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PREDICTION OF PCME’S THERMAL BEHAVIOR USING A 

DEEP NEURAL NETWORK 

Mihail-Bogdan CARUTASIU1,  Virginia VASILE2, Horia NECULA3 

Phase Change Material Emulsions stand out as potential latent thermal fluid 

in different thermal applications. This paper presents results concerning the 

prediction of the heat transfer behaviour of a 30 wt.% paraffin in water emulsion for 

a temperature range of 0-20 °C. Based on data obtained empirically, we developed 

a deep neural network to predict the PCME’s heat transfer coefficient. The artificial 

neural model was developed using the most complex and new scientific and 

statistical tools – TensorFlow, Keras, Pandas and Python programming language. A 

complex statistical study was performed a priori to model’s development. For 

comparisons, the model was first trained with 24 features (comprehensive model) 

and then with only 5 (lumped model), as they were the most statistically relevant. 

The two models have similar prediction mean squared errors (around 5% for the 

comprehensive model and around 6% for the lumped model), but the full model 

tends to converge faster (used only 30 epochs compared with 130). Both models 

showed very good prediction capabilities on new and unseen data: the 

comprehensive model predicted with only 5.0% error, while the lumped model had a 

mean squared error equal to 6%.    
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μ dynamic viscosity [Pa s] ANN Artificial Neural network 

 mass flow rate [kg h-1]  

mean mixed temperature 

of the PCME [°C] 

 

 plate temperature [°C]  

inlet/outlet temperature 

of the PCME [°C] 

 

u velocity [m s-1]   
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1. Introduction 

In a continuously developing world, the main source of the progress 

remains the energy. Several concerning problems such as growing energy 

shortage, low fossil fuel resources and climate change coupled with high oil prices 

have been one of the main focuses in the last century. Researchers all over the 

world [1] are looking for solutions to fulfill the energy demands by developing 

new energy sources. One of the promising solutions in the general context is the 

use, as previously mentioned, of latent functionally thermal fluids [2-5]. Phase 

Change Material emulsions (PCMEs) were found to be popular and interesting for 

comfort cooling applications: they perfectly fit with the required range of 

temperatures (0-20 °C) owing to the use of paraffin. In addition, PCMEs show 

significant advantages. They are safe, reliable, chemically inert, and stable, easy to 

produce with a high phase change enthalpy [6,7]. The paraffin/water emulsion is a 

system of two immiscible liquid phases in which small particles of paraffin are 

distributed in water and maintained in dispersion by a surfactant.  

In recent years, PCMEs have been increasingly investigated. The studies 

have been focused especially on the preparation methods [8-10], thermal 

properties [11-13], reducing their supercooling degree [14-16], investigating the 

rheological and heat transfer behavior during phase change [17-19].  

One of the biggest problems of this type of fluid is the supercooling degree. Over 

time, different types of paraffin emulsions with different types of surfactant have 

been studied. The link between the supercooling and the type of surfactant used 

during emulsion preparation has been scientifically demonstrated [20, 21]. An 

important step towards using this fluid in a practical way is to find the most 

suitable type of surfactant so that the degree of cooling is as low as possible.  

It would be interesting to know the rheological or the heat transfer 

behavior of a paraffin emulsion before its preparation, since testing many types of 

surfactant could easily become expensive and time consuming. Therefore, this 

paper presents a new method of approaching the subject. Considering the high 

complexity of the problem, a deep artificial neural network (ANN) was trained 

with data obtained from an experimental stand described in paper [19]. The ANN 

was used due to its widely known generalization capabilities, becoming a very 

powerful tool when sufficient training data is available.  

Even though ANN’s and Machine Learning techniques, in general, are 

used in a wide range of domains and applications, the literature survey show very 

few titles [22]. Matter of fact, only three found articles were considered relevant 

when this paper was initially written (August 2020) and all were published 

recently, from January to August 2020. For example, in [23], the authors trained a 

multilayered perceptron using experimental data obtained from a PCM heat sink 

and use to predict the Nusselt number and, implicitly, the heat transfer coefficient. 
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They also found that the optimal ANN architecture is formed by 15 neurons in the 

hidden layer and showed fair performances with maximum difference between 

real and predicted values of 6.0%. S. Motahar [24] used a similar approach to 

estimate the melting characteristics of n-octadecane PCM. The ANN had two 

hidden layers with 18 and 15 neurons, respectively. The author considered as 

inputs three a-dimensional numbers (Fourier, Raylight and Stefan) and predicted 

the melted volume fraction (V/V0) of the PCM. All the proposed ANN model’s 

outputs felt within the range of 6.23%. A slightly different approach can be found 

in [25], where the authors developed an ANN to analyze a photovoltaic thermal 

system cooled with a nano PCM fluid. Here, the predicted values were the 

electricity and heat provided by the hybrid system and the accuracy parameters 

were: R2 - 0.8742, trend accuracy - 59.7, MSE - 0.0223, and RMSE - 0.149. 

