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PREDICTION OF PCME’S THERMAL BEHAVIOR USING A
DEEP NEURAL NETWORK

Mihail-Bogdan CARUTASIU?, Virginia VASILE?, Horia NECULA?

Phase Change Material Emulsions stand out as potential latent thermal fluid
in different thermal applications. This paper presents results concerning the
prediction of the heat transfer behaviour of a 30 wt.% paraffin in water emulsion for
a temperature range of 0-20 °C. Based on data obtained empirically, we developed
a deep neural network to predict the PCME'’s heat transfer coefficient. The artificial
neural model was developed using the most complex and new scientific and
statistical tools — TensorFlow, Keras, Pandas and Python programming language. A
complex statistical study was performed a priori to model’s development. For
comparisons, the model was first trained with 24 features (comprehensive model)
and then with only 5 (lumped model), as they were the most statistically relevant.
The two models have similar prediction mean squared errors (around 5% for the
comprehensive model and around 6% for the lumped model), but the full model
tends to converge faster (used only 30 epochs compared with 130). Both models
showed very good prediction capabilities on new and unseen data: the
comprehensive model predicted with only 5.0% error, while the lumped model had a
mean squared error equal to 6%.
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1. Introduction

In a continuously developing world, the main source of the progress
remains the energy. Several concerning problems such as growing energy
shortage, low fossil fuel resources and climate change coupled with high oil prices
have been one of the main focuses in the last century. Researchers all over the
world [1] are looking for solutions to fulfill the energy demands by developing
new energy sources. One of the promising solutions in the general context is the
use, as previously mentioned, of latent functionally thermal fluids [2-5]. Phase
Change Material emulsions (PCMEs) were found to be popular and interesting for
comfort cooling applications: they perfectly fit with the required range of
temperatures (0-20 °C) owing to the use of paraffin. In addition, PCMEs show
significant advantages. They are safe, reliable, chemically inert, and stable, easy to
produce with a high phase change enthalpy [6,7]. The paraffin/water emulsion is a
system of two immiscible liquid phases in which small particles of paraffin are
distributed in water and maintained in dispersion by a surfactant.

In recent years, PCMEs have been increasingly investigated. The studies

have been focused especially on the preparation methods [8-10], thermal
properties [11-13], reducing their supercooling degree [14-16], investigating the
rheological and heat transfer behavior during phase change [17-19].
One of the biggest problems of this type of fluid is the supercooling degree. Over
time, different types of paraffin emulsions with different types of surfactant have
been studied. The link between the supercooling and the type of surfactant used
during emulsion preparation has been scientifically demonstrated [20, 21]. An
important step towards using this fluid in a practical way is to find the most
suitable type of surfactant so that the degree of cooling is as low as possible.

It would be interesting to know the rheological or the heat transfer
behavior of a paraffin emulsion before its preparation, since testing many types of
surfactant could easily become expensive and time consuming. Therefore, this
paper presents a new method of approaching the subject. Considering the high
complexity of the problem, a deep artificial neural network (ANN) was trained
with data obtained from an experimental stand described in paper [19]. The ANN
was used due to its widely known generalization capabilities, becoming a very
powerful tool when sufficient training data is available.

Even though ANN’s and Machine Learning techniques, in general, are
used in a wide range of domains and applications, the literature survey show very
few titles [22]. Matter of fact, only three found articles were considered relevant
when this paper was initially written (August 2020) and all were published
recently, from January to August 2020. For example, in [23], the authors trained a
multilayered perceptron using experimental data obtained from a PCM heat sink
and use to predict the Nusselt number and, implicitly, the heat transfer coefficient.
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They also found that the optimal ANN architecture is formed by 15 neurons in the
hidden layer and showed fair performances with maximum difference between
real and predicted values of 6.0%. S. Motahar [24] used a similar approach to
estimate the melting characteristics of n-octadecane PCM. The ANN had two
hidden layers with 18 and 15 neurons, respectively. The author considered as
inputs three a-dimensional numbers (Fourier, Raylight and Stefan) and predicted
the melted volume fraction (V/Vo) of the PCM. All the proposed ANN model’s
outputs felt within the range of 6.23%. A slightly different approach can be found
in [25], where the authors developed an ANN to analyze a photovoltaic thermal
system cooled with a nano PCM fluid. Here, the predicted values were the
electricity and heat provided by the hybrid system and the accuracy parameters
were: R2 - 0.8742, trend accuracy - 59.7, MSE - 0.0223, and RMSE - 0.149.

