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WIND TURBINE ROLLING BEARING FAILURE
PREDICTION BASED ON PSO-TRANSFORMER-BILSTM
MODELING

Zhengiang ZHAO!, Houxu PU?, Jianhua DONG?, Hong CHEN**

The failure of wind turbine gearbox bearings can negatively impact grid-
connection efficiency and may even result in severe accidents, causing substantial
financial losses for wind farm operators. This study introduces a PSO-Transformer-
BiLSTM model, which integrates the Transformer model, Bidirectional Long Short-
Term Memory (BiLSTM) model, and Particle Swarm Optimization (PSO) algorithm
to solve wind gearboxes bearing failure problem. In this model, the Transformer
component is responsible for extracting signal features, while the BiLSTM model is
applied for both signal feature extraction and signal timing prediction. The PSO
algorithm is utilized to fine-tune the models hyperparameters for optimal
performance. The vibration fault dataset for the rolling bearings was obtained
through a wind power fault simulation platform using components such as inner-ring-
wear rolling bearings, acceleration sensors, and cloud vibration meters.
Experimental results demonstrate that the PSO-Transformer-BiLSTM model achieves
Root Mean Square Error (RMSE), R? values, and Mean Absolute Error (MAE) of
13.26, 0.93, and 10.37, respectively, on the faulty bearing vibration dataset. These
results indicate an improvement in performance compared to individual Transformer
and BiLSTM models, with the R? value increasing by 0.01 and 0.03, respectively.
Additionally, when compared with other phase prediction models, such as CNN-
LSTM-XGB, TCN-LSTM, and CNN-LSTM-SE, the R? coefficients of the PSO-
Transformer-BiLSTM model surpass them by 0.12, 0.02, and 0.01, respectively. These
findings confirm that the PSO-Transformer-BiLSTM model delivers reliable
performance on faulty bearing datasets and offers valuable insights for diagnosing
vibration faults in wind turbines.

Keywords: Wind turbine, Rolling bearing, Vibration signal, PSO-Transformer-
BiLSTM

1. Introduction

Renewable energy is an imperative to address the environmental impact of
fossil fuels [1]. By the end of June 2024, the total installed capacity of wind power
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in China will have reached 46.7 million kilowatts, and it is expected that as of the
end of 2025, the country's wind power installation capacity will reach about 53
million kilowatts. However, the reliability of wind turbines, which have been in
harsh environmental conditions for a long time, is generally low, and domestic wind
turbines have entered a period of frequent failures [2]. Bearing as a key bearing
component in the gearbox, its failure will not only lead to an increase in downtime,
but also may lead to more serious mechanical damage, resulting in huge economic
losses and maintenance costs [3]. Currently, the bearing failure rate has been as
high as 20% [4]. The formation of fatigue life prediction theory can also extend the
life cycle of the product and save costs in the production industry [5]. If the bearings'
health condition can be determined quickly and accurately, and timely predictions
can be made before major failures occur, it is of great significance to increase
turbine running time, improve operational reliability, and avoid major accidents and
losses from unplanned downtime.

Vibration monitoring is extensively applied in fault diagnosis, offering high
efficiency in detecting fan bearing issues through vibration signals, high sensitivity,
simple data processing, high-precision diagnosis, real-time monitoring and data
analysis. Based on vibration detection technology Pavithra et al [6] proposed a
method for classifying machine faults using spectral image-based machine
vibration signals and deep convolutional neural network representations, the model
accuracy is 100% in the binary classification dataset of normal bearings and faulty
bearings; Yan Zhao [7] proposed a fatigue life assessment process based on
measured vibration data, combined with the SSI-UPC to the wind turbine tower
self-oscillation frequency and damping ratio of the law to summarize the law; Jun
Pi et al [8] combined with the bearing vibration fault simulation platform combined
with machine learning to realize bearing fault diagnosis; Ahmed et al [9] used a
plain Bayesian model to discriminate helical gear tooth wear faults in gear
transmission achieving an accuracy of 93.9% and an area under the ROC curve of
99.1%.