Deep Learning algorithms are a subset of a wider domain called Machine 

Learning [26]; they become popular due to the increased computational power of 

modern computers and data availability. This paper presents the results of 

predicting the heat transfer coefficient of PCMEs using a deep sequential neural 

network developed in Python and using the TensorFlow machine learning library 

among other scientific and computational tools.  

2. Materials and methods 

The experimental data used in this article for the developed model are the 

data recorded during the study of a 30 wt.% paraffin in water emulsion that was 

developed for comfort cooling applications. The previous studies focused on the 

experimental characterization of the thermal performances of this emulsion in 

laminar flow during its cooling in a rectangular plate heat exchanger. Further 

information on the experimental setup and experimental investigation is 

presented by Vasile et. al 2018 [19, 27]. Different sets of measurements were 

considered. These contain measured and calculated physical parameters such as 

density, viscosity, conductivity, specific heat capacity, flow rate, emulsion 

temperatures and heat exchange coefficient. The cooling section used to 

investigate the phase change of the PCME during its cooling, is composed of three 

channels. This represents to some extend a typical arrangement for plate heat 

exchangers. The PCME flows into the central channel. It enters the bottom and 

exits through the upper side. Ethanol circulates through the outer channels in 

counter current, thus cooling the PCME. The central channel through which 

circulates the PCME is composed of two stainless steel (304) plates 

(width = 130 mm, thickness = 4.5 mm, length = 1110 mm) [27]. This 

experimental setup measures different categories of data, such as: density, mass 

flow and velocity, 9 intermediary plate temperatures (TA_1…TA_9) and 9 mixed 

mean temperatures of the PCME, that will ultimately allow the calculation the 
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heat transfer coefficient during cooling. The positioning of the thermocouples for 

measuring the temperatures of PCME on the steel plate is represented in Fig. 1. 

The mixed mean temperature of the emulsion from the inlet to the outlet of the 

cooling channel was determined using the energy balance. 

 
Fig. 1. Thermocouples position (red squares) on the steel plates forming the cooling 

channel 

2.2 Data analysis and preparation 

Creating accurate predictive machine learning models implies good 

knowledge about the data and it usually involves data preparation. The better the 

data ‘fed’ to the model, the better the results; thus, the data preparation process 

is a required and important step in developing an accurate model. 

A full experiment consists in harvesting all the data for approximately 60 

minutes, with a time step of 25 seconds, implying 149 timesteps; for these study 

data from 15 experiments was used, meaning a total of 2235 timesteps. One 

timestep consists of 35 values, including the heat transfer coefficient. 10 random 

timesteps are not used in neither training nor testing processes and will be used 

to test the model’s prediction accuracy over unseen-before data. Initially, the 

whole dataset was split into smaller training and testing datasets – 1564 (70.0%) 

observations for training and 661 (29.5%) observations for tests and 10 (0.05%) 

data points for validation (totaling 2235 datapoints); these are not used at all in 

neither training nor testing processes and was used to plot the results on unseen 

before data. The samples were split randomly so we can validate the model on 

wider data dispersion. Given the fact the temperatures of plate A are very similar 

with temperatures on plate B, only the first were considered in training the 

model; thus, the total number of features decreased to 25. This is a first step in 

getting rid of redundant features, reducing this way the possibility of model’s 

overfitting (when a complex model predicts a trend in ‘noisy’ and unprepared 

data). If the training data is full of errors, outliers, and noise (poor quality of 

measured features or missing values within the data, measurement errors, etc.), it 

will make harder for the model to find the patterns within the data; this can be 

caused due to an overly complex model with many inputs, redundant or constant 

(without variation) features [28].  The model’s overfitting can be analyzed in the 

scenario when the accurately predicts the values in training set, but its prediction 

performances decrease when fed with new, unseen data. This is a main issue in 
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machine learning field, as the goal of a developed model is to be able to predict 

