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WIND TURBINE ROLLING BEARING FAILURE 

PREDICTION BASED ON PSO-TRANSFORMER-BiLSTM 

MODELING 

Zhenqiang ZHAO1, Houxu PU2, Jianhua DONG3, Hong CHEN4* 

The failure of wind turbine gearbox bearings can negatively impact grid-

connection efficiency and may even result in severe accidents, causing substantial 

financial losses for wind farm operators. This study introduces a PSO-Transformer-

BiLSTM model, which integrates the Transformer model, Bidirectional Long Short-

Term Memory (BiLSTM) model, and Particle Swarm Optimization (PSO) algorithm 

to solve wind gearboxes bearing failure problem. In this model, the Transformer 

component is responsible for extracting signal features, while the BiLSTM model is 

applied for both signal feature extraction and signal timing prediction. The PSO 

algorithm is utilized to fine-tune the model’s hyperparameters for optimal 

performance. The vibration fault dataset for the rolling bearings was obtained 

through a wind power fault simulation platform using components such as inner-ring-

wear rolling bearings, acceleration sensors, and cloud vibration meters. 

Experimental results demonstrate that the PSO-Transformer-BiLSTM model achieves 

Root Mean Square Error (RMSE), R² values, and Mean Absolute Error (MAE) of 

13.26, 0.93, and 10.37, respectively, on the faulty bearing vibration dataset. These 

results indicate an improvement in performance compared to individual Transformer 

and BiLSTM models, with the R² value increasing by 0.01 and 0.03, respectively. 

Additionally, when compared with other phase prediction models, such as CNN-

LSTM-XGB, TCN-LSTM, and CNN-LSTM-SE, the R² coefficients of the PSO-

Transformer-BiLSTM model surpass them by 0.12, 0.02, and 0.01, respectively. These 

findings confirm that the PSO-Transformer-BiLSTM model delivers reliable 

performance on faulty bearing datasets and offers valuable insights for diagnosing 

vibration faults in wind turbines. 

Keywords: Wind turbine, Rolling bearing, Vibration signal, PSO-Transformer-

BiLSTM 

1. Introduction 

Renewable energy is an imperative to address the environmental impact of 

fossil fuels [1]. By the end of June 2024, the total installed capacity of wind power 
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in China will have reached 46.7 million kilowatts, and it is expected that as of the 

end of 2025, the country's wind power installation capacity will reach about 53 

million kilowatts. However, the reliability of wind turbines, which have been in 

harsh environmental conditions for a long time, is generally low, and domestic wind 

turbines have entered a period of frequent failures [2]. Bearing as a key bearing 

component in the gearbox, its failure will not only lead to an increase in downtime, 

but also may lead to more serious mechanical damage, resulting in huge economic 

losses and maintenance costs [3]. Currently, the bearing failure rate has been as 

high as 20% [4]. The formation of fatigue life prediction theory can also extend the 

life cycle of the product and save costs in the production industry [5]. If the bearings' 

health condition can be determined quickly and accurately, and timely predictions 

can be made before major failures occur, it is of great significance to increase 

turbine running time, improve operational reliability, and avoid major accidents and 

losses from unplanned downtime. 

Vibration monitoring is extensively applied in fault diagnosis, offering high 

efficiency in detecting fan bearing issues through vibration signals, high sensitivity, 

simple data processing, high-precision diagnosis, real-time monitoring and data 

analysis. Based on vibration detection technology Pavithra et al [6] proposed a 

method for classifying machine faults using spectral image-based machine 

vibration signals and deep convolutional neural network representations, the model 

accuracy is 100% in the binary classification dataset of normal bearings and faulty 

bearings; Yan Zhao [7] proposed a fatigue life assessment process based on 

measured vibration data, combined with the SSI-UPC to the wind turbine tower 

self-oscillation frequency and damping ratio of the law to summarize the law; Jun 

Pi et al [8] combined with the bearing vibration fault simulation platform combined 

with machine learning to realize bearing fault diagnosis; Ahmed et al [9] used a 

plain Bayesian model to discriminate helical gear tooth wear faults in gear 

transmission achieving an accuracy of 93.9% and an area under the ROC curve of 

99.1%. 