Deep Learning algorithms are a subset of a wider domain called Machine
Learning [26]; they become popular due to the increased computational power of
modern computers and data availability. This paper presents the results of
predicting the heat transfer coefficient of PCMEs using a deep sequential neural
network developed in Python and using the TensorFlow machine learning library
among other scientific and computational tools.

2. Materials and methods

The experimental data used in this article for the developed model are the
data recorded during the study of a 30 wt.% paraffin in water emulsion that was
developed for comfort cooling applications. The previous studies focused on the
experimental characterization of the thermal performances of this emulsion in
laminar flow during its cooling in a rectangular plate heat exchanger. Further
information on the experimental setup and experimental investigation is
presented by Vasile et. al 2018 [19, 27]. Different sets of measurements were
considered. These contain measured and calculated physical parameters such as
density, viscosity, conductivity, specific heat capacity, flow rate, emulsion
temperatures and heat exchange coefficient. The cooling section used to
investigate the phase change of the PCME during its cooling, is composed of three
channels. This represents to some extend a typical arrangement for plate heat
exchangers. The PCME flows into the central channel. It enters the bottom and
exits through the upper side. Ethanol circulates through the outer channels in
counter current, thus cooling the PCME. The central channel through which
circulates the PCME is composed of two stainless steel (304) plates
(width =130 mm,  thickness =4.5mm, length=1110 mm) [27].  This
experimental setup measures different categories of data, such as: density, mass
flow and velocity, 9 intermediary plate temperatures (TA 1...TA 9) and 9 mixed
mean temperatures of the PCME, that will ultimately allow the calculation the
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heat transfer coefficient during cooling. The positioning of the thermocouples for
measuring the temperatures of PCME on the steel plate is represented in Fig. 1.
The mixed mean temperature of the emulsion from the inlet to the outlet of the
cooling channel was determined using the energy balance.
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Fig. 1. Thermocouples position (red squares) on the steel plates forming the cooling
channel

2.2 Data analysis and preparation

Creating accurate predictive machine learning models implies good
knowledge about the data and it usually involves data preparation. The better the
data ‘fed’ to the model, the better the results; thus, the data preparation process
is a required and important step in developing an accurate model.

A full experiment consists in harvesting all the data for approximately 60
minutes, with a time step of 25 seconds, implying 149 timesteps; for these study
data from 15 experiments was used, meaning a total of 2235 timesteps. One
timestep consists of 35 values, including the heat transfer coefficient. 10 random
timesteps are not used in neither training nor testing processes and will be used
to test the model’s prediction accuracy over unseen-before data. Initially, the
whole dataset was split into smaller training and testing datasets — 1564 (70.0%)
observations for training and 661 (29.5%) observations for tests and 10 (0.05%)
data points for validation (totaling 2235 datapoints); these are not used at all in
neither training nor testing processes and was used to plot the results on unseen
before data. The samples were split randomly so we can validate the model on
wider data dispersion. Given the fact the temperatures of plate A are very similar
with temperatures on plate B, only the first were considered in training the
model; thus, the total number of features decreased to 25. This is a first step in
getting rid of redundant features, reducing this way the possibility of model’s
overfitting (when a complex model predicts a trend in ‘noisy’ and unprepared
data). If the training data is full of errors, outliers, and noise (poor quality of
measured features or missing values within the data, measurement errors, etc.), it
will make harder for the model to find the patterns within the data; this can be
caused due to an overly complex model with many inputs, redundant or constant
(without variation) features [28]. The model’s overfitting can be analyzed in the
scenario when the accurately predicts the values in training set, but its prediction
performances decrease when fed with new, unseen data. This is a main issue in
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machine learning field, as the goal of a developed model is to be able to predict
on future data in a specific domain. There are several techniques to reduce the
overfit of an artificial neural network. For example, the mean value for the
specific heat parameter is 3.62 kJ/kg/K, the mean mass flow is 846 kg/h, while
the temperatures range from -2 °C to 24 °C and the target feature (heat transfer
coefficient) has a min value of 131.35 W/m?%K and a max value of 9218.98
W/m?/K. Using the data in this form can lead to poor prediction capabilities or
even poor generalization. Thus, the data is to be first normalized, meaning that
all features are rescaled at values between 0 and 1. This can guarantee stable
convergence of weight and biases and improve algorithms like linear regression-
based models or neural networks.