on future data in a specific domain. There are several techniques to reduce the 

overfit of an artificial neural network. For example, the mean value for the 

specific heat parameter is 3.62 kJ/kg/K, the mean mass flow is 846 kg/h, while 

the temperatures range from -2 ℃ to 24 ℃ and the target feature (heat transfer 

coefficient) has a min value of 131.35 W/m2/K and a max value of 9218.98 

W/m2/K. Using the data in this form can lead to poor prediction capabilities or 

even poor generalization. Thus, the data is to be first normalized, meaning that 

all features are rescaled at values between 0 and 1. This can guarantee stable 

convergence of weight and biases and improve algorithms like linear regression-

based models or neural networks. 

The statistic description of the data can be analyzed in Table 1, where: 

count – total nonnull values, mean – mean value, std – standard deviation, 

min/max – minimum and maximum values, 25%, 50% and 75% - percentiles (a 

theoretical raw score which corresponds to a given percentile rank in a specified 

distribution [29]). When developing accurate models, an important step is to 

uniform the input features, as they present very high values dispersion.  
Table 1.  

Input data descriptive statistics 

   Thermophysical properties    
   - ρ λ cp 

 

w    
   count 2235 2235 2235 2235 2235    
   mean 941.17 0.38 3.62 846.61 0.53    
   std 0.30 0.00 1.45 254.16 0.15    
   min 940.74 0.38 2.80 529.38 0.33    
   25% 940.75 0.38 2.88 576.47 0.38    
  

 
50% 941.37 0.38 2.92 788.51 0.49    

  
 

75% 941.37 0.38 3.14 1081.76 0.67    
  

 
max 941.50 0.38 8.54 1404.70 0.86    

 Plate A temperatures  

 - TA_1 TA_2 TA_3 TA_4 TA_5 TA_6 TA_7 TA_8 TA_9  

 count 2235 2235 2235 2235 2235 2235 2235 2235 2235  

 mean 2.47 2.51 2.51 2.13 2.00 1.96 1.95 1.95 1.76  

 std 5.25 5.27 5.30 5.01 5.00 4.99 4.98 4.97 4.97  

 min -1.36 -1.36 -1.36 -1.49 -1.64 -1.65 -1.65 -1.65 -1.76  

 25% -0.13 -0.12 -0.15 -0.24 -0.36 -0.39 -0.39 -0.39 -0.55  

 50% 0.02 0.03 0.01 -0.03 -0.18 -0.20 -0.20 -0.20 -0.37  

 75% 1.24 1.33 1.36 0.54 0.37 0.29 0.24 0.19 0.04  

 max 22.90 22.93 22.95 22.77 22.71 22.70 22.69 22.68 22.63  

Emulsion temperatures 

 - Tem_in Tem_out Tem_1 Tem_2 Tem_3 Tem_4 Tem_5 Tem_6 Tem_7 Tem_8 Tem_9 

count 2235 2235 2235 2235 2235 2235 2235 2235 2235 2235 2235 

mean 3.96 3.81 3.96 3.96 3.96 3.96 3.95 3.93 3.91 3.89 3.86 

std 5.41 5.38 5.41 5.41 5.41 5.40 5.40 5.39 5.38 5.37 5.36 

min -0.31 -0.45 -0.31 -0.31 -0.31 -0.32 -0.32 -0.34 -0.36 -0.38 -0.40 

25% 1.05 0.90 1.05 1.05 1.05 1.04 1.04 1.03 1.01 1.00 0.99 

50% 1.32 1.19 1.32 1.32 1.32 1.31 1.31 1.30 1.29 1.27 1.26 

75% 3.99 3.77 3.99 3.99 3.98 3.98 3.96 3.93 3.89 3.86 3.81 

max 23.59 23.49 23.59 23.59 23.59 23.58 23.58 23.57 23.56 23.54 23.52 
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As observed from the statistic description, emulsion’s thermal 

conductivity (λ) is a constant feature with no standard deviation (std = 0). Thus, 

this is a redundant feature and will not be considered for the model’s training, 

the inputs totaling 24 features. The inputs trends are depicted in Figs. 2 to 4. 

Statistically, the heat transfer coefficient has the following structure: counts – 

2235; mean – 1260.10; std – 840.33; min – 131.35; 25%-50%-75% - 531.87-

1011.15-1809.69; max – 9218.98.  