Deep learning has the advantages of being adaptive, data-driven, and self-

extracting features, among which the Transformer model [10] has a powerful 

sequence modeling capability and a self-attention mechanism, which can 

effectively capture complex time dependencies in vibration signals, thus improving 

the accuracy and efficiency of fault diagnosis. Ding et al [11] further developed the 

vanilla Transformer for sequence processing, building on the success of the original 

model, an end-to-end time-frequency Transformer model is introduced to extract 

meaningful abstractions from the time-frequency representation of vibration signals. 

The effectiveness of the proposed approach is validated through a case study on an 

experimental bearing dataset, showcasing its advantages over the benchmark model 

and other cutting-edge methods; Wen Jiangtao et al. [12] achieved a prediction of 

the remaining life of rolling bearings based on the improved Transformer model 

https://content.iospress.com/search?q=author:(
https://link.springer.com/article/10.1007/s12008-024-02037-0#auth-Ahmed_Ghazi-Abdulameer-Aff1
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with a root mean square difference of 0.0941; Lin Tantao et al. [13] fused the faulty 

acoustic-vibration signals from the outer ring, inner ring, cage, and rolling element 

of a rolling bearing , using the Transformer model for diagnosis, with an accuracy 

of 89.51%. 

Bearing vibration signals are sequential data that Bidirectional Long Short-

Term Memory (BiLSTM) is commonly utilized for forecasting based on sequential 

data. The BiLSTM is an effective method for capturing long-range dependencies in 

time series data, automatically extracting fault characteristics, and improving the 

accuracy and reliability of the model through the bi-directional flow of information. 

Nacer et al [14] based on BiLSTM improved model using Case Western Reserve 

University bearing dataset tested the performance under 16 conditions and different 

loads, and the accuracy was as high as 99.96%; Guo et al [15] developed an ACNN-

BiLSTM diagnosis of bearing faults model building on the foundation of the 

BiLSTM model with an average diagnostic accuracy as high as 99.79% on Jiangnan 

University bearing dataset; Sun et al [16] introduced a new model built on the 

enhanced DBO algorithm. They proposed a rolling bearing fault diagnosis 

framework that leverages VMD-CNN-BiLSTM, optimized through the CSADBO 

algorithm. The model achieves an average accuracy of 99.6% in diagnostics in 

regard to the bearing dataset from Case Western Reserve University; Guo et al [17] 

combine the MSCNN and BiLSTM to construct MSCNN-BiLSTM for real-time 

and stable monitoring of the rolling bearing operation status of a marine engine, and 

the experimental findings indicate that the proposed model is an effective fault 

diagnostic network model with strong generalization ability, which is able to 

accurately identify the different states of the rolling bearings at a faster rate. 

The PSO operator can be used to automatically optimize the 

hyperparameters of deep learning models. Each particle corresponds to a set of 

potential parameters, and its performance is assessed using an objective function to 

progressively converge toward the optimal parameter combination. Song et al [18] 

addressed the challenges of insufficient utilization of the time-dependent bearing 

fault signalling features, the high cost of parameter tuning represents a significant 

challenge for many organisations, and the challenge of acquiring sufficient training 

data under a range of operational conditions. They proposed a CNN-BiLSTM 

model optimized with a PSO operator for hyper-parameter tuning, achieving a 

diagnostic accuracy of 99.44%. The diagnostic accuracy reaches 99.44%; 

Geethanjali et al [19] The PSO optimization method is used to optimize the ANN 

model for detecting normal, magnetizing inrush current, core overexcitation, 

internal fault and external fault states of the transformer, and the results demonstrate 

that the PSO-optimized ANN model is better in comparison with the BPN model; 