Deep learning has the advantages of being adaptive, data-driven, and self-
extracting features, among which the Transformer model [10] has a powerful
sequence modeling capability and a self-attention mechanism, which can
effectively capture complex time dependencies in vibration signals, thus improving
the accuracy and efficiency of fault diagnosis. Ding et al [11] further developed the
vanilla Transformer for sequence processing, building on the success of the original
model, an end-to-end time-frequency Transformer model is introduced to extract
meaningful abstractions from the time-frequency representation of vibration signals.
The effectiveness of the proposed approach is validated through a case study on an
experimental bearing dataset, showcasing its advantages over the benchmark model
and other cutting-edge methods; Wen Jiangtao et al. [12] achieved a prediction of
the remaining life of rolling bearings based on the improved Transformer model
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with a root mean square difference of 0.0941; Lin Tantao et al. [13] fused the faulty
acoustic-vibration signals from the outer ring, inner ring, cage, and rolling element
of a rolling bearing , using the Transformer model for diagnosis, with an accuracy
0f 89.51%.

Bearing vibration signals are sequential data that Bidirectional Long Short-
Term Memory (BiLSTM) is commonly utilized for forecasting based on sequential
data. The BiILSTM is an effective method for capturing long-range dependencies in
time series data, automatically extracting fault characteristics, and improving the
accuracy and reliability of the model through the bi-directional flow of information.
Nacer et al [14] based on BiILSTM improved model using Case Western Reserve
University bearing dataset tested the performance under 16 conditions and different
loads, and the accuracy was as high as 99.96%; Guo et al [15] developed an ACNN-
BiLSTM diagnosis of bearing faults model building on the foundation of the
BiLSTM model with an average diagnostic accuracy as high as 99.79% on Jiangnan
University bearing dataset; Sun et al [16] introduced a new model built on the
enhanced DBO algorithm. They proposed a rolling bearing fault diagnosis
framework that leverages VMD-CNN-BiLSTM, optimized through the CSADBO
algorithm. The model achieves an average accuracy of 99.6% in diagnostics in
regard to the bearing dataset from Case Western Reserve University; Guo et al [17]
combine the MSCNN and BiLSTM to construct MSCNN-BILSTM for real-time
and stable monitoring of the rolling bearing operation status of a marine engine, and
the experimental findings indicate that the proposed model is an effective fault
diagnostic network model with strong generalization ability, which is able to
accurately identify the different states of the rolling bearings at a faster rate.

The PSO operator can be used to automatically optimize the
hyperparameters of deep learning models. Each particle corresponds to a set of
potential parameters, and its performance is assessed using an objective function to
progressively converge toward the optimal parameter combination. Song et al [18]
addressed the challenges of insufficient utilization of the time-dependent bearing
fault signalling features, the high cost of parameter tuning represents a significant
challenge for many organisations, and the challenge of acquiring sufficient training
data under a range of operational conditions. They proposed a CNN-BiLSTM
model optimized with a PSO operator for hyper-parameter tuning, achieving a
diagnostic accuracy of 99.44%. The diagnostic accuracy reaches 99.44%;
Geethanjali et al [19] The PSO optimization method is used to optimize the ANN
model for detecting normal, magnetizing inrush current, core overexcitation,
internal fault and external fault states of the transformer, and the results demonstrate
that the PSO-optimized ANN model is better in comparison with the BPN model;
Bharti et al [20] developed a PSO-BiLSTM model, combining the PSO algorithm
with a BILSTM neural network, the objective is to forecast the short-term traffic
flow. The model was compared with LSTM, ELM, GRU, WNN, MLP, and ARIMA,
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and the experimental results demonstrate that the PSO-BiLSTM model surpasses
the others in both accuracy and stability.

Building on the aforementioned research, this paper focuses on the faulty
rolling bearing vibration signals from the wind power fault simulation platform as
the research subject. It develops the PSO-Transformer-BiLSTM model to predict
faulty bearing signals, aiming to achieve effective bearing fault prediction and offer
technical support for future fault diagnosis of rolling bearings.

2. Equipment and methods

2.1 Simulation of wind turbine gearbox bearing failure

The wind turbine gearbox output shaft condition detection platform built by
this institute is shown in Fig. 1. The condition detection platform includes wind
power transmission fault simulation experimental bench (Jiangsu Union Yiyou
Measurement and Control Technology Co., Ltd.), 6212 inner ring wear bearing,
PDES-G cloud diagnostic instrument (Zhengzhou Enptech Co., Ltd.) and EAG04-
100 acceleration sensor (Zhengzhou Enptech Co., Ltd.). The wind power
transmission fault simulation test bench with 6212 faulty bearings to simulate the
bearing failure of the wind turbine gearbox output shaft, through the PDES-G cloud
diagnostic instrument and EAG04-100 acceleration sensor for the faulty bearing
vibration signal acquisition. Acceleration sensors are mounted on the positive X and
positive Y axes of the planetary gearbox output shaft housing to collect bearing
vibration signals from the gearbox output shaft.