The statistic description of the data can be analyzed in Table 1, where:
count — total nonnull values, mean — mean value, std — standard deviation,
min/max — minimum and maximum values, 25%, 50% and 75% - percentiles (a
theoretical raw score which corresponds to a given percentile rank in a specified
distribution [29]). When developing accurate models, an important step is to
uniform the input features, as they present very high values dispersion.

Table 1.
Input data descriptive statistics
Thermophysical properties
- p A Cp m w
count 2235 2235 2235 2235 2235
mean 941.17 0.38 3.62 846.61 0.53
std 0.30 0.00 1.45 254.16 0.15
min 940.74 0.38 2.80 529.38 0.33
25% | 940.75 0.38 2.88 576.47 0.38
50% 941.37 0.38 2.92 788.51 0.49
75% | 941.37 0.38 3.14 1081.76 0.67
max 941.50 0.38 8.54 1404.70 0.86
Plate A temperatures
- TA 1 TA 2 TA 3 TA 4 TA 5 TA 6 TA 7 TA 8 TA 9
count 2235 2235 2235 2235 2235 2235 2235 2235 2235
mean 247 251 251 2.13 2.00 1.96 1.95 1.95 1.76
std 5.25 5.27 5.30 5.01 5.00 4.99 4.98 4.97 4.97
min -1.36 -1.36 -1.36 -1.49 -1.64 -1.65 -1.65 -1.65 -1.76
25% -0.13 -0.12 -0.15 -0.24 -0.36 -0.39 -0.39 -0.39 -0.55
50% 0.02 0.03 0.01 -0.03 -0.18 -0.20 -0.20 -0.20 -0.37
75% 1.24 1.33 1.36 0.54 0.37 0.29 0.24 0.19 0.04
max 22.90 22.93 22.95 22.77 22.71 22.70 22.69 22.68 22.63
Emulsion temperatures
- Tem in | Tem out | Tem 1 | Tem 2 | Tem 3 | Tem 4 | Tem 5 | Tem 6 | Tem 7 | Tem 8 | Tem 9
count 2235 2235 2235 2235 2235 2235 2235 2235 2235 2235 2235
mean 3.96 3.81 3.96 3.96 3.96 3.96 3.95 3.93 3.91 3.89 3.86
std 5.41 5.38 5.41 5.41 541 5.40 5.40 5.39 5.38 5.37 5.36
min -0.31 -0.45 -0.31 -0.31 -0.31 -0.32 -0.32 -0.34 -0.36 -0.38 -0.40
25% 1.05 0.90 1.05 1.05 1.05 1.04 1.04 1.03 1.01 1.00 0.99
50% 1.32 1.19 1.32 1.32 1.32 1.31 1.31 1.30 1.29 1.27 1.26
75% 3.99 3.77 3.99 3.99 3.98 3.98 3.96 3.93 3.89 3.86 3.81
max 23.59 23.49 23.59 23.59 23.59 23.58 23.58 23.57 23.56 23.54 23.52
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As observed from the statistic description, emulsion’s thermal
conductivity () is a constant feature with no standard deviation (std = 0). Thus,
this is a redundant feature and will not be considered for the model’s training,
the inputs totaling 24 features. The inputs trends are depicted in Figs. 2 to 4.
Statistically, the heat transfer coefficient has the following structure: counts —
2235; mean — 1260.10; std — 840.33; min — 131.35; 25%-50%-75% - 531.87-
1011.15-1809.69; max — 9218.98.
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Fig. 4. Variation of the emulsion’s temperature
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When describing the data, it is essential to analyze the correlation
between features and predictor. For the given problem, this is even more
important because the input data shows high similarity as observed in the
previous figures. It is worth mentioning that even if the correlation analysis
provides an insight over the linear relationship, it does not provide the causality
of the correlation [30]. There are several statistical approaches to determine the
linear association between two continuous data, but the most used are Pearson’s
correlation — a parametric analysis and Spearman’s rank-order correlation —
nonparametric analysis [30]. The Pearson product-moment correlation
coefficient is one of the most used techniques since is based on computing the
covariance between data and besides the magnitude of correlation, it also
indicates the direction of association (positive, zero or negative). The correlation
heatmaps between temperatures and the heat transfer coefficient are shown in
Fig. 5 (a and b). A positive r—coefficient indicates that the data varies in the
same direction, while the negative values indicate an inverse variation trend; an
r—coefficient equal to 0 shows no linear dependency between data. Moreover, a
close to O correlation show low association between features, while values close
to £ 1 indicates strong linear dependency [31]. As depicted in Fig. 5, the
correlation between the temperatures and the heat transfer coefficient are
positive and closer to 1, rather than 0 (indicate a strong positive linear
relationship through); the r—coefficients vary from 0.708 (TA_9) to 0.751
(Tem_in and Tem_out). Additionally, all correlation coefficients computed for
the emulsion temperatures are slightly higher than the ones for the plate’s
temperatures. The Pearson’s correlation coefficients between the thermal
properties and the heat transfer coefficient are shown in Table 2.
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Fig. 5. Correlation heatmaps for: a — PCME’s temperatures and b — plate A temperatures

