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MATHEMATICAL MODEL FOR MICROLAUNCHER, 

PERFORMANCES EVALUATION 

 

Teodor-Viorel CHELARU1, Alexandru-Iulian ONEL2, Tudorel Petronel 

AFILIPOAE3, Ana-Maria NECULĂESCU4 

 

The paper presents some aspects regarding the mathematical model and 

performance evaluation for a four stages microlauncher. This work uses three 

separate models dedicated for each flight phase. For the ascending phase, we will use 

a three degrees of freedom model in quasi–velocity frame. For the ballistic phase we 

will use a Kepler model, and for the orbital injection a Gauss perturbing model. The 

results analyzed will be in quasi-velocity frame but also some orbital parameters will 

be presented. Using these models, the microlauncher performances will be evaluated. 

The novelty of the paper consists in orbital injection approach, with optimal maneuver 

description.  
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Nomenclature 

0  - Azimuth angle;  - Geocentric latitude;  - Geocentric longitude;  - Climb 

angle;  - Path track angle;  - Attack angle; 
 - Sideslip angle;   - 

Aerodynamic bank angle;  

VΩ - Rotation velocity of the quasi-velocity frame; pΩ

- Earth spin;  D - Drag force; L - Lift force; N - Lateral force; T - Thrust force;  

m  - Mass; t  - Time; V  - Velocity; zyx VVV ,,  - Velocity components in start 

frame; ppPP ZYXO  - Earth frame; LLLL ZYXO  - Local frame; SSSS ZYXO  - Start 

frame; r - The distance between rocket and Earth center: pR  - Earth radius;  g  - 

Gravitational acceleration; e  - Eccentricity; a -Semi-major axis;   - True 

anomaly;   - Eccentric anomaly; p - The orbit parameter. 
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1. Introduction 

Today it is most often that micro or nano satellites are carried into space as 

“an additional payload” or the so called “piggyback” missions. It is too costly to 

dedicate a separated mission that involves a relatively large launcher to a satellite 

whose mass is much smaller than the designed mass of the launcher. Therefore, the 

necessity of designing launchers for satellites weighing up to 100 kg is justified. 

ESA has basically three launchers for LEO orbit: VEGA, for satellites with a mass 

ranging from 0.3 to 2.5 tons; Soyuz, for satellites with a mass of 2.8 – 4.8 tons; 

Ariane for satellites with a mass of 16 - 21 tons. If a country from Europe would 

like to launch a satellite with a mass of 100 kg, or a few smaller ones for a dedicated 

mission, they have to buy the launch from Russia, USA, China or India. Since the 

number of such satellites will be increasing in the near future, Europe and ESA 

should develop a small rocket launcher to close the gap in the existing family of 

European launchers and allow an easier and independent access to space for 

European micro or nano satellites. Starting from this necessity, Romania under ESA 

coordination promoted a pilot-project consisting in the analysis of the possibility to 

achieve microlauncher in zonal cooperation - ML. To approach this problem and in 

general for evaluating the launching capabilities it is necessary to elaborate an 

adequate mathematical model that ensures the evaluation of the launcher's 

capability to inject the payload on different circular orbits. The mathematical model 

presented below seeks to answer these needs. The model was split into two sub-

models. The first one is dedicated to finding the optimal flight parameters in the 

ascending phase; the second one is used to evaluate the launcher's evolution during 

the orbital injection phase.  Because at this stage we are interested in evaluating the 

technical possibility of building a microlauncher starting from imposed 

performances and to make a preliminary dimensional evaluation (preliminary 

design), our models approaches both phases, until the circular orbit is reached.  

Having in mind these ideas regarding the needs, at this stage from the ML model, 

we will describe the frames used, the coordinate transformations, the motion 

equations and the guidance relations necessary to define the launcher's motion for 

flight phases.     

2. Coordinate systems 

First, we will define the coordinate systems specific for the motion of the 

microlauncher.  

A.  The Earth Frame 

This inertial coordinate system is originated in the center of the Earth, being 

loosed from Earth and does not participate in its diurnal rotation (Earth spin). The 

axis pX  is in the equatorial plane along vernal axis. Axis pZ  is along polar axis, 
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toward North Pole. The axis  pY  completes a right frame being in the equatorial 

plane. 