Bharti et al [20] developed a PSO-BiLSTM model, combining the PSO algorithm 

with a BiLSTM neural network, the objective is to forecast the short-term traffic 

flow. The model was compared with LSTM, ELM, GRU, WNN, MLP, and ARIMA, 

http://www.baidu.com/link?url=uA2PUs_LrtiXyfSkZVJJpWpW5YJTXA4DlLHbIzK87F8pBwONIl5JhtrfPsRBlR1aUWTSQKNgGCThds1gMlVFfv_MAzuB7-ysZya6evaTDZi
http://www.baidu.com/link?url=uA2PUs_LrtiXyfSkZVJJpWpW5YJTXA4DlLHbIzK87F8pBwONIl5JhtrfPsRBlR1aUWTSQKNgGCThds1gMlVFfv_MAzuB7-ysZya6evaTDZi


538                               Zhenqiang Zhao, Houxu Pu, Jianhua Dong, Hong Chen 

and the experimental results demonstrate that the PSO-BiLSTM model surpasses 

the others in both accuracy and stability. 

Building on the aforementioned research, this paper focuses on the faulty 

rolling bearing vibration signals from the wind power fault simulation platform as 

the research subject. It develops the PSO-Transformer-BiLSTM model to predict 

faulty bearing signals, aiming to achieve effective bearing fault prediction and offer 

technical support for future fault diagnosis of rolling bearings. 

2. Equipment and methods 

2.1 Simulation of wind turbine gearbox bearing failure 

The wind turbine gearbox output shaft condition detection platform built by 

this institute is shown in Fig. 1. The condition detection platform includes wind 

power transmission fault simulation experimental bench (Jiangsu Union Yiyou 

Measurement and Control Technology Co., Ltd.), 6212 inner ring wear bearing, 

PDES-G cloud diagnostic instrument (Zhengzhou Enptech Co., Ltd.) and EAG04-

100 acceleration sensor (Zhengzhou Enptech Co., Ltd.). The wind power 

transmission fault simulation test bench with 6212 faulty bearings to simulate the 

bearing failure of the wind turbine gearbox output shaft, through the PDES-G cloud 

diagnostic instrument and EAG04-100 acceleration sensor for the faulty bearing 

vibration signal acquisition. Acceleration sensors are mounted on the positive X and 

positive Y axes of the planetary gearbox output shaft housing to collect bearing 

vibration signals from the gearbox output shaft. 

The defect of the faulty bearing is the wear of the inner ring of the bearing, 

the data in the motor IF is 3093RPM, IF is 51.5Hz. the vibration signal (horizontal 

and vertical direction) is sampled at 25.6kHz, and the data is collected every 10 

seconds for 0.1 seconds, i.e., 2560 samples are recorded, Fig. 2 shows the sample 

of the faulty bearing. 

  
Fig. 1. Wind turbine gearbox output shaft condition detection platform Fig. 2. Faulty bearing 

 

2.2 Transformer 

The Transformer model is fundamentally based on the self-attention 

mechanism, enabling the model to capture long-range dependencies by considering 

all elements in the sequence when processing each individual element. The 
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Transformer is composed of two primary components: the encoder and the decoder, 

both consisting of multiple identical layers. The encoder handles the input sequence, 

while the decoder leverages the encoder's output to produce the target sequence. 

Each layer within the encoder and decoder includes a multi-head attention 

mechanism and a feed-forward neural network, accompanied by residual 

connections and layer normalization to ensure stable gradient propagation. The 

structure of the Transformer model is illustrated in Fig. 3. 

2.3 BiLSTM 

BiLSTM is a recurrent neural network model built upon LSTM [21]. Unlike 

the traditional LSTM, the BiLSTM [22] model can handle both unidirectional 

dependencies and simultaneously consider information from both the past and 

future in time series data. The BiLSTM architecture comprises two principal 

components: two LSTM networks are employed, one forward and one backward. 

The forward LSTM processes the sequence data from left to right, while the 

backward LSTM traverses the same sequence from right to left. The outputs from 

both directions are combined to form the final output of the BiLSTM. This structure 

allows the model to leverage both historical and future context, enhancing its 

capability to capture complex patterns within sequential data. 

As shown in Fig. 4, the forward layer performs computations step-by-step, 

storing the output of the forward hidden layer at each step. Afterward, the backward 

layer computes in reverse, saving the output from the backward hidden layer at each 

step. Subsequently, the outputs from the forward and backward layers are integrated 

to generate the final output. 
 

