

Comparison of influence of random leader appointment on range of convergence
rates for examined weight models

Range of convergence rates

Cw MD MH LD BC BMH
W #1 2092 it. 1046 it. 1074 it. 947 it. 1177 it. 829 it.
W #2 2198 it. 1098 it. 580 it. 520 it. 988 it. 493 it.
W #3 2569 it. 1284 it. 774 it. 696 it. 1238 it. 579 it.
W #4 2036 it. 1018 it. 713 it. 639 it. 1047 it. 647 it.
W #5 1575 it. 787 it. 385 it. 329 it. 667 it. 293 it.
W #6 1316 it. 657 it. 464 it. 424 it. 910 it. 427 it.
W #7 2922 it. 1461 it. 779 it. 689 it. 1353 it. 677 it.
W #8 3685 it. 1841 it. 953 it. 800 it. 1668 it. 713 it.
W #9 12671 it. 6335 it. 3173 it. 2713 it. 4494 it. 2788 it.
W #10 5359 it. 2679 it 1719 it. 1532 it. 2461 it. 1510 it.
A#l 792 it. 395 it. 208 it. 199it. 285 it. 196 it.
A #2 692 it. 345 it. 205 it. 194 it. 267 it. 196 it.
A#3 374 it. 187 it. 122 it. 122 it. 228 it. 103 it.
A#H4 829 it. 414 it. 162 it. 147 it. 299 it. 145it.
A#5 462 it. 231 it. 177 it. 165 it. 231t 165 it.
A #6 1193 it. 595 it. 206 it. 190 it. 567 it. 180 it.
A H#H7 3% it. 196 it. 148 it. 138it. 211t 138 it.
A#8 663 it. 331 it. 257 it. 239 it. 292 it. 232t
A #9 1056 it. 527 it. 262 it. 242 it. 573 it. 2351t
A #10 652 it. 325 it. 112t 98 it. 147 it. 92 it.
S#l 39% it. 196 it. 126 it. 159it. 121t 118 it.
S#2 316 it. 158 it. 99 it. 94 it. 156 it. 95 it.
S#3 486 it. 242 it. 126 it. 119t 189 it. 114 it.
S#A 423 it. 211 it. 143 it. 139t 2111t 138it.
S#5 317 it. 158 it. 129t 123t 179it. 124 it.
S #6 269 it. 134 it. 83 it. 79 it. 129 it. 80 it.
S #7 263 it. 131t 64 it. 60 it. 135it. 60 it.
S#8 239 it. 119it. 731it. 69 it. 99 it. 69 it.
S#9 417 it. 207 it. 147 it. 143 it. 284 it. 135it.
S #10 277 it. 138 it. 98 it. 94 it. 140 it. 89 it.

weight models have the identical range. Regarding the widest range (and so, the
most negatively affected weight model), CW achieves worse results compared

with the other examined weight models in all 30 networks.

In the next experiment, we examine the maximal possible deceleration
caused by an inappropriate appointment of the leader, i.e. we express the relative
difference between the fastest and the slowest execution (for example: 100 %
deceleration means that the slowest execution needs twice as many iterations as
the fastest one in the corresponding network and for corresponding weight
model). The results have been depicted in Fig. 4, Fig. 5, Fig. 6 and Tab. 2.

In the weakly connected networks, we can see that CW is the least
decelerated from all the examined weight models in four networks, MD in two,
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LD in one and BMH in three. In the averagely connected networks, CW achieves
the best result in one network, MD in two, MH in two, LD in two and the BMH
also in two. In one network, CW and MD equally achieve the smallest maximal
relative deceleration of the algorithm. In the strongly connected networks, CW
achieves the best result in two networks, MD in one, MH in one, LD in three, BC
in one and the BMH in two.

Regarding the models with the worst results: in the weakly connected
networks, MD achieves the largest deceleration in two networks, MH in one, LD
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in one, and BC in six. In the averagely connected, CW achieves the worst result in
one network, BC in seven and BMH in two. In the strongly connected, BC is the
worst in nine networks and BMH in one.

In Fig. 7, Fig. 8, and Fig. 9 and Fig. 10 (the most and the least maximal
possible deceleration of the average consensus algorithm for each topology), we
express in percentages in how many networks the weight models achieve the best
and the worst result within both experiments.