B. The Local Frame  

This coordinate system has the origin in the starting position, being 

earthbound, and participating in the diurnal rotation (Earth spin). The axis 
LY  is the 

position along the vector r  at the start moment. The axis  
LZ  is parallel with the 

equatorial plane, being oriented to the East. The axis LX  arising is forming with 

the first two axes a right trihedral (1).   

 

Fig. 1 The Geocentric and Geographical Frames 

 

C. The Start Frame 

This coordinate system has the origin in the starting position, being earthbound 

and participating in the diurnal rotation (Earth spin).  The axis SY  is the position 

along the vector r  at the start moment. The axis SX  is oriented toward launch 

direction and makes an azimuth angle 0  related to the LX  axis. The axis SZ , is 

forming with the first two axes a right trihedral, being oriented to the right related 

launch plane.  

D. The Geographical Mobile Frame 

 This coordinate system has the origin in the center of mass of the launcher, being 

earthbound and participating in the diurnal rotation (1). The axis gy  is the 

position along the vector r . The axis  gz  is parallel with the equatorial plane, 

being oriented towards the East. The axis gx is forming with first two axes a right 
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trihedral.  The geographical mobile frame overlaps the local frame at the start 

moment.  

E. The Geocentric Spherical Frame  

This coordinate system is originated in the center of the Earth, being 

earthbound and participating in its diurnal rotation (Earth spin). The launcher 

position can be described using spherical coordinates r,, , as can be seen in 1.   

F. The Quasi-Velocity Frame 

 This coordinate system has the origin in the center of mass of the launcher. 

Similarly to the velocity frame, the quasi-velocity frame has the axis *

ax  along the 

velocity vector, but the axis *

ay  it is in vertical plane.  The axis *

az  is forming with 

the first two axes a right trihedral (Fig. 2 ). Next we will use this trihedral to write 

the dynamic translation motion equations of the center of the mass.  

 

Fig. 2 The rotations between the geographical frame and quasi-velocity frame 

3. The Gravitational acceleration 

If we consider so call ”J2” model, the gravity is expressed by two terms: 

first denoted Arg [3], oriented along radius , and the second, denoted  Ag along the 

polar axis SN  . These terms, containing only the gravitational component 

without centrifugal contribution, which will be added later  
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4. The equations of motion in quasi – velocity frame 

Because quasi-velocity frame is not an inertial frame, the dynamic equation 

of motion in quasi-velocity frame has following form [1], [4], [8]:  

cV
mt

ag
N

VΩ
V




  , (3) 

where we have grouped the aerodynamic and thrust forces. 

TFN  , (4) 

The Coriolis acceleration is: 

VΩa  pc 2  (5) 

The local derivative of the velocity in quasi-velocity frame is tV . 

VΩ  is 

the rotation velocity of the quasi-velocity frame related to the local frame, which 

can be express as vectors:   

λχγΩ   V
 (6) 

The derivatives of latitude and longitude angles along geographical frame 

are:  

  sincos gg jiλ  ;  
gk  (7) 

where 
ggg k,j,i  are unitary vectors in geographical frame. 

If we make the projection along quasi-velocity frame we get:  
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(8) 

The derivatives of the climb angle and the air-path track angle are:  

akγ   ;   cossin aa jiχ    (9) 

In this case, the components of the angular velocity vector along quasi-

velocity frame become:  
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(10) 

Taking in consideration that the vector pΩ  has the same orientation as the 

vector λ , we can write: 
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where the Coriolis acceleration components in quasi-velocity frame are: 

0cxa ;  sincos22 ppzcy VVa  ; 

  sincoscoscossin22  ppycz VVa  
(12) 

The gravitational acceleration previously introduced, is expressed by two 

terms, one term denoted rg  and oriented along radius r  and the other term g  

parallel with polar axis SN  . These two terms contain gravitational components 

and also centrifugal components given by the Earth's spin.  

rgg pArr

2 ;    sin2 rgg pA  , (13) 

where Arg  and Ag are given by relations (1) , (2), depending on the range. 