 

 

Fig. 3. Transformer framework Fig. 4. BiLSTM model structure 
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2.4 PSO algorithm 

PSO is a global search algorithm introduced by Kennedy and Eberhart, 

inspired by the foraging and evasive behaviors of swarming animals [23-24]. PSO 

offers several advantages, including fast convergence, a small number of 

parameters, high robustness, and simplicity, making it easy to implement. Due to 

these benefits, PSO is frequently employed for hyper-parameter optimization in 

other models [24]. 

The core of the PSO algorithm is to verify the fitness of each point location 

by moving the particle regularly many times in the solution space, so the particle 

needs to constantly update its position to explore more points while running. 

The population position and velocity of the particle swarm are initialized as 

shown below: 
 *( )X lb rand ub lb= + −  (1) 

 min *( max min)V V rand V V= + −  (2) 

where X represents ub, lb represents the upper line position boundary of the 

particle, and Vmax, Vmin represent the velocity boundary of the particle, 

respectively. 

Since the particles are affected by the individual inertial motion direction, 

the individual optimal motion direction and the group optimal motion direction, the 

velocity update is vectorially superimposed by all three, as shown in the following 

equation: 

 
1

1 2( ) ( )i i i i i i

best bestV wV C P X C G X+ = + + + −
 (3) 

Where, w,C1 ,C2 wind up denoting the weight coefficients and learning 

factors, respectively. 

The i+1st position of the particle is affected by the ith position and the i+1st 

velocity with the following mathematical expression: 
 1 1i i iX X V+ += +  (4) 

Where xk denotes the position of the algorithm at the kth iteration, vk+1 

denotes the displacement of the k+1st generation, and xk+1 i.e. the position of the 

k+1st generation is based on the position of the kth generation plus the displacement 

of the k+1st generation. 

2.5 PSO-transformer-BiLSTM bearing diagnostic modeling 

The Transformer's feature learning method obviates the necessity for 

manually-driven feature extraction, which is a hallmark of traditional approaches. 

This enables end-to-end information processing. Nevertheless, depending on a 

solitary model for time series prediction may not necessarily result in optimal 

outcomes. To address this, a Transformer-BiLSTM neural network based on one-

dimensional data is put forth, integrating the Transformer's capacity for local feature 

extraction with the BiLSTM's aptitude for handling nonlinear temporal 
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dependencies. This model is devised for the extraction and classification of one-

dimensional bearing fault vibration signals. 

In the Transformer-BiLSTM network, the choice of hyperparameters, 

including the learning rate, batch size and number of iterations, has a significant 

impact on the model's performance. Achieving optimal results for complex 

networks requires a substantial amount of tuning experience and a large number of 

experiments. To address this challenge, the particle swarm optimisation (PSO) 

algorithm is employed to optimise the model's hyperparameters, thereby reducing 

the time required for manual tuning. This approach ensures the discovery of the best 

training parameters, fully leveraging the model's diagnostic capabilities. 

2.6 Training environment 

The system configuration used is Windows 11, the processor is i7-12650H, 

16GB RAM, 1T hard disk and Nvidia RTX4060 graphics card, and Matlab2023b 

software is used for PSO-Transformer-BiLSTM model building. Its hyperparameter 

settings are shown in Table 1. 
Table 1 

LSTM model parameters 

hyperparameterization parameter value 

neuron setting [16,16] 

learning rate 0.001 

Epoch 70 

Batchsize 50 

Training set: validation set: test set 8:1:1 

2.7 Evaluation indicators 

To evaluate the predictive performance of the model, four metrics were used: 

MAE, RMSE, R² coefficient, and Training Loss Value. 