The defect of the faulty bearing is the wear of the inner ring of the bearing,
the data in the motor IF is 3093RPM, IF is 51.5Hz. the vibration signal (horizontal
and vertical direction) is sampled at 25.6kHz, and the data is collected every 10
seconds for 0.1 seconds, i.e., 2560 samples are recorded, Fig. 2 shows the sample
of the faulty bearing.

Fig. 1. Wind turbine gearbox output shaft condition detection platform  Fig. 2. Faulty bearing

2.2 Transformer

The Transformer model is fundamentally based on the self-attention
mechanism, enabling the model to capture long-range dependencies by considering
all elements in the sequence when processing each individual element. The
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Transformer is composed of two primary components: the encoder and the decoder,
both consisting of multiple identical layers. The encoder handles the input sequence,
while the decoder leverages the encoder's output to produce the target sequence.
Each layer within the encoder and decoder includes a multi-head attention
mechanism and a feed-forward neural network, accompanied by residual
connections and layer normalization to ensure stable gradient propagation. The
structure of the Transformer model is illustrated in Fig. 3.

2.3 BiLSTM

BiLSTM is a recurrent neural network model built upon LSTM [21]. Unlike
the traditional LSTM, the BiLSTM [22] model can handle both unidirectional
dependencies and simultaneously consider information from both the past and
future in time series data. The BiLSTM architecture comprises two principal
components: two LSTM networks are employed, one forward and one backward.
The forward LSTM processes the sequence data from left to right, while the
backward LSTM traverses the same sequence from right to left. The outputs from
both directions are combined to form the final output of the BILSTM. This structure
allows the model to leverage both historical and future context, enhancing its
capability to capture complex patterns within sequential data.

As shown in Fig. 4, the forward layer performs computations step-by-step,
storing the output of the forward hidden layer at each step. Afterward, the backward
layer computes in reverse, saving the output from the backward hidden layer at each
step. Subsequently, the outputs from the forward and backward layers are integrated
to generate the final output.
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Fig. 3. Transformer framework Fig. 4. BILSTM model structure
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2.4 PSO algorithm

PSO is a global search algorithm introduced by Kennedy and Eberhart,
inspired by the foraging and evasive behaviors of swarming animals [23-24]. PSO
offers several advantages, including fast convergence, a small number of
parameters, high robustness, and simplicity, making it easy to implement. Due to
these benefits, PSO is frequently employed for hyper-parameter optimization in
other models [24].

The core of the PSO algorithm is to verify the fitness of each point location
by moving the particle regularly many times in the solution space, so the particle
needs to constantly update its position to explore more points while running.

The population position and velocity of the particle swarm are initialized as
shown below:

X =Ilb+rand *(ub—1b) (1)

V =V min+ rand *(V max—} min) )

where X represents ub, [b represents the upper line position boundary of the
particle, and Vmax, Vmin represent the velocity boundary of the particle,
respectively.

Since the particles are affected by the individual inertial motion direction,
the individual optimal motion direction and the group optimal motion direction, the
velocity update is vectorially superimposed by all three, as shown in the following
equation:

Vil =wlV' +C (P, + X))+ C,(G],, —X")

est (3)

Where, w,C; ,C> wind up denoting the weight coefficients and learning
factors, respectively.

The 1+1st position of the particle is affected by the ith position and the i+1st
velocity with the following mathematical expression:

Xi+l :Xi +Vi+1 (4)

Where x* denotes the position of the algorithm at the kth iteration, v**/
denotes the displacement of the k+1st generation, and x**/ i.e. the position of the
k+1st generation is based on the position of the kth generation plus the displacement
of the k+1st generation.

2.5 PSO-transformer-BiLSTM bearing diagnostic modeling

The Transformer's feature learning method obviates the necessity for
manually-driven feature extraction, which is a hallmark of traditional approaches.
This enables end-to-end information processing. Nevertheless, depending on a
solitary model for time series prediction may not necessarily result in optimal
outcomes. To address this, a Transformer-BiLSTM neural network based on one-
dimensional data is put forth, integrating the Transformer's capacity for local feature
extraction with the BiLSTM's aptitude for handling nonlinear temporal
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dependencies. This model is devised for the extraction and classification of one-
dimensional bearing fault vibration signals.