Next, we will project the terms given by relation (13) along quasi-velocity 

frame. For this we need to keep in mind that the term rg  is along the angular 

velocity vector χ , given by relation (8), and the term g is along angular velocity 

vector λ , given by relation (8) but contrary to it. In this case we yield: 

   sinsincoscoscossin  ggg rx ; 

   cossinsincoscoscos  ggg ry ;  

 sincosgg z  . 

(14) 

Summarizing, starting from relation (3), we obtain the dynamic equation 

which describes the motion of the center of mass of the launcher in quasi-velocity 

frame [1][4]:  
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(15) 

 complemented with kinematic equations: 

sinVr  .  coscos
r

V
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where zyx NNN ,,  are projection of the applied forces along quasi-velocity frame. 

Supposing that due control contribution the oscillations around center of 

mass are damped, and the thrust vector is aligned with body axis, and more the 

aerodynamic bank angle is null 0  , the components of the applied forces 

become: 
   sincos;sin;coscos TNNTLNTDN zyx  (17) 

where  
 ,  are the aerodynamic angles and NLD ;; -are the aerodynamic 

force components in velocity frame;  

Based on aerodynamic angles and launcher geometry, we can evaluate 

aerodynamic translation coefficients: 
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Taking in consideration the hypothesis regarding  alignment between thrust vector 

and launcher axis, the orientation of the thrust vector and velocity vector is descripts 

by aerodynamic angles  ,  where can be considerate as command parameters of 

the system  that can control the climb angle   respectively air -path track angle   

by relation: 

  )(1 dk      )(1 dk  
 (19) 

where the reference sizes are: dd  ;   

5. Evolution in orbital phase, orbital injection 

In order to evaluate the orbital phase and the orbital injection we use as 

inertial frame, the Earth frame. First, we obtain the velocity in geographic frame 

related to inertial frame, by adding Earth rotation: 

 cossincos;sin;coscos pzgygxg rVVVVVV   (20) 

Also we modify longitude taking in consideration Earth rotation tp  , 

obtaining launcher coordinates in Earth frame: 

 sin;sincos;coscos rZrYrX ppp   (21) 

In order to obtain velocity components in Earth frame we make a rotation 

from geographic frame to Earth frame: 
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T
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From velocity components we can obtain the velocity module in inertial 

frame: 

222

zpypxp VVVv    (23)  
 

 

Next, we are interested in the kinetic moment for unitary mass, and its 

components in Earth frame: 

KJIvrh zyx hhh  ,   (24) 

from where: 

xpPyppzzppxppyyppzpPx VYVXhVXVZhVZVYh  ;; ,   (25) 
 

 

Also we can obtain the kinetic moment module: 

;222

zyx hhhh  ,   (26) 
 

 

Having the velocity (23), we can obtain the energy for a body with unitary 

mass: 

ravE 00

2 2  , (27) 

and geometric elements for orbit: e - eccentricity and a - semi major axis:  

   
2

00

221  aEhe ;     
2 pa  (28) 

where parameter p  is given by: 
1

00

2  ahp  and  22 1 e  

Taking in consideration the expressions of the orbit: 
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p
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 we can obtain  - Eccentric anomaly,  - True anomaly, and by time Kepler 

equation  M -Mean anomaly 

ae

ra 
cos ;  

er

rp 
cos ;   sineM   (30) 

In order to obtain a circular orbit, from Gauss perturbing equations [3], [6], 

[7] we can extract the eccentricity equation: 
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neaf
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e T , (31) 

where: cos1 ef    

Ta  - The acceleration derived from thrust. 

1  - The angular deflection of the thrust vector, relative to the perpendicular 

direction onr in the orbit plane; 

2  - The angular deflection of the thrust vector outside the orbit plane. 
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If we want an optimal maneuver to minimize in minimum time the 

eccentricity and achieve a circular orbit, we impose condition: 

 

0sincossin
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(32) 

and obtain optimal value for the thrust angular deflection: 

  


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
 sintan

221
f

e


  (33) 

Next we evaluate the sign of relation (31) for the angular deflection (33) in 

order to obtain an eccentricity minimization.  