The calculation of MAE and RMSE is shown in Equation (6) and Equation 

(7). Where RULt is the real RUL value of the rolling bearing at the tth moment; 

where tRUL  is the predicted RUL value of the rolling bearing at the tth moment; n 

is the number of samples in the test set. R2 coefficient indicates the proportion of 

the variation explained by the model to the total variation, and its he value is 

expressed as a number between 0 and 1. A value that is closer to 1 is indicative of a 

greater degree of the characteristic in question, represents the better the model is 

trained on the bearing vibration dataset and the more accurate the state prediction 

is; the higher the value of the training loss indicates the worse the stability of the 

model, and the lower the value of the training loss indicates the better the stability 

of the model. The higher the training loss value, the worse the model stability, and 

the lower the training loss value, the better the model stability. 

 t t tE RUL RUL= −
 (5) 
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2.8 Dataset 

The input data used in this study were rolling bearing vibration signals 

acquired via an EAG04-100 accelerometer.The data type is a one-dimensional time 

series vibration signal with a sampling frequency of 25.6 kHz, and 0.1 seconds of 

data are collected every 10 seconds, totaling 2560 sampling points. The signal 

direction is the positive X-axis and positive Y-axis of the sensor installed in the 

output shaft housing of the planetary gearbox, and the vibration signals in the 

horizontal and vertical directions are collected respectively. 

Noise reduction and normalization were used for data processing. First, 

wavelet threshold denoising was used to eliminate high-frequency noise; then, Z-

score standardization was performed on the raw signals; finally, the continuous 

signals were divided into segments with a length of 512 (with an overlap rate of 

50%) and marked as “normal” or “faulty” according to the inner ring wear fault 

simulation platform. ". 

3. Results and analysis 

3.1 Prediction performance of PSO-Transformer-BiLSTM model for 

faulty bearing vibration signal 

3.1.1 Training of faulty bearing detection models 

Fig. 5(a) and (b) show the training RMSE and loss function plots of the 

PSO-Transformer-BiLSTM model for the faulty bearing vibration signals, 

respectively; from Fig. 5(a), it can be seen that the model shows a rapidly decreasing RMSE 

in the first 50 iterations, and the curve decreases slowly up to 200 Epochs, and this is followed 

by a steady phase in the RMSE. Fig. 5(b) shows that the loss function curve decreases rapidly 

from 0.496 to 0.087 in the first 50 iterations, and then the curve decreases slowly until it 

decreases to 0.035 at the 1400th Epoch, which indicates that the network model can obtain good 

detection without both underfitting and overfitting. The results of the network model. 

3.1.2 Evaluation of the prediction performance of the faulty bearing 

vibration signal detection model 

In the previous section, the faulty bearing signal dataset is divided into 8:1:1, 

and the validation and test sets of PSO-Transformer-BiLSTM are 10% of the dataset, 

respectively, and the validation and test sets will be used to calibrate the model and 

to test the effect of the improved model's performance on the faulty bearing signal 

dataset, respectively. 

Table 2 demonstrates the MAE, RMSE and R2 coefficients for the validation 
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and prediction of the PSO-Transformer-BiLSTM model on the faulty bearing signal 

dataset. The MAE, RMSE and R2 coefficients in the model validation stage are 

10.13, 12.93 and 0.93, respectively, and the MAE, RMSE and R2 coefficients in the 

model prediction stage are 10.37, 13.26 and 0.93, respectively, with the largest 

difference of 0.33 for the RMSE, the smallest gap of 0 for the R2 coefficients, and 

the gap of 0.24 for the MAE, and the difference of the above data are all less than 

1, especially the error of R2 coefficient is less than 0.005. The experiments show 

that the PSO-Transformer-BiLSTM model is suitable for the fault prediction of 

wind turbine bearings. 

 
Fig. 5 PSO-Transformer-BiLSTM model RMSE plot 

Note: Fig. 5(a) shows the RMSE curve of PSO-Transformer-BiLSTM model 

Fig. 5(b) shows the PSO-Transformer-BiLSTM model training loss function plot 

 

Table 2 

Prediction results of PSO-Transformer-BiLSTM model for faulty bearing 

model stage MAE RMSE R2 Coefficients 

validate (a theory) 10.13 12.93 0.93 

beta (software) 10.37 13.26 0.93 

3.2 Ablation experiments 

In this paper, ablation experiments are set up to verify the performance 

impact of each added module on PSO-Transformer-BiLSMT. The ablation 

experiment splits the PSO-Transformer-BiLSMT model into three classes, BiLSTM, 

Transformer-BiLSTM and PSO-Transformer-BiLSMT, and Table 3 shows the 

prediction set MAE, RMSE and R2 coefficients and the training set loss function 

corresponding to the above three classes of modeled faulty bearing vibration signals 
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data sets. set loss function. 