In the Transformer-BiLSTM network, the choice of hyperparameters,
including the learning rate, batch size and number of iterations, has a significant
impact on the model's performance. Achieving optimal results for complex
networks requires a substantial amount of tuning experience and a large number of
experiments. To address this challenge, the particle swarm optimisation (PSO)
algorithm is employed to optimise the model's hyperparameters, thereby reducing
the time required for manual tuning. This approach ensures the discovery of the best
training parameters, fully leveraging the model's diagnostic capabilities.

2.6 Training environment

The system configuration used is Windows 11, the processor is i17-12650H,
16GB RAM, 1T hard disk and Nvidia RTX4060 graphics card, and Matlab2023b
software is used for PSO-Transformer-BiLSTM model building. Its hyperparameter
settings are shown in Table 1.

Table 1
LSTM model parameters
hyperparameterization [parameter value|
neuron setting [16,16]
learning rate 0.001
Epoch 70
Batchsize 50
Training set: validation set: test sef] 8:1:1

2.7 Evaluation indicators

To evaluate the predictive performance of the model, four metrics were used:
MAE, RMSE, R? coefficient, and Training Loss Value.

The calculation of MAE and RMSE is shown in Equation (6) and Equation
(7). Where RULt is the real RUL value of the rolling bearing at the #" moment;
where RUL, is the predicted RUL value of the rolling bearing at the tth moment; n
is the number of samples in the test set. R? coefficient indicates the proportion of
the variation explained by the model to the total variation, and its he value is
expressed as a number between 0 and 1. A value that is closer to 1 is indicative of a
greater degree of the characteristic in question, represents the better the model is
trained on the bearing vibration dataset and the more accurate the state prediction
is; the higher the value of the training loss indicates the worse the stability of the
model, and the lower the value of the training loss indicates the better the stability
of the model. The higher the training loss value, the worse the model stability, and
the lower the training loss value, the better the model stability.

E,=RUL,—RUL,

)
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1 n
MAE ==Y |E|
" (6)

RMSE = /lzn:(Et )
e (7)
2.8 Dataset

The input data used in this study were rolling bearing vibration signals
acquired via an EAG04-100 accelerometer.The data type is a one-dimensional time
series vibration signal with a sampling frequency of 25.6 kHz, and 0.1 seconds of
data are collected every 10 seconds, totaling 2560 sampling points. The signal
direction is the positive X-axis and positive Y-axis of the sensor installed in the
output shaft housing of the planetary gearbox, and the vibration signals in the
horizontal and vertical directions are collected respectively.

Noise reduction and normalization were used for data processing. First,
wavelet threshold denoising was used to eliminate high-frequency noise; then, Z-
score standardization was performed on the raw signals; finally, the continuous
signals were divided into segments with a length of 512 (with an overlap rate of
50%) and marked as “normal” or “faulty” according to the inner ring wear fault
simulation platform. ".

3. Results and analysis

3.1 Prediction performance of PSO-Transformer-BiLSTM model for
faulty bearing vibration signal

3.1.1 Training of faulty bearing detection models
Fig. 5(a) and (b) show the training RMSE and loss function plots of the
PSO-Transformer-BiILSTM model for the faulty bearing vibration signals,

respectively; from Fig. 5(a), it can be seen that the model shows a rapidly decreasing RMSE
in the first 50 iterations, and the curve decreases slowly up to 200 Epochs, and this is followed
by a steady phase in the RMSE. Fig. 5(b) shows that the loss function curve decreases rapidly
from 0.496 to 0.087 in the first 50 iterations, and then the curve decreases slowly until it
decreases to 0.035 at the 1400th Epoch, which indicates that the network model can obtain good
detection without both underfitting and overfitting. The results of the network model.

3.1.2 Evaluation of the prediction performance of the faulty bearing
vibration signal detection model

In the previous section, the faulty bearing signal dataset is divided into 8:1:1,
and the validation and test sets of PSO-Transformer-BiLSTM are 10% of the dataset,
respectively, and the validation and test sets will be used to calibrate the model and
to test the effect of the improved model's performance on the faulty bearing signal
dataset, respectively.

Table 2 demonstrates the MAE, RMSE and R? coefficients for the validation
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and prediction of the PSO-Transformer-BiLSTM model on the faulty bearing signal
dataset. The MAE, RMSE and R? coefficients in the model validation stage are
10.13, 12.93 and 0.93, respectively, and the MAE, RMSE and R? coefficients in the
model prediction stage are 10.37, 13.26 and 0.93, respectively, with the largest
difference of 0.33 for the RMSE, the smallest gap of 0 for the R? coefficients, and
the gap of 0.24 for the MAE, and the difference of the above data are all less than
1, especially the error of R? coefficient is less than 0.005. The experiments show
that the PSO-Transformer-BiLSTM model is suitable for the fault prediction of
wind turbine bearings.