If we substitute in relation (31) the angular deflection form (33) and 

consider the second angular deflection null ( 02  ) , will result: 
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Taking in consideration that: 
0cos1  ef , (35) 

and if we restricted the angular deflection to: 

22 1    (36) 

will result: 

0cos 1  , (37) 

thus, the sign of relation (34) is given by: 

 cos2cos)cos1(1 2222222 eeeeef   (38) 

If we want to decrease the eccentricity, we impose the condition: 

01cos2cos 12    e  (39) 

 which means: 
1)1(cos1  e  

 
(40) 

Based on these results (33) we can impose optimal pitch and yaw command 

for injection in circular orbit: 

)( d     )( d 
 (41) 

where the reference sizes are: 21;   dd   
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6. Optimizing the ascending phase 

 

We start by describing - for a four stage launcher with the first three solid 

rocket motor, the typical ascending phase. Lift off is considerate from 00 t  up to 

st 21  , when the climb angle is  90d  and the ML evolution is vertically. At 

st 72  the climb angle is 1 d  and maintains this value up to 123  tt . 

Between 3t  and 4t  (the ignition of third stage ), the climb angle has no constrains, 

being in the gravity turn phase.   At the ignition of third stage, 4t , the climb angle 

is constrained to take the value 2 d  during third stage till 5t .  During the coasting 

3 between third stage and fourth stage and after ignition of the fourth stage, we 

have a gravity turn maneuver. The gravity turn maneuver continue for a duration 

4 after fourth stage ignition till  6t  when orbital maneuver starting,    For ML, the 

burning duration of the first stage is  sta  761   and the burnout duration of stage 2 

and 3 are the same  stt aa  5032   . Between the burnout of the second stage and 

the ignition of the third stage we have a coasting phase with a duration 2 . Between 

the burnout of the third stage and the ignition of the fourth stage (AVUM) we have 

a second coasting phase with a duration
3 . The fairing jettison is in synchronies 

with the separation of the stages 2 – 3. Summarizing, the ascending phase of ML 

depends on six independent parameters, 1 , 2 , 
3 , 

4 , 1 , 2 , which can be the 

subject  of optimization  during ascending phase. The strategy adopted consist that 

for different initial azimuth angle 0  (orbit inclination) and different payload mass 

(MPL), to obtains an circular orbit with maximum altitude and minimum effort by 

optimization: 1 , 2 , 
3 , 

4 , 1 , 2 , Taking in consideration that, for ascending 

and ballistic phase we choose as performance index: 

DdtaaJ
ft

y 3
0

2

21    , (42) 

where k  are the weights, Vay   and minimize them by using random number 

generators, 

The optimization method allows us to obtain at the end of orbital phase a circular 

orbit with maximum altitude and minimum maneuvering effort for different orbit 

inclinations and different payload mass, which means the ML performances.  
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7. Input data for ML model 

The input data used are taken from paper [2]. 

 
Table 1 Mass Characteristics 

Configuration 
Mass 

m  [tons] 

 Initial Final 

Stage I + II + III + AVUM + P/L+FER 34.5 10.6 

Stage II + III + AVUM + P/L+FER 8.4 2.6 

Stage III + AVUM + P/L 2.0 0.6 

AVUM + P/L 0.48 0.36 

P/L 0.1 0.1 

 

 

The input data used are taken from paper [2]. 

 

Table 1  shows ML mass characteristics.  

Main geometrical sizes at ML start are: ml 6.16  md 9.1   

Table 2 Thrust Characteristics 

Stage Specific 

impulse  

(*)  [s]   

Propellant 

mass 

[tons] 

Burnout  

duration 

 [s] 

Se 

Output 

section 

[m2] 

I  280  23.9 76.5 1.13 

II  290 5.81 47.9 0.956 

III  295 1.41 50.1 0.441 

IV 340 0.12 100 0.11 

(*) – Vcuum conditions, total extension ( pe=0)  
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Fig. 3 ML Configuration 

In Fig. 3 we have: P/L Payload; AVUM - Attitude and Vernier Upper 

Module; ST - Stage; TVC - Thrust Vector Control. 
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8. Test case 

As test case, we choose an polar orbit, with the following initial conditions: 

Geographic orientation: Azimuth angle  00  (towards the North); Geocentric 

latitude  0  (Equatorial latitude); Altitude: mh 10  ; Initial velocity 

]/[10 smV  ; Initial climb angle  900 . Payload mass ][100 kgMPL  . 

