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COMPLEX SYSTEM DYNAMICS THROUGH A FRACTAL PARADIGM 
 

Dorin VAIDEANU11, Maria-Alexandra PAUN2*, Maricel AGOP3,4,  
Vladimir-Alexandru PAUN5, Tudor-Cristian PETRESCU6,  

Constantin PLACINTA7, Decebal VASINCU8 
 

Assimilating the complex with a fractal, non – differentiable behaviors in their 
dynamics are analyzed through a fractal paradigm. It results that complex system 
dynamics in the framework of hydrodynamic – type fractal regimes imply 
“holographic implementation” of the velocity fields at non – differentiable scale 
resolution, by means of fractal solitons, fractal solitons – fractal kinks and fractal 
minimal vortices. These vortices become turbulence sources in complex systems 
dynamics at non – differentiable scale resolutions. 
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1. Introduction 

Complex systems are large interdisciplinary research topics that have been 
studied by means of a combination of basic theory, derived especially from physics 
and computer simulation. Such kind of systems are composed of many interacting 
entities that were called „agents” (structural units). Examples of complex systems 
can be found in human societies, the brain, internet, ecosystems, biological 
evolution, stock markets, economies and many others [1-3]. On the same topic, 
probably one of the most intriguing complex systems in nature is DNA, who creates 

 
1 “Alexandru Ioan Cuza” University of Iasi, Faculty of Physics, Bulevardul Carol I 11, 700506 
Iasi, Romania 
2Scientist Dr., Department of Engineering, Swiss Federal Institute of Technology (EPFL), 
Lausanne, Switzerland   
3Physics Department, “Gheorghe Asachi” Technical University, Blvd. Prof. dr. docent Dimitrie 
Mangeron, No. 59A, 700050, Iasi, Romania 
4Academy of Romanian Sciences, Splaiul Independentei, No. 54, Sector 5, 050094 Bucuresti, 
Romania 
5Scientist Dr., Five Rescue Research Laboratory, Paris, France, Paris, France   
6Department of Structural Mechanics, “Gheorghe Asachi” Technical University, Blvd. Prof. dr. 
docent Dimitrie Mangeron, No. 1, 700050, Iasi, Romania  
7Materials Science Department, “Gheorghe Asachi” Technical University, Blvd. Prof. dr. docent 
Dimitrie Mangeron, No. 59A, 700050, Iasi, Romania 
8“Grigore T. Popa” University of Medicine and Pharmacy, Faculty of Dental Medicine, Biophysics 
and Medical Physics Department, 16 University Str., Iasi - 700115, Romania 
*Corresponding author, email:  maria_paun2003@yahoo.com 

mailto:maria_paun2003@yahoo.com


318  D. Vaideanu, M.-Al. Paun, M. Agop, V.-Al. Paun, T.-C. Petrescu, C. Placinta, D. Vasincu 

cells by means of a simple but very elegant language. It is responsible for the 
remarkable way in which individual cells organize into complex systems like 
organs and these organs form even more complex systems like organisms. 

The way in which such a system manifests can’t be predicted only by the 
behavior of individual elements or by adding their behavior, but is determined by 
the manner in which the elements relate to influence global behavior. Among the 
most significant properties of complex systems are emergence, self-organization, 
adaptability etc. [4]. 

Usually, models used to describe complex system dynamics are based on the 
uncertain hypothesis that the variables describing it are differentiable [5-7]. The 
success of these models must be understood gradually on domains in which 
differentiability is still valid. However, the differential procedures are not suitable 
when describing processes related to complex system dynamics, which imply 
nonlinearity and chaos (it is reminded that this is the de – facto case [8-11]). 

Since the non-differentiability appears as a universal property of the complex 
systems, it is necessary to construct a non-differentiable physics. In such conjecture, 
by considering that the complexity of the interactions processes is replaced by non-
differentiability, it is no longer necessary to use the whole classical “arsenal” of 
quantities from the standard physics (differentiable physics). 

Therefore, in order to describe complex system dynamics by remaining faithful 
to the differentiable mathematical procedures, it is necessary to employ a fractal 
paradigm, which explicitly introduces scale resolutions, both in the expression of 
the physical variables and in the fundamental equations which govern complex 
system dynamics. This means that, instead of “working” with a single physical 
variable described by a strict non-differentiable function, it is possible to “work” 
only with approximations of these mathematical functions obtained by averaging 
them on different scale resolutions. As a consequence, any physical variable 
purposed to describe complex system dynamics will perform as the limit of a family 
of mathematical functions, this being non – differentiable for null scale resolutions 
and differentiable otherwise [8, 11]. 

In the present paper, considering the fractal paradigm as being functional, a 
non – differentiable model describing the complex system dynamics is proposed. 

 

2. Mathematical Model 

2.1. Scale covariant derivative and geodesics equation 

Our fundamental hypothesis is the one that the structural units’ dynamics of 
any complex system are described by continuous but non-differentiable curves 
(fractal curves). Indeed, such an assumption is sustained by the following example, 
related to the collision processes in a complex fluid: between two successive 
collisions, the trajectory of the complex fluid structural unit is a straight line that 
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becomes non – differentiable in the impact point. Considering that all the collision 
impact points form an uncountable set of points, it results that the trajectories of the 
complex fluid structural unit become continuous and non – differentiable curves, 
i.e. fractal curves. Obviously, the reality is much more complicated, taking into 
account both the diversity of particles which compose a complex fluid, and the 
various interactions between them, in the form of double / triple collisions etc. Then, 
the complex system’s structural units trajectories become multifractal. 