Table 3 demonstrates the MAE, RMSE and R2 coefficients of the prediction 

sets for the three models BiLSTM, Transformer-BiLSTM and PSO-Transformer-

BiLSTM. The MAE, RMSE and R2 coefficients of Transformer are the lowest 

among the three models, which are 12.43, 15.50 and 0.90, respectively, while 

BiLSTM is the next lowest, with the MAE, RMSE and R2 coefficients of 10.71, 

13.65 and 0.92, respectively. BiLSTM, which is not optimized, has a higher MAE, 

RMSE and R coefficients than that of Transformer. BiLSTM without any 

optimization instead performs better than Transformer-BiLSTM with Transformer 

module in the faulty bearing dataset. However, the PSO-Transformer-BiLSTM 

model optimized with PSO operator achieves better performance with the highest 

MAE, RMSE and R2 coefficients of 10.37, 13.26 and 0.93. 

Although the improvement in the R² coefficient of the PSO-Transformer-

BiLSTM model compared to the BiLSTM model is marginal (0.01), significant 

enhancements are observed in MAE and RMSE, with reductions of 0.34 and 0.39, 

respectively. These results indicate that the PSO-Transformer-BiLSTM model 

outperforms BiLSTM in both reliability for routine fault monitoring and capability 

to detect sudden abnormal signals. Furthermore, the PSO-Transformer-BiLSTM 

model demonstrates a 20s reduction in prediction time compared to the BiLSTM 

model, highlighting its efficiency in real-time applications. 

Table 3 

Prediction results of BiLSTM, Transformer-BiLSTM, PSO-Transformer-BiLSTM models 

for faulty bearings 

Model Category MAE RMSE R2 Coefficients Prediction Time 

BiLSTM 10.71 13.65 0.92 641s 

Transformer-BiLSTM 12.43 15.50 0.90 622s 

PSO-Transformer-BiLSTM 10.37 13.26 0.93 621s 

 

Fig. 6 shows the training loss function of BiLSTM, Transformer-BiLSTM 

and PSO-Transformer-BiLSTM models. From the figure, it can be seen that the 

training loss function of PSO-Transformer-BiLSTM model is the lowest compared 

to BiLSTM and Transformer-BiLSTM, which indicates that PSO-Transformer-

BiLSTM model is the most stable. When the Epoch of BiLSTM model is 1400, its 

loss function is 0.38, and the loss function of Transformer-BiLSTM model at the 

1400th Epoch is 0.46, which also explains the higher prediction performance of 

BiLSTM than Transformer-BiLSTM in terms of loss function. 

3.3 Prediction results of different models for the faulty bearing dataset 

To further evaluate the predictive performance of the PSO-Transformer-

BiLSTM model on the faulty bearing dataset, a comparison was conducted against 

several other models, including the CNN-LSTM-XGB model, the TCN-LSTM 

model, the CNN-LSTM-SE model, and the PSO-Transformer-BiLSTM model itself. 
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Table 4 shows the performance results of four target detection network 

models for predicting the vibration signals of faulty bearings. As can be seen from 

the table, the MAE, RMSE and R2 coefficient of PSO-Transformer-BiLSTM have 

the best performance among the four models, which are 10.37, 13.26 and 0.93, 

respectively; and the worst performance model is CNN-LSTM-XGB, which has 

MAE, RMSE and R2 coefficients of 16.11, 17.26 and 0.81, and has a difference of 

5.74, 4.00 and 0.12 with the evaluation index of PSO -Transformer-BiLSTM with 

MAE, RMSE and R  coefficient of 16.11, 17.26 and 0.81, respectively, which are 

different from those of PSO-Transformer-BiLSTM with evaluation indexes of 5.74, 

4.00 and 0.12, respectively. Overall, the PSO-Transformer-BiLSTM model 

proposed in this study has good results in the prediction of the faulty bearing 

vibration signal dataset in comparison with other models. with good results. 