Training Set RMSE Curve
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Fig. 5 PSO-Transformer-BiLSTM model RMSE plot
Note: Fig. 5(a) shows the RMSE curve of PSO-Transformer-BiLSTM model
Fig. 5(b) shows the PSO-Transformer-BiLSTM model training loss function plot

Table 2
Prediction results of PSO-Transformer-BiLSTM model for faulty bearing
model stage MAE | RMSE R? Coefficients
validate (a theory) 10.13 12.93 0.93
beta (software) 10.37 13.26 0.93

3.2 Ablation experiments

In this paper, ablation experiments are set up to verify the performance
impact of each added module on PSO-Transformer-BiLSMT. The ablation
experiment splits the PSO-Transformer-BiLSMT model into three classes, BILSTM,
Transformer-BiLSTM and PSO-Transformer-BiLSMT, and Table 3 shows the
prediction set MAE, RMSE and R2 coeftficients and the training set loss function
corresponding to the above three classes of modeled faulty bearing vibration signals
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data sets. set loss function.

Table 3 demonstrates the MAE, RMSE and R2 coefficients of the prediction
sets for the three models BiLSTM, Transformer-BiLSTM and PSO-Transformer-
BiLSTM. The MAE, RMSE and R2 coefficients of Transformer are the lowest
among the three models, which are 12.43, 15.50 and 0.90, respectively, while
BiLSTM is the next lowest, with the MAE, RMSE and R2 coefficients of 10.71,
13.65 and 0.92, respectively. BILSTM, which is not optimized, has a higher MAE,
RMSE and R coefficients than that of Transformer. BiLSTM without any
optimization instead performs better than Transformer-BiLSTM with Transformer
module in the faulty bearing dataset. However, the PSO-Transformer-BiLSTM
model optimized with PSO operator achieves better performance with the highest
MAE, RMSE and R2 coefficients of 10.37, 13.26 and 0.93.

Although the improvement in the R* coefficient of the PSO-Transformer-
BiLSTM model compared to the BiLSTM model is marginal (0.01), significant
enhancements are observed in MAE and RMSE, with reductions of 0.34 and 0.39,
respectively. These results indicate that the PSO-Transformer-BiLSTM model
outperforms BiLSTM in both reliability for routine fault monitoring and capability
to detect sudden abnormal signals. Furthermore, the PSO-Transformer-BiLSTM
model demonstrates a 20s reduction in prediction time compared to the BILSTM
model, highlighting its efficiency in real-time applications.

Table 3
Prediction results of BiLSTM, Transformer-BiLSTM, PSO-Transformer-BiLSTM models
for faulty bearings
Model Category MAE RMSE R? Coefficients |Prediction Time
BiLSTM 10.71 13.65 0.92 641s
Transformer-BiLSTM 12.43 15.50 0.90 622s
PSO-Transformer-BiLSTM 10.37 13.26 0.93 621s

Fig. 6 shows the training loss function of BiLSTM, Transformer-BiLSTM
and PSO-Transformer-BiLSTM models. From the figure, it can be seen that the
training loss function of PSO-Transformer-BiLSTM model is the lowest compared
to BiLSTM and Transformer-BiLSTM, which indicates that PSO-Transformer-
BiLSTM model is the most stable. When the Epoch of BiLSTM model is 1400, its
loss function is 0.38, and the loss function of Transformer-BiLSTM model at the
1400th Epoch is 0.46, which also explains the higher prediction performance of
BiLSTM than Transformer-BiLSTM in terms of loss function.