Corresponding to minimal value of performance index (42), we obtain: ][91 s , 

][7612 s  s883    s264  ,  2.721 ,  1.22  which leads to a circular 

orbits with altitude ][1778 kmhp   . Using these parameters, we have defined a 

circular orbit described in next item. 

9. Results 

Fig. 4 shows the relative velocity, which means the ratio between absolute 

velocity in inertial frame (21) and velocity corresponding to a circular orbit. We 

can observe that after injection phase relative velocity remain at unit value. In the 

same diagram is shown the altitude, which after injection remains at a constant 

value.   

 
Fig. 4 Vi/V1 Relative Velocity and hp – Altitude 
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Fig. 5 shows attack angle of the thrust vector/ body axe related velocity 

during ascending and orbital phase. From this diagram, one can observe large 

values of the attack angle during the third stage flight and during final injection 

maneuver. Fortunately, these maneuvers are produced outside the atmosphere, 

which does not increase the aerodynamic load of the launcher. The same diagram 

shows the climb angle  which is controlled by the thrust attack angle. One can 

observe that it starts at  900 , followed by the imposed value   2.721  and  

after orbital injection remains at zero value.   

 

Fig. 5 DTN-Deflection angle and ga- climb angle 

 

 For the same test case, Fig. 6 shows the acceleration in quasi - velocity 

frame. One can observe xa as the result of thrust of each stage along velocity vector 

and also acceleration ya  normal on velocity in orbital plane. The acceleration za  

normal on orbital plane are insignificant.  
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Fig. 6 Acceleration in Quasi Velocity frame 

Fig. 7 shows two orbital parameters, eccentricity and semi major axis during 

ascending and ballistic phase.  

 

Fig. 7 e- Eccentricity and a- Semi-major axis 
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One can observe that eccentricity decreases until zero value, and after 

injection phase remains at zero value. In the same time semi major axis increases 

simultaneous with the velocity enhancing and remains constant after orbital 

injection. 

Fig. 8 shows the orbit anomalies:  -true anomaly,  -eccentric anomaly 

and M mean anomaly. One can observe that after orbital injection all three 

anomalies have the same values, specific situation for circular orbit. Also we can 

observe that eccentric anomaly   satisfy relation (40) necessary to decrease 

eccentricity through optimal maneuver (33). 

 

 
Fig. 8 True anomaly - tet, Eccentric anomaly – psi and Mean anomaly - M 

 

Fig. 9 shows maximum altitude orbit as a function of orbit inclination and 

payload mass which means ML performances.   
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Fig. 9 Performances  H-Altitude orbit as function of Incl-inclination and payload mass 

10. Conclusions 

As we said at the beginning, the paper has as objective the building of a 

simple mathematical model able to evaluate launcher's performances. In order to 

solve this item, we separated the launcher's evolution into two phases, the first phase 

being the ascending phase until the fourth stage of it is in optimal position to make 

orbital injection and the second phase when the upper stage performs orbital 

injection.  For each phase, we developed a separate calculus model. For the 

ascending phase we developed a 3DOF model which describes the functionality of 

the launcher in the quasi-velocity frame in accordance with the work [3]. For the 

second phase, we used a sample model based on Kepler's theory [7], which allows 

us, to evaluate orbital parameters, and use Gauss orbital perturbed equation [7] in 

order to obtain optimal injection maneuver. Despite different model used for each 

flight phases, for unitary approach we use actually only 3DOF model in quasi-

velocity frame, by transform the command from orbital frame in quasi – velocity 

frame. Considering that small launchers are targeted at a circular orbit, we built a 

performance index based on maximum semi major-axis and minimum maneuvering 

effort, which allows the defining of the characteristics parameter of a trajectory 

which is able to obtain a circular orbit with maximum altitude. The test case build 

and the results obtained prove the correctness of the model developed, including 

the strategy adopted for optimizing the accessional phase. Considering other case, 

with deferent initial condition, we used the model developed to evaluate the entire 

field of ML performance. Solution adopted for ML mission design must take in 
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consideration that the accuracy of the desired orbit must not depend on the technical 

possibility to realize angular parameters of ascending phase and also on the 

accuracy of the prediction of the thrust characteristics of the solid rocket motor. The 

accuracy of the desired orbit depends directly on the upper stage, which makes the 

injection for transferring the payload to the desired orbit. 
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