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MATHEMATICAL MODEL FOR MICROLAUNCHER,
PERFORMANCES EVALUATION

Teodor-Viorel CHELARU!?, Alexandru-lulian ONELZ, Tudorel Petronel
AFILIPOAE?, Ana-Maria NECULAESCU*

The paper presents some aspects regarding the mathematical model and
performance evaluation for a four stages microlauncher. This work uses three
separate models dedicated for each flight phase. For the ascending phase, we will use
a three degrees of freedom model in quasi—velocity frame. For the ballistic phase we
will use a Kepler model, and for the orbital injection a Gauss perturbing model. The
results analyzed will be in quasi-velocity frame but also some orbital parameters will
be presented. Using these models, the microlauncher performances will be evaluated.
The novelty of the paper consists in orbital injection approach, with optimal maneuver
description.
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Nomenclature

¥, - Azimuth angle; ¢- Geocentric latitude; 4 - Geocentric longitude; y - Climb
angle; y - Path track angle; « - Attack angle; A" - Sideslip angle; p -
Aerodynamic bank angle; © - Rotation velocity of the quasi-velocity frame; Q|
- Earth spin; D- Drag force; L- Lift force; N - Lateral force; T - Thrust force;
m - Mass; t - Time; V - Velocity; V,,V,,V, - Velocity components in start
frame; O, X,Y,Z, - Earth frame; O X Y Z, - Local frame; O XYsZ, - Start
frame; r - The distance between rocket and Earth center: R, - Earth radius; g -

Gravitational acceleration; e - Eccentricity; a-Semi-major axis; @ - True
anomaly; y - Eccentric anomaly; p - The orbit parameter.
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1. Introduction

Today it is most often that micro or nano satellites are carried into space as
“an additional payload” or the so called “piggyback” missions. It is too costly to
dedicate a separated mission that involves a relatively large launcher to a satellite
whose mass is much smaller than the designed mass of the launcher. Therefore, the
necessity of designing launchers for satellites weighing up to 100 kg is justified.
ESA has basically three launchers for LEO orbit: VEGA, for satellites with a mass
ranging from 0.3 to 2.5 tons; Soyuz, for satellites with a mass of 2.8 — 4.8 tons;
Ariane for satellites with a mass of 16 - 21 tons. If a country from Europe would
like to launch a satellite with a mass of 100 kg, or a few smaller ones for a dedicated
mission, they have to buy the launch from Russia, USA, China or India. Since the
number of such satellites will be increasing in the near future, Europe and ESA
should develop a small rocket launcher to close the gap in the existing family of
European launchers and allow an easier and independent access to space for
European micro or nano satellites. Starting from this necessity, Romania under ESA
coordination promoted a pilot-project consisting in the analysis of the possibility to
achieve microlauncher in zonal cooperation - ML. To approach this problem and in
general for evaluating the launching capabilities it is necessary to elaborate an
adequate mathematical model that ensures the evaluation of the launcher's
capability to inject the payload on different circular orbits. The mathematical model
presented below seeks to answer these needs. The model was split into two sub-
models. The first one is dedicated to finding the optimal flight parameters in the
ascending phase; the second one is used to evaluate the launcher's evolution during
the orbital injection phase. Because at this stage we are interested in evaluating the
technical possibility of building a microlauncher starting from imposed
performances and to make a preliminary dimensional evaluation (preliminary
design), our models approaches both phases, until the circular orbit is reached.
Having in mind these ideas regarding the needs, at this stage from the ML model,
we will describe the frames used, the coordinate transformations, the motion
equations and the guidance relations necessary to define the launcher's motion for
flight phases.

2. Coordinate systems

First, we will define the coordinate systems specific for the motion of the
microlauncher.

A. The Earth Frame

This inertial coordinate system is originated in the center of the Earth, being
loosed from Earth and does not participate in its diurnal rotation (Earth spin). The
axis X is in the equatorial plane along vernal axis. Axis Z ; is along polar axis,
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toward North Pole. The axis Y completes a right frame being in the equatorial
plane.