 
Fig. 2. Variation of the thermophysical properties 

 

 
Fig. 3. Variation of temperatures along plate A 

 
Fig. 4. Variation of the emulsion’s temperature 
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When describing the data, it is essential to analyze the correlation 

between features and predictor. For the given problem, this is even more 

important because the input data shows high similarity as observed in the 

previous figures. It is worth mentioning that even if the correlation analysis 

provides an insight over the linear relationship, it does not provide the causality 

of the correlation [30]. There are several statistical approaches to determine the 

linear association between two continuous data, but the most used are Pearson’s 

correlation – a parametric analysis and Spearman’s rank-order correlation – 

nonparametric analysis [30]. The Pearson product-moment correlation 

coefficient is one of the most used techniques since is based on computing the 

covariance between data and besides the magnitude of correlation, it also 

indicates the direction of association (positive, zero or negative). The correlation 

heatmaps between temperatures and the heat transfer coefficient are shown in 

Fig. 5 (a and b). A positive –coefficient indicates that the data varies in the 

same direction, while the negative values indicate an inverse variation trend; an 

–coefficient equal to 0 shows no linear dependency between data. Moreover, a 

close to 0 correlation show low association between features, while values close 

to ± 1 indicates strong linear dependency [31]. As depicted in Fig. 5, the 

correlation between the temperatures and the heat transfer coefficient are 

positive and closer to 1, rather than 0 (indicate a strong positive linear 

relationship through); the –coefficients vary from 0.708 (TA_9) to 0.751 

(Tem_in and Tem_out). Additionally, all correlation coefficients computed for 

the emulsion temperatures are slightly higher than the ones for the plate’s 

temperatures. The Pearson’s correlation coefficients between the thermal 

properties and the heat transfer coefficient are shown in Table 2. 
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Fig. 5. Correlation heatmaps for: a – PCME’s temperatures and b – plate A temperatures 

 

Table 2. 

 Correlation values computed between thermal properties and heat transfer coefficient. 

Property –coefficient value 

Density (ρ) 0.281 

Specific heat (cp) 0.745 

Mass flow ( ) 0.419 

Flow rate ( ) 0.454 

 

2.3 Model 

The previous comprehensive analysis was made to select only the most 

important features for training the deep neural network. This data feature 

engineering is an essential step in avoiding overfitting the model. Consequently, 

we developed two models, the difference between them is consisting in the 

number of inputs: a comprehensive model containing all temperatures and 

thermal properties - totaling 24 features and a lumped model containing only 

statistical relevant features: specific heat, TA_1, TA_9, Tem_in, Tem_out – 
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totaling 5 inputs. The results will be discussed in section 3; it is worth 

mentioning that the computational time will be taken into consideration when 

comparing the two models, but its optimization is beyond the scope of this paper. 

Regardless the number of inputs, the models were developed using the same 

logic, configuration, hyperparameters and Deep Learning libraries. The final 

configuration of the ANN is presented in Table 3. In the presented configuration, 

the dropout refers to another technique used to avoid overfitting. It is a 

regularization technique where randomly selected neurons are ignored during 

training stage and ‘dropped’. The rate of ignored neurons is an important 

hyperparameter of the neural network [32].  At each layer, the weighted sum of 

inputs is computed, and the results is and feed to an activation function, which, in 

fact, gives the network’s nonlinearity. The rectified linear unit (ReLU) activation 

function has a main advantage over other activation functions: it does not activate 

all neurons at once. ReLU is a simple algorithmic calculation which returns the 

value provided as input directly (if the input is strictly greater than 0), or 0 

(otherwise) [33].   
Table 3.  

ANN’s layer configuration and activation functions 

Layer type Neurons Activation function Dropout rate 

Input 128 Rectified Linear Unit - (ReLU) yes – 20% 

Hidden 1 64 Rectified Linear Unit - (ReLU) yes – 20% 

Hidden 2 64 Rectified Linear Unit – (ReLU) yes – 20% 

Output 1 Linear no  

 

  After choosing the right architecture, the model is to be compiled (or 

configured) to be further used. This essentially defines the model’s training 

configuration: optimizer, loss function and metrics to be analyzed.  For this model, 

the following training metrics were chosen: 

- optimizer: Adam – learning rate: 0.002 [details about Adam opt. in Ref. 

26]. 

- loss (objective) function – mean squared logarithmic error. 

- metrics – mean squared error and mean absolute error. 