Table 2.
Correlation values computed between thermal properties and heat transfer coefficient.
Property r—coefficient value
Density (p) 0.281
Specific heat (cp) 0.745
Mass flow (i) 0.419
Flow rate (w) 0.454

2.3 Model

The previous comprehensive analysis was made to select only the most
important features for training the deep neural network. This data feature
engineering is an essential step in avoiding overfitting the model. Consequently,
we developed two models, the difference between them is consisting in the
number of inputs: a comprehensive model containing all temperatures and
thermal properties - totaling 24 features and a lumped model containing only
statistical relevant features: specific heat, TA_1, TA_ 9, Tem_in, Tem_out —
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totaling 5 inputs. The results will be discussed in section 3; it is worth
mentioning that the computational time will be taken into consideration when
comparing the two models, but its optimization is beyond the scope of this paper.
Regardless the number of inputs, the models were developed using the same
logic, configuration, hyperparameters and Deep Learning libraries. The final
configuration of the ANN is presented in Table 3. In the presented configuration,
the dropout refers to another technique used to avoid overfitting. It is a
regularization technique where randomly selected neurons are ignored during
training stage and ‘dropped’. The rate of ignored neurons is an important
hyperparameter of the neural network [32]. At each layer, the weighted sum of
inputs is computed, and the results is and feed to an activation function, which, in
fact, gives the network’s nonlinearity. The rectified linear unit (ReLU) activation
function has a main advantage over other activation functions: it does not activate
all neurons at once. ReLU is a simple algorithmic calculation which returns the
value provided as input directly (if the input is strictly greater than 0), or 0
(otherwise) [33].

Table 3.
ANN’s layer configuration and activation functions
Layer type | Neurons Activation function Dropout rate
Input 128 Rectified Linear Unit - (ReLU) yes — 20%
Hidden 1 64 Rectified Linear Unit - (ReLU) yes — 20%
Hidden 2 64 Rectified Linear Unit — (ReLU) yes — 20%
Output 1 Linear no

After choosing the right architecture, the model is to be compiled (or
configured) to be further used. This essentially defines the model’s training
configuration: optimizer, loss function and metrics to be analyzed. For this model,
the following training metrics were chosen:

- optimizer: Adam — learning rate: 0.002 [details about Adam opt. in Ref.

26].

- loss (objective) function — mean squared logarithmic error.
- metrics — mean squared error and mean absolute error.