In such a context, the dynamics of the complex system structural units become 
operational through the scale covariant derivative [9, 10]: 

𝑑̂𝑑
𝑑𝑑𝑑𝑑

= 𝜕𝜕𝑡𝑡 + 𝑉𝑉� 𝑙𝑙𝜕𝜕𝑙𝑙 +
1
4

(𝑑𝑑𝑑𝑑)
� 2𝐷𝐷𝑓𝑓

�−1
𝐷𝐷𝑙𝑙𝑙𝑙𝜕𝜕𝑙𝑙𝜕𝜕𝑝𝑝, (1) 

where 
𝑉𝑉� 𝑙𝑙 = 𝑉𝑉𝐷𝐷𝑙𝑙 − 𝑉𝑉𝐹𝐹𝑙𝑙 

𝐷𝐷𝑙𝑙𝑙𝑙 = 𝑑𝑑𝑙𝑙𝑙𝑙 − 𝑖𝑖𝑑̂𝑑𝑙𝑙𝑙𝑙 
𝑑𝑑𝑙𝑙𝑙𝑙 = 𝜆𝜆+𝑙𝑙 𝜆𝜆+

𝑝𝑝 − 𝜆𝜆−𝑙𝑙 𝜆𝜆−𝑝𝑝  
𝑑̂𝑑𝑙𝑙𝑙𝑙 = 𝜆𝜆+𝑙𝑙 𝜆𝜆+

𝑝𝑝 + 𝜆𝜆−𝑙𝑙 𝜆𝜆−𝑝𝑝  

𝜕𝜕𝑡𝑡 =
𝜕𝜕
𝜕𝜕𝜕𝜕

,𝜕𝜕𝑙𝑙 =
𝜕𝜕
𝜕𝜕𝑥𝑥𝑙𝑙

,𝜕𝜕𝑙𝑙𝜕𝜕𝑝𝑝 =
𝜕𝜕
𝜕𝜕𝑥𝑥𝑙𝑙

𝜕𝜕
𝜕𝜕𝑥𝑥𝑝𝑝

, 𝑖𝑖 = √−1, 𝑙𝑙, 𝑝𝑝 = 1,2,3 
(2) 

In the above – written relations, 𝑥𝑥𝑙𝑙 is the fractal spatial coordinate, 𝑡𝑡 is the non 
– fractal time having the role of an affine parameter of the motion curves, 𝑉𝑉� 𝑙𝑙 is the 
complex velocity, 𝑉𝑉𝐷𝐷𝑙𝑙  is the differential velocity independent on the scale resolution 
𝑑𝑑𝑑𝑑, 𝑉𝑉𝐹𝐹𝑙𝑙 is the non – differentiable velocity dependent on the scale resolution, 𝐷𝐷𝐹𝐹 is 
the fractal dimension of the movement curve, 𝐷𝐷𝑙𝑙𝑙𝑙 is the constant tensor associated 
with the differentiable – non – differentiable transition, 𝜆𝜆+𝑙𝑙 �𝜆𝜆+

𝑝𝑝� is the constant 
vector associated with the backward differentiable – non – differentiable physical 
processes and 𝜆𝜆−𝑙𝑙 (𝜆𝜆−𝑝𝑝) is the constant vector associated with the forward 
differentiable – non – differentiable physical processes. There are many modes, and 
thus a varied selection of definitions of fractal dimensions: more precisely, the fractal 
dimension in the sense of Kolmogorov, the fractal dimension in the sense of 
Hausdorff – Besikovitch etc. [11-13]. Selecting one of these definitions and operating 
it in the complex system dynamics, the value of the fractal dimension must be 
constant and arbitrary for the entirety of the dynamical analysis: for example, it is 
regularly found 𝐷𝐷𝐹𝐹 < 2 for correlative processes, 𝐷𝐷𝐹𝐹 > 2 for non – correlative 
processes, etc. [8, 12, 13]. 

Now, accepting the functionality of the scale covariance principle i.e. applying 
the operator (1) to the complex velocity field from (2), in the absence of any external 
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constraint, the motion equations (i.e. the geodesics equation on a fractal space) takes 
the following form [8, 9]: 

𝑑̂𝑑𝑉𝑉� 𝑖𝑖

𝑑𝑑𝑑𝑑
= 𝜕𝜕𝑡𝑡𝑉𝑉� 𝑖𝑖 + 𝑉𝑉� 𝑙𝑙𝜕𝜕𝑙𝑙𝑉𝑉� 𝑖𝑖 +

1
4

(𝑑𝑑𝑑𝑑)
� 2𝐷𝐷𝑓𝑓

�−1
𝐷𝐷𝑙𝑙𝑙𝑙𝜕𝜕𝑙𝑙𝜕𝜕𝑘𝑘𝑉𝑉� 𝑖𝑖 = 0, (3) 

This means that the fractal acceleration 𝜕𝜕𝑡𝑡𝑉𝑉� 𝑖𝑖, the fractal convection 𝑉𝑉� 𝑙𝑙𝜕𝜕𝑙𝑙𝑉𝑉� 𝑖𝑖 and 
the fractal dissipation 𝐷𝐷𝑙𝑙𝑙𝑙𝜕𝜕𝑙𝑙𝜕𝜕𝑘𝑘𝑉𝑉� 𝑖𝑖, make their balance in any point of the fractal 
curve.  

If the fractalisation is achieved by Markov – type stochastic processes [11 – 
13], then: 

𝜆𝜆+𝑖𝑖 𝜆𝜆+𝑙𝑙 = 𝜆𝜆−𝑖𝑖 𝜆𝜆−𝑙𝑙 = 2𝜆𝜆𝛿𝛿𝑖𝑖𝑖𝑖, (4) 
where 𝜆𝜆 is a coefficient associated to the differentiable – non – differentiable