 All these are used in the training process, where additional information is 

required – the batch size and the number of epochs, as well as the data used for 

training and validation. Essentially, training a neural network means finding the 

optimal weights that links the inputs and the output using the backpropagation of 

errors (as the data flows from inputs to outputs, the error flow backwards 

modifying the weight accordingly). The Backpropagation algorithm is the most 

used training technique in machine learning problems, regarding their kind 

(classification or regression). For this paper, it was chosen a batch size of 64 

timesteps and 200 epochs. This was obtained experimentally (trial and error).  
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3. Results and discussions 

The first model, comprehensive model, uses all 24 input features and 

predicts the heat transfer coefficient. The errors between the real and predicted 

values are the interest point in this study and were computed for both training and 

testing datasets. The ‘unseen’ values were fed to the network after the testing 

process and the results were plotted (Fig. 6). The computed mean squared error for 

each step in the prediction was around 5% regardless the configuration. Moreover, 

even if the number of epochs was set initially at 1000, we implemented an ‘early 

stopping’ feature, which automatically halts the model training if a monitored 

metric (validation loss reduction was selected) has stopped improving over a 

specified number of iterations. Thus, the model only trained for 30 epochs at most. 

The mean squared errors are: for train data - 5.2% and for test data - 5.8 %, 

validation data - 5.0%.  The errors variation can be analyzed in Fig. 7. Besides 

numerical meaning, the loss variation indicates that, indeed, all the anti-

underfitting measures worked, and the model performs well even for new, unseen 

before data. 

 
Fig. 6. Comparison between 10 ‘unseen’ values and the comprehensive model’s 

predictions 

 
Fig. 7. Comparison between training and testing loss and mean squared error values for 

the comprehensive model 
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For comparison, a simplified model was developed – ‘lumped model’ for 

which only statistical relevant features were considered i.e. the emulsion’s specific 

heat and inputs and outputs temperature for both plate A and emulsion. Thus, the 

model will only have 5 input features and will predict the heat transfer coefficient. 

The model’s architecture and hyperparameters were the same as used for the 

comprehensive model. For this, the computed mean squared errors were 5.5 % for 

the training dataset, 6.2% for the testing dataset and 6.0% for validation. Even if 

the errors are similar, the early stop occurred after 130 epochs, increasing this way 

the computational time. The errors variation and the analyze of the model’s 

performances on new data are shown in Figs. 8 and 9. 

 
Fig. 8. Comparison between training and testing loss and mean squared error values for 

the lumped model 

 
Fig. 9. Comparison between 10 ‘unseen’ values and the lumped model’s predictions 

 

This study indicates that the two models have similar accuracies and even 

if the first model converges faster, the fact that there are just 4 temperature sensors 

used (instead of 20) increases its practical usage. Therefore, this study allows the 

improvement of experimental facilities for testing these types of fluids. For the 
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feature, a smaller and cheaper experimental stand can be developed and exploited. 

Moreover, different configurations and sensor positioning will be tested.   

4. Conclusions 

This paper presents the steps in creating a deep neural network used to 

predict the heat transfer coefficient for PCME material. The dataset was obtained 

during one of the author’s Ph.D. research period and comprises information about 

emulsion’s thermophysical properties and temperatures and intermediary 

temperatures of the plate. Moreover, a detailed statistical analysis was performed 

to better understand how the features affects the predicted value and two deep 

neural networks were developed and compared: one using all inputs and one using 

only the relevant features found. The results did not differ much, as the errors 

were relatively equal (around 5% for the comprehensive model and 6% for the 

lumped model), but when using all 24 inputs, the model converged faster – 30 

epochs compared with 130 epochs. The models were both trained with around 

70% of the dataset, validated with the rest of the data and 10 timesteps were used 

as new data to verify the models’ prediction accuracy on unseen features.  

The research is ongoing, and several detailed feature importance 

algorithms will be implemented. This will help to accurately establish which 

parameters influence most the heat transfer coefficients, thus reducing the overall 

complexity of the current model. Moreover, another ANN architecture is in 

development and will be used to analyze the dynamic chances in different PCMEs 

thermo-physical properties. This recurrent Long Short-Term Memory network is 

appropriate for this kind of study as it is generally used to analyze sequential data. 

The study will be focused on reducing the pumping energy consumption of the 

PCMEs infrastructure by analyzing the thermal properties of several types of 

emulsions at different distances and temperatures. Additionally, an experimental 

PCME experimental will be designed and used in research and teaching activities. 
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