 
Fig. 6. Training loss function of BiLSTM, Transformer-BiLSTM, PSO-Transformer-BiLSTM 

models 

Note: Fig. 6(a), (b) and (c) show the training loss function plots of BiLSTM, Transformer-

BiLSTM, PSO-Transformer-BiLSTM respectively 
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Table 4 

Comparison of model performance 

Model Category MAE RMSE R2 Coefficients 

CNN-LSTM-XGB 16.11 17.26 0.81 

TCN-LSTM 11.36 16.52 0.91 

CNN-LSTM-SE 10.85 13.76 0.92 

PSO-Transformer-BiLSTM 10.37 13.26 0.93 

4. Conclusion 

In the context of big data, accurately estimating the life of rolling bearings 

remains a challenge. To address this issue, this study proposes a novel PSO-

Transformer-BiLSTM prediction model integrating the Transformer, PSO operator, 

and BiLSTM for rolling bearing life prediction. The Transformer's attention module, 

featuring residual connections, effectively captures long-term dependencies within 

time series data. To further enhance the model's capacity to extract crucial features 

from long sequences and reduce the impact of noise interference, the PSO operator 

is incorporated to optimize the Transformer-BiLSTM backbone. The BiLSTM 

model is then employed to implement bearing failure prediction, enabling a more 

comprehensive understanding of the time series context and interdependencies. 

The main contributions and findings of this study are summarized as follows: 

We propose and implement a novel hybrid deep learning architecture that 

synergistically integrates the Transformer (for capturing complex long-range 

dependencies and feature interactions in vibration signals), the BiLSTM (for 

effectively modeling bidirectional temporal dynamics in bearing degradation), and 

the PSO algorithm (for efficiently optimizing critical hyperparameters like learning 

rate, batch size, and iterations). This integration overcomes the limitations of 

manual hyperparameter tuning and leverages the strengths of each component, 

leading to enhanced overall performance. 

The proposed PSO-Transformer-BiLSTM model demonstrates superior 

predictive performance on a real-world wind turbine gearbox bearing vibration 

dataset collected from a dedicated fault simulation platform. Experimental results 

show significant improvements: achieving RMSE=13.26, MAE=10.37, and R²
=0.93. These results indicate exceptional model fit and prediction accuracy, 

outperforming baseline models (Transformer, BiLSTM) and state-of-the-art hybrid 

models (CNN-LSTM-XGB, TCN-LSTM, CNN-LSTM-SE), particularly evidenced 

by the highest R² coefficient. 

The model provides a robust and accurate tool for predicting incipient 

rolling bearing failures in wind turbines. By enabling timely fault detection, it offers 

significant practical value. This capability contributes directly to improving wind 

turbine operational reliability, reducing costly unplanned downtime, minimizing 

maintenance expenditures, preventing catastrophic failures, and ultimately 
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enhancing grid-connection efficiency and economic benefits for wind farm 

operators. 

This work empirically validates the effectiveness of employing the Particle 

Swarm Optimization (PSO) algorithm for hyperparameter tuning in complex hybrid 

deep learning models (specifically Transformer-BiLSTM) applied to bearing fault 

prognostics. The significant performance boost (e.g., R² increased by 0.03 

compared to the non-optimized Transformer-BiLSTM) achieved by the PSO-

optimized model underscores the critical importance and efficacy of automated 

hyperparameter optimization in this domain. 

Notably, compared with the BiLSTM model, the PSO-Transformer-

BiLSTM model increases the R² coefficient by 0.01, and compared with the 

Transformer-BiLSTM model, it shows a 0.03 improvement. These results provide 

an experimental basis for subsequent utilization of the PSO operator in model 

optimization and offer a theoretical foundation for further algorithm-oriented 

optimization research. 

Despite the promising results achieved by the proposed hybrid prediction 

model in rolling bearing prediction, there are still limitations in terms of the 

interpretability of prediction results and the quantification of confidence levels. 

Future research should focus on exploring how to optimize the model to better fit 

the monitored degradation data, aiming to achieve more accurate and effective 

bearing life predictions. 
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