All these are used in the training process, where additional information is
required — the batch size and the number of epochs, as well as the data used for
training and validation. Essentially, training a neural network means finding the
optimal weights that links the inputs and the output using the backpropagation of
errors (as the data flows from inputs to outputs, the error flow backwards
modifying the weight accordingly). The Backpropagation algorithm is the most
used training technique in machine learning problems, regarding their kind
(classification or regression). For this paper, it was chosen a batch size of 64
timesteps and 200 epochs. This was obtained experimentally (trial and error).
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3. Results and discussions

The first model, comprehensive model, uses all 24 input features and
predicts the heat transfer coefficient. The errors between the real and predicted
values are the interest point in this study and were computed for both training and
testing datasets. The ‘unseen’ values were fed to the network after the testing
process and the results were plotted (Fig. 6). The computed mean squared error for
each step in the prediction was around 5% regardless the configuration. Moreover,
even if the number of epochs was set initially at 1000, we implemented an ‘early
stopping’ feature, which automatically halts the model training if a monitored
metric (validation loss reduction was selected) has stopped improving over a
specified number of iterations. Thus, the model only trained for 30 epochs at most.
The mean squared errors are: for train data - 5.2% and for test data - 5.8 %,
validation data - 5.0%. The errors variation can be analyzed in Fig. 7. Besides
numerical meaning, the loss variation indicates that, indeed, all the anti-
underfitting measures worked, and the model performs well even for new, unseen
before data.

Comprehensive model
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Fig. 6. Comparison between 10 ‘unseen’ values and the comprehensive model’s
predictions
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Fig. 7. Comparison between training and testing loss and mean squared error values for
the comprehensive model
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For comparison, a simplified model was developed — ‘lumped model’ for
which only statistical relevant features were considered i.e. the emulsion’s specific
heat and inputs and outputs temperature for both plate A and emulsion. Thus, the
model will only have 5 input features and will predict the heat transfer coefficient.
The model’s architecture and hyperparameters were the same as used for the
comprehensive model. For this, the computed mean squared errors were 5.5 % for
the training dataset, 6.2% for the testing dataset and 6.0% for validation. Even if
the errors are similar, the early stop occurred after 130 epochs, increasing this way
the computational time. The errors variation and the analyze of the model’s
performances on new data are shown in Figs. 8 and 9.
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Fig. 8. Comparison between training and testing loss and mean squared error values for
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Fig. 9. Comparison between 10 ‘unseen’ values and the lumped model’s predictions

This study indicates that the two models have similar accuracies and even
if the first model converges faster, the fact that there are just 4 temperature sensors
used (instead of 20) increases its practical usage. Therefore, this study allows the
improvement of experimental facilities for testing these types of fluids. For the
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feature, a smaller and cheaper experimental stand can be developed and exploited.
Moreover, different configurations and sensor positioning will be tested.

4. Conclusions

This paper presents the steps in creating a deep neural network used to
predict the heat transfer coefficient for PCME material. The dataset was obtained
during one of the author’s Ph.D. research period and comprises information about
emulsion’s thermophysical properties and temperatures and intermediary
temperatures of the plate. Moreover, a detailed statistical analysis was performed
to better understand how the features affects the predicted value and two deep
neural networks were developed and compared: one using all inputs and one using
only the relevant features found. The results did not differ much, as the errors
were relatively equal (around 5% for the comprehensive model and 6% for the
lumped model), but when using all 24 inputs, the model converged faster — 30
epochs compared with 130 epochs. The models were both trained with around
70% of the dataset, validated with the rest of the data and 10 timesteps were used
as new data to verify the models’ prediction accuracy on unseen features.

The research is ongoing, and several detailed feature importance
algorithms will be implemented. This will help to accurately establish which
parameters influence most the heat transfer coefficients, thus reducing the overall
complexity of the current model. Moreover, another ANN architecture is in
development and will be used to analyze the dynamic chances in different PCMEs
thermo-physical properties. This recurrent Long Short-Term Memory network is
appropriate for this kind of study as it is generally used to analyze sequential data.
The study will be focused on reducing the pumping energy consumption of the
PCMEs infrastructure by analyzing the thermal properties of several types of
emulsions at different distances and temperatures. Additionally, an experimental
PCME experimental will be designed and used in research and teaching activities.
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