5. Future research

The average consensus algorithm is frequently used as a distributed
estimation technique in many real-life applications, especially in those based on
wireless sensor devices. The design of these devices is significantly affected by
cost constraints, which often results in limited energy sources. Thus, the modern
algorithms for wireless sensor networks have to take into account this aspect. Our
research shows that a random appointment of the leader can significantly affect
the convergence rate of the algorithm (a slower rate causes also an increased
energy consumption), but also a complementary mechanism for its best
determination is a significant energy redundancy. Our future work is going to be
focused on an optimization of this aspect and the results presented in this paper
reason the relevance of this planned research.
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Table 2

Comparison of maximal possible deceleration of algorithm caused by
inappropriate leader appointment

Maximal possible deceleration of algorithm

Cw MD MH LD BC BMH
W #1 116.03%  116.09%  291.06%  268.27%  225.48 % 188.84 %
W #2 84.38 % 84.33% 11789%  128.71%  133.15% 111.04 %
W #3 130.87%  130.89%  118.71%  123.40%  224.28% 113.98 %
W #4 101.85%  101.90%  123.14%  126.04%  182.40% 139.14 %
W #5 13731%  137.35% 88.71 % 83.72% 133.67 % 77.11%
W #6 38.82 % 38.76 % 52.08 % 53.54 % 94.01 % 57.86 %
W #7 186.71%  186.83%  193.78%  192.46%  323.68%  208.95%
W #8 141.03%  140.86 % 91.28 % 85.56 % 222.710 % 77.50 %
W #9 445.06%  44519%  326.10%  32452%  345.69%  388.30%
W #10 162.34%  162.36%  287.46%  310.75%  268.38%  296.08 %
A#l 10849%  108.22%  166.40%  180.91%  115.85% 186.67 %
A #2 15551%  15471%  14437%  152.76%  148.33% 168.97 %
A#3 57.63 % 571.72% 57.01 % 56.57 % 119.37 % 54.79 %
A#H4 156.12%  156.23 % 84.38 % 82.58 % 156.54 % 84.80 %
A#5 74.76 % 74.76 % 85.51 % 86.39 % 113.79 % 89.67 %
A #6 17240%  171.97% 90.75 % 92.68 % 308.15 % 100.00 %
A H#H7 78.17 % 77.78 % 80.43 % 80.70 % 125.60 % 87.34%
A#8 14966 %  149.77%  202.36%  207.83%  211.59%  209.01 %
A#9 130.05%  129.80%  124.06%  122.84%  266.51 % 123.04 %
A#10 151.63% 15116 % 60.22 % 56.00 % 89.63 % 51.98 %
S#l 14485%  14412%  163.64%  168.06%  135.90% 168.57 %
S#2 85.64 % 85.87 % 84.62 % 84.68 % 148.57 % 90.48 %
S#3 158.82%  158.17%  12857%  126.60%  164.35% 125.27 %
S#4 136.01%  136.13%  181.01%  19041%  24824%  202.94%
S#5 112.01%  112.06%  124.04%  12424%  220.99 % 130.53 %
S #6 93.40 % 93.06 % 79.81 % 79.80 % 130.30 % 82.47 %
S#7 73.46 % 73.18 % 48.12 % 47.24 % 139.18 % 50.00 %
S #8 74.92 % 74.84 % 59.35 % 58.97 % 98.02 % 60.53 %
S#9 90.85 % 90.00 % 170.93%  183.33% 23471 % 164.63 %
S#10 105.73%  105.34 % 98.00 % 98.95 % 134.62 % 91.75%

6. Conclusion

We experimentally verified the influence of a random leader appointment
on the convergence rates of CW, MD, MH, LD, BC, and BMH weight model of
average consensus. In the first part, we changed the leader in a network and
showed the range of the gained convergence rates. We could have seen from the
results that the LD (in 32 % networks) and the BMH (in 68 % networks) weight
model achieved the narrowest range from all the examined weight models. So, the
range of these two weight models was the least affected by an inappropriate
appointment of the leader. The most negatively affected weight model was CW,
which reached the worst results in all 30 networks.
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In the next experiment, we examined the maximal possible deceleration of
the algorithm caused by an inappropriate leader appointment, i.e. we compared
the difference between the fastest and the slowest execution of the algorithm for
each weight model. Here, CW achieved the best result, which was the least
decelerated in 26 % networks. The second best was BMH with 23 %, then LD and
MD equally with 19 %, MH with 10 %, and BC with 3 %. The worst one was the
BC, which was the most decelerated in 73 % networks. According to the obtained
results, we can conclude that BMH is the least affected by an inappropriate leader
appointment. Nevertheless, it was decelerated in the range 47.24% - 24.52 % and
so, we experimentally proved the necessity of a complementary mechanism to
determine the most appropriate node as the leader.
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