3.3 Prediction results of different models for the faulty bearing dataset

To further evaluate the predictive performance of the PSO-Transformer-
BiLSTM model on the faulty bearing dataset, a comparison was conducted against
several other models, including the CNN-LSTM-XGB model, the TCN-LSTM
model, the CNN-LSTM-SE model, and the PSO-Transformer-BiLSTM model itself.
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Table 4 shows the performance results of four target detection network
models for predicting the vibration signals of faulty bearings. As can be seen from
the table, the MAE, RMSE and R2 coefficient of PSO-Transformer-BiLSTM have
the best performance among the four models, which are 10.37, 13.26 and 0.93,
respectively; and the worst performance model is CNN-LSTM-XGB, which has
MAE, RMSE and R2 coefficients of 16.11, 17.26 and 0.81, and has a difference of
5.74, 4.00 and 0.12 with the evaluation index of PSO -Transformer-BiLSTM with
MAE, RMSE and R coefficient of 16.11, 17.26 and 0.81, respectively, which are
different from those of PSO-Transformer-BiLSTM with evaluation indexes of 5.74,
4.00 and 0.12, respectively. Overall, the PSO-Transformer-BiLSTM model
proposed in this study has good results in the prediction of the faulty bearing
vibration signal dataset in comparison with other models. with good results.
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Fig. 6. Training loss function of BiLSTM, Transformer-BiLSTM, PSO-Transformer-BiLSTM
models
Note: Fig. 6(a), (b) and (c) show the training loss function plots of BiLSTM, Transformer-
BiLSTM, PSO-Transformer-BiLSTM respectively
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Table 4
Comparison of model performance
Model Category MAERMSER? Coefficients
CNN-LSTM-XGB 16.11]17.26 0.81
TCN-LSTM 11.36{16.52 0.91
CNN-LSTM-SE 10.85/13.76 0.92
PSO-Transformer-BiLSTM[10.37/13.26 0.93

4. Conclusion

In the context of big data, accurately estimating the life of rolling bearings
remains a challenge. To address this issue, this study proposes a novel PSO-
Transformer-BiLSTM prediction model integrating the Transformer, PSO operator,
and BiLSTM for rolling bearing life prediction. The Transformer's attention module,
featuring residual connections, effectively captures long-term dependencies within
time series data. To further enhance the model's capacity to extract crucial features
from long sequences and reduce the impact of noise interference, the PSO operator
is incorporated to optimize the Transformer-BiLSTM backbone. The BiLSTM
model is then employed to implement bearing failure prediction, enabling a more
comprehensive understanding of the time series context and interdependencies.

The main contributions and findings of this study are summarized as follows:

We propose and implement a novel hybrid deep learning architecture that
synergistically integrates the Transformer (for capturing complex long-range
dependencies and feature interactions in vibration signals), the BiLSTM (for
effectively modeling bidirectional temporal dynamics in bearing degradation), and
the PSO algorithm (for efficiently optimizing critical hyperparameters like learning
rate, batch size, and iterations). This integration overcomes the limitations of
manual hyperparameter tuning and leverages the strengths of each component,
leading to enhanced overall performance.

The proposed PSO-Transformer-BiLSTM model demonstrates superior
predictive performance on a real-world wind turbine gearbox bearing vibration
dataset collected from a dedicated fault simulation platform. Experimental results
show significant improvements: achieving RMSE=13.26, MAE=10.37, and R?
=0.93. These results indicate exceptional model fit and prediction accuracy,
outperforming baseline models (Transformer, BILSTM) and state-of-the-art hybrid
models (CNN-LSTM-XGB, TCN-LSTM, CNN-LSTM-SE), particularly evidenced
by the highest R* coefficient.

The model provides a robust and accurate tool for predicting incipient
rolling bearing failures in wind turbines. By enabling timely fault detection, it offers
significant practical value. This capability contributes directly to improving wind
turbine operational reliability, reducing costly unplanned downtime, minimizing
maintenance expenditures, preventing catastrophic failures, and ultimately
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enhancing grid-connection efficiency and economic benefits for wind farm
operators.

This work empirically validates the effectiveness of employing the Particle
Swarm Optimization (PSO) algorithm for hyperparameter tuning in complex hybrid
deep learning models (specifically Transformer-BiLSTM) applied to bearing fault
prognostics. The significant performance boost (e.g., R®> increased by 0.03
compared to the non-optimized Transformer-BiLSTM) achieved by the PSO-
optimized model underscores the critical importance and efficacy of automated
hyperparameter optimization in this domain.

Notably, compared with the BiLSTM model, the PSO-Transformer-
BiLSTM model increases the R* coefficient by 0.01, and compared with the
Transformer-BiLSTM model, it shows a 0.03 improvement. These results provide
an experimental basis for subsequent utilization of the PSO operator in model
optimization and offer a theoretical foundation for further algorithm-oriented
optimization research.

Despite the promising results achieved by the proposed hybrid prediction
model in rolling bearing prediction, there are still limitations in terms of the
interpretability of prediction results and the quantification of confidence levels.
Future research should focus on exploring how to optimize the model to better fit
the monitored degradation data, aiming to achieve more accurate and effective
bearing life predictions.
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