B. The Local Frame

This coordinate system has the origin in the starting position, being
earthbound, and participating in the diurnal rotation (Earth spin). The axis Y, isthe

position along the vector r at the start moment. The axis Z, is parallel with the
equatorial plane, being oriented to the East. The axis X, arising is forming with
the first two axes a right trihedral (1).

Fig. 1 The Geocentric and Geographical Frames

C. The Start Frame

This coordinate system has the origin in the starting position, being earthbound
and participating in the diurnal rotation (Earth spin). The axis Y is the position

along the vector r at the start moment. The axis X is oriented toward launch

direction and makes an azimuth angle v, related to the X axis. The axisZg, is

forming with the first two axes a right trihedral, being oriented to the right related
launch plane.

D. The Geographical Mobile Frame

This coordinate system has the origin in the center of mass of the launcher, being
earthbound and participating in the diurnal rotation (1). The axis y, is the

position along the vectorr. The axis z is parallel with the equatorial plane,
being oriented towards the East. The axis X is forming with first two axes a right
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trihedral. The geographical mobile frame overlaps the local frame at the start
moment.
E. The Geocentric Spherical Frame

This coordinate system is originated in the center of the Earth, being
earthbound and participating in its diurnal rotation (Earth spin). The launcher
position can be described using spherical coordinates 4, ¢,r, as can be seen in 1.

F. The Quasi-Velocity Frame

This coordinate system has the origin in the center of mass of the launcher.
Similarly to the velocity frame, the quasi-velocity frame has the axis x; along the
velocity vector, but the axis y; it is in vertical plane. The axis z, is forming with

the first two axes a right trihedral (Fig. 2 ). Next we will use this trihedral to write
the dynamic translation motion equations of the center of the mass.

ya

Fig. 2 The rotations between the geographical frame and quasi-velocity frame
3. The Gravitational acceleration

If we consider so call ”J2” model, the gravity is expressed by two terms:
first denoted g ,,[3], oriented along radius , and the second, denoted g, along the

polar axis N—S. These terms, containing only the gravitational component
without centrifugal contribution, which will be added later
a‘00 3a20 T 2 gA2 aZO H
=—>———2(5siIn“p-1)... =—F< =3-—="5sin ¢... 1
gAr r2 2 r4 ( (D ) gA(u COS(D r4 (D ( )
where:

a,, = 3,9861679 -10**; gam = 26,32785 10 )



Mathematical model for micro launcher, performances evaluation 53

4. The equations of motion in quasi — velocity frame

Because quasi-velocity frame is not an inertial frame, the dynamic equation
of motion in quasi-velocity frame has following form [1], [4], [8]:

%—\t/+9\*}xvz%+g+ac, (3)
where we have grouped the aerodynamic and thrust forces.
N=F+T, 4)
The Coriolis acceleration is:
a, =-2Q,xV (5)

The local derivative of the velocity in quasi-velocity frame isov/at. Q; is

the rotation velocity of the quasi-velocity frame related to the local frame, which
can be express as vectors:

Q =7+q+o+i (6)
The derivatives of latitude and longitude angles along geographical frame
are:
xzx(igc05(|>+jgsin (p); p=-K,p (7)
where i, j,,k, are unitary vectors in geographical frame.

If we make the projection along quasi-velocity frame we get:
i, (cospcos ycos y +sin gsin y)+
A=A]j,(~cospcos ysin y +sin pcosy)+
k,(cos psin y) (8)
¢ =¢li,sin ycosy—j,sin ysiny -k, cos y]

The derivatives of the climb angle and the air-path track angle are:
¥ =K, 4= sin y +]j,cosy) 9)
In this case, the components of the angular velocity vector along quasi-
velocity frame become:
o, = A(cos ¢ cos y cos y +sin gsin y)+
+@sin ycosy+ ysiny
w;, = A(—cos ¢ cos ysin y+sin pcos y)— (10)
—@sin ysin y+ ycosy
@' = Acospsin y—@cos y +y
Taking in consideration that the vector € has the same orientation as the

vector A, we can write:
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i, (cospcos ycosy +sin gsin y)+
Q =0Q,|j,(singcosy —cosgcos ysiny)+ | (11)
k,(cosgsin )
where the Coriolis acceleration components in quasi-velocity frame are:
a,=0;a,=-2vQ , =-2VQ cospsin y;
a, = VQ,, = 2VQ (sin ¢ cos y —cos ¢ cos ysin ) (12)

The gravitational acceleration previously introduced, is expressed by two
terms, one term denoted g, and oriented along radius r and the other term g,
parallel with polar axis N —S . These two terms contain gravitational components
and also centrifugal components given by the Earth's spin.

9 =0 —Qpr; 9,=0,, +Qrsing, (13)
where g,, and g, are given by relations (1) , (2), depending on the range.

Next, we will project the terms given by relation (13) along quasi-velocity
frame. For this we need to keep in mind that the term g, is along the angular
velocity vectory , given by relation (8), and the term g, is along angular velocity
vector &, given by relation (8) but contrary to it. In this case we yield:

g,=-g,siny— gw(c03¢cos;(c03y+sin @sin ;/);
g, :—grcos;/—gw(—cos(pcos;gsin y +sin pcosy); (14)
g, =—Q,Cosgsin y.
Summarizing, starting from relation (3), we obtain the dynamic equation

which describes the motion of the center of mass of the launcher in quasi-velocity
frame [1][4]:

. N, _ o
V =—X_g,siny—g,(cosecos ycosy +sin gsin )
m

y= m_&cosy—g—‘”(—COS¢COS;(Sin ¥ +sin gocos;/)+
mv VvV Vv
+ v cosy —2Q  cosgsin y (15)

r

= N, +g“’COS(pSInZ+\itan(psin Y COSy+

mV cos y V cosy r
+2Q (cospcos y tan y —sin @)
complemented with kinematic equations:
r‘:Vsiny.q‘):\Lcos;(cos;/;iz—\w; (16)
r r cos ¢
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where N,,N, , N, are projection of the applied forces along quasi-velocity frame.

Supposing that due control contribution the oscillations around center of
mass are damped, and the thrust vector is aligned with body axis, and more the
aerodynamic bank angle is null x#=0 , the components of the applied forces
become:

N,=D+Tcosacos ", N,=L+Tsina; N,=N-Tcosasin g’ (17)

where «, 8" are the aerodynamic angles and D;L; N -are the aerodynamic

force components in velocity frame;
Based on aerodynamic angles and launcher geometry, we can evaluate

aerodynamic translation coefficients:
10°C .
Co =Cpp +§ aazD a* C =C_a; C, =Cysp (18)

Taking in consideration the hypothesis regarding alignment between thrust vector
and launcher axis, the orientation of the thrust vector and velocity vector is descripts

by aerodynamic angles «, #* where can be considerate as command parameters of
the system that can control the climb angle y respectively air -path track angle y
by relation:

a=—k{-7) B =-k(xr-x) (19)
where the reference sizes are: y,; x4

5. Evolution in orbital phase, orbital injection

In order to evaluate the orbital phase and the orbital injection we use as
inertial frame, the Earth frame. First, we obtain the velocity in geographic frame
related to inertial frame, by adding Earth rotation:

V,, =V cosycos y; V,, =Vsiny, V,, =-Vcosysin y+rQ cose (20)

Also we modify longitude taking in consideration Earth rotation A=1+Q t,

obtaining launcher coordinates in Earth frame:
X,=rcosgpcosA; Y, =rcosgsinA; Z,=rsing (21)

In order to obtain velocity components in Earth frame we make a rotation
from geographic frame to Earth frame:

B/Xp Vyp VZP]T =Bg leg Vyg Vzg]T (22)
where rotation matrix is:
—singpcosA cosepcosA  —sin A

Bs =| —singsin A cosgpsinA  cos A
CoS @ sin @ 0
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From velocity components we can obtain the velocity module in inertial

_ 2 2 2
V=V +V +V (23)
Next, we are interested in the kinetic moment for unitary mass, and its

components in Earth frame:
h=rxv=hl+hJ+hK, (24)

frame:

from where:

h =Yooy =ZVypi Dy =Z Vo =X Vi h, = XV, =YeV,, (25)

Also we can obtain the kinetic moment module:

h=hi+h}+h7; (26)

Having the velocity (23), we can obtain the energy for a body with unitary

mass:
E=v?/2—a,/r, 27)
and geometric elements for orbit: e - eccentricity and a - semi major axis:
e=1+2Eh%,2; a=pl™~? (28)

where parameter p is given by: p=h’a,; and ¢?=1—¢?

Taking in consideration the expressions of the orbit:

p
r=a(l—ecos r=—
( v) 1+ecos0

we can obtain y - Eccentric anomaly, #- True anomaly, and by time Kepler
equation M -Mean anomaly

a—r p-r .
Cosy =——; c0sf@=——:; M =y —esin 30
v 26 or v v (V)

29)

In order to obtain a circular orbit, from Gauss perturbing equations [3], [6],
[7] we can extract the eccentricity equation:

2 2

_ g - :]ea)lfaT Cos 5, (gze_ff ~sin ysin 8, + cos 51) (31)
where: f =1-ecosy

ar - The acceleration derived from thrust.

01 - The angular deflection of the thrust vector, relative to the perpendicular

direction onr in the orbit plane;
0 - The angular deflection of the thrust vector outside the orbit plane.

e
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If we want an optimal maneuver to minimize in minimum time the
eccentricity and achieve a circular orbit, we impose condition:

06  £(&P-1f?%)a, coss,
00, neaf

(gze_é”f _sin y cos 8, —sin 51j =0 (32)

and obtain optimal value for the thrust angular deflection:

ec

§2_f2

tang, = sin (33)
Next we evaluate the sign of relation (31) for the angular deflection (33) in
order to obtain an eccentricity minimization.
If we substitute in relation (31) the angular deflection form (33) and

consider the second angular deflection null ( 5, =0) , will result:

2 2 2
e- r]:ea)n?T 00 [(gze_g”f ~sin V/J +1} (34)
Taking in consideration that:
f=1-ecosy >0, (35)
and if we restricted the angular deflection to:
—7/226,>7/2 (36)
will result:
cosd, >0, (37)
thus, the sign of relation (34) is given by:
C?—f?=1-e*—(1-ecosy)’ =—e° —e”cos’ i +2ecosy (38)
If we want to decrease the eccentricity, we impose the condition:
cos’y—2e " cosy +1>0 (39)
which means:

~1<cosy <(1-¢)e™ (40)

Based on these results (33) we can impose optimal pitch and yaw command
for injection in circular orbit:
a=-(r-yy) B =—(x—1x4) (41)
where the reference sizes are: y, =3J,; x4 =0,
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6. Optimizing the ascending phase

We start by describing - for a four stage launcher with the first three solid
rocket motor, the typical ascending phase. Lift off is considerate from ty =0 up to
t; =2s, when the climb angle is 7, =90° and the ML evolution is vertically. At
t, =7sthe climb angle is y, =y, and maintains this value up to t;=t, +A, .
Between t3 and t, (the ignition of third stage ), the climb angle has no constrains,
being in the gravity turn phase. At the ignition of third stage, t,, the climb angle
is constrained to take the value y, =y, during third stage till t,. During the coasting
A, between third stage and fourth stage and after ignition of the fourth stage, we
have a gravity turn maneuver. The gravity turn maneuver continue for a duration
A, after fourth stage ignition till t, when orbital maneuver starting, For ML, the
burning duration of the first stage is t,, =76 s and the burnout duration of stage 2
and 3 are the same t,, =t ,=50s . Between the burnout of the second stage and

a2 — a3 —
the ignition of the third stage we have a coasting phase with a duration A, . Between
the burnout of the third stage and the ignition of the fourth stage (AVUM) we have
a second coasting phase with a duration A,. The fairing jettison is in synchronies
with the separation of the stages 2 — 3. Summarizing, the ascending phase of ML
depends on six independent parameters, A,, A,, A;, A, .1, 72, Which can be the
subject of optimization during ascending phase. The strategy adopted consist that
for different initial azimuth angle y (orbit inclination) and different payload mass
(MPL), to obtains an circular orbit with maximum altitude and minimum effort by
optimization: A,, A,, A;, A,,71, 72, Taking in consideration that, for ascending
and ballistic phase we choose as performance index:
tf

J=—ga+ J.O ezaj —-¢&,Ddt, (42)

where &) are the weights, a, = and minimize them by using random number

generators,

The optimization method allows us to obtain at the end of orbital phase a circular
orbit with maximum altitude and minimum maneuvering effort for different orbit
inclinations and different payload mass, which means the ML performances.
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7. Input data for ML model
The input data used are taken from paper [2].

Table 1 Mass Characteristics

Configuration mM[?Zils]
Initial | Final
Stage I + I + 111 + AVUM + P/L+FER 345 | 10.6
Stage Il + 11l + AVUM + P/L+FER 8.4 2.6
Stage Il + AVUM + P/L 2.0 0.6
AVUM + P/L 0.48 | 0.36
P/L 0.1 0.1

The input data used are taken from paper [2].

Table 1 shows ML mass characteristics.
Main geometrical sizes at ML start are: 1 =16.6m d =1.9m

Table 2 Thrust Characteristics

Stage | Specific | Propellant | Burnout Se
impulse | mass duration Output
(*) [s] | [tons] [s] section

[m2]

I 280 23.9 76.5 1.13

I 290 5.81 47.9 0.956

11 295 1.41 50.1 0.441

v 340 0.12 100 0.11

(*) — Vcuum conditions, total extension ( pe=0)
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P/L /\

AVUM 3 0

ST3 i
TVC3’E_ -2 3

ST2

1.2 g

TVC2 =

ST1

1.905

TVC1

Fig. 3 ML Configuration

In Fig. 3 we have: P/L Payload; AVUM - Attitude and Vernier Upper
Module; ST - Stage; TVC - Thrust Vector Control.
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8. Test case

As test case, we choose an polar orbit, with the following initial conditions:
Geographic orientation: Azimuth angle v, =0° (towards the North); Geocentric

latitude ¢ =0° (Equatorial latitude); Altitude:hg =1m; Initial velocity
Vo =1[m/s]; Initial climb angle yg=90°. Payload mass MPL =100[kg].
Corresponding to minimal value of performance index (42), we obtain: A, =9[s],
A, =761[s] A, =88[s] A, =26[s],, =72.2°, ¥, =2.1° which leads to a circular
orbits with altitude h, =1778 [km] . Using these parameters, we have defined a
circular orbit described in next item.

9. Results

Fig. 4 shows the relative velocity, which means the ratio between absolute
velocity in inertial frame (21) and velocity corresponding to a circular orbit. We
can observe that after injection phase relative velocity remain at unit value. In the
same diagram is shown the altitude, which after injection remains at a constant
value.
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Fig. 4 Vi/V1 Relative Velocity and hp — Altitude
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Fig. 5 shows attack angle of the thrust vector/ body axe related velocity
during ascending and orbital phase. From this diagram, one can observe large
values of the attack angle during the third stage flight and during final injection
maneuver. Fortunately, these maneuvers are produced outside the atmosphere,
which does not increase the aerodynamic load of the launcher. The same diagram
shows the climb angle ywhich is controlled by the thrust attack angle. One can

observe that it starts at 5 =90°, followed by the imposed value y, =72.2° and
after orbital injection remains at zero value.

80F .
s —80
r MPL= 100 kg .
\ Polar orbit 70
60 1
| Je0
\ galdeg] ]
—_ . alfa [deg] ]
g sof : N 1° 3
=T ~ | 3
J__; | 440 g
- —30
20 b
| N\ 20
- \ ]
N\ —110
N\ 1
| I L -
1 LN -0
0 500 1000
t[s]

Fig. 5 DTN-Deflection angle and ga- climb angle

For the same test case, Fig. 6 shows the acceleration in quasi - velocity
frame. One can observe a, as the result of thrust of each stage along velocity vector

and also acceleration ay, normal on velocity in orbital plane. The acceleration a,
normal on orbital plane are insignificant.
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Fig. 6 Acceleration in Quasi Velocity frame

Fig. 7 shows two orbital parameters, eccentricity and semi major axis during
ascending and ballistic phase.
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One can observe that eccentricity decreases until zero value, and after
injection phase remains at zero value. In the same time semi major axis increases
simultaneous with the velocity enhancing and remains constant after orbital
injection.

Fig. 8 shows the orbit anomalies: ¢-true anomaly, y -eccentric anomaly
and M mean anomaly. One can observe that after orbital injection all three
anomalies have the same values, specific situation for circular orbit. Also we can
observe that eccentric anomaly s satisfy relation (40) necessary to decrease

eccentricity through optimal maneuver (33).

30 r
300 |
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B Polar orbit
250 |- M [deg]
B tet [deg]
= psi [degd]
m -
7}
S,

100

50

| ! | !
0 500 1000

t[s]

o

Fig. 8 True anomaly - tet, Eccentric anomaly — psi and Mean anomaly - M

Fig. 9 shows maximum altitude orbit as a function of orbit inclination and
payload mass which means ML performances.
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Fig. 9 Performances H-Altitude orbit as function of Incl-inclination and payload mass
10. Conclusions

As we said at the beginning, the paper has as objective the building of a
simple mathematical model able to evaluate launcher's performances. In order to
solve this item, we separated the launcher's evolution into two phases, the first phase
being the ascending phase until the fourth stage of it is in optimal position to make
orbital injection and the second phase when the upper stage performs orbital
injection. For each phase, we developed a separate calculus model. For the
ascending phase we developed a 3DOF model which describes the functionality of
the launcher in the quasi-velocity frame in accordance with the work [3]. For the
second phase, we used a sample model based on Kepler's theory [7], which allows
us, to evaluate orbital parameters, and use Gauss orbital perturbed equation [7] in
order to obtain optimal injection maneuver. Despite different model used for each
flight phases, for unitary approach we use actually only 3DOF model in quasi-
velocity frame, by transform the command from orbital frame in quasi — velocity
frame. Considering that small launchers are targeted at a circular orbit, we built a
performance index based on maximum semi major-axis and minimum maneuvering
effort, which allows the defining of the characteristics parameter of a trajectory
which is able to obtain a circular orbit with maximum altitude. The test case build
and the results obtained prove the correctness of the model developed, including
the strategy adopted for optimizing the accessional phase. Considering other case,
with deferent initial condition, we used the model developed to evaluate the entire
field of ML performance. Solution adopted for ML mission design must take in
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consideration that the accuracy of the desired orbit must not depend on the technical
possibility to realize angular parameters of ascending phase and also on the
accuracy of the prediction of the thrust characteristics of the solid rocket motor. The
accuracy of the desired orbit depends directly on the upper stage, which makes the
injection for transferring the payload to the desired orbit.

REFERENCES

[1] T.V. Chelaru., C. Barbu, A. Chelaru Mathematical model in quasi-velocity frame for small
launcher, technical solutions, RAST 2015 - Proceedings of 7th International Conference on
Recent Advances in Space Technologies 7208415, pp. 605-610.

[2] T.V. Chelaru., V. Pana and A. Chelaru., Modelling and Simulation of Suborbital Launcher for
Testing, Applied Mechanics and Materials (OPTIROB 2014), 555, pp.32-39, ISSN 1660-9336,
2014.

[3] K.C. Howell, D.J. Grebow, Z.P. Olikara, Design using Gauss’ perturbing equations with
application to lunar South pole coverage - Paper AAS 07-143.

[4] A.A. Lebedev, N.F. Gerasiota, Balistika raket, Ed. Masinostroenie, Moskva, 1970.

[5] M.M. Niza, Andreescu D.St., Zborul rachetei, Ed. Militard, Bucuresti, 1964.

[6] M.M. Nita, Teoria zborului spatial, Ed. Academiei, Bucuresti, 1973.

[7] 3.M. sidi, Spacecreft Dynamics & Control — a practical engineering approach, Cambridge
University Press , New York, Ny 1003-2473, USA.

[8]Butu, F-A, Lungu, R, Barbulescu L.F. Adaptive flight control for a launch vehicle based on the
concept of dynamic inversion, 2016 20th International Conference on System Theory, Control
and Computing, ICSTCC 2016 - Joint Conference of SINTES 20, SACCS 16, SIMSIS 20 -
Proceedings ,7790768, pp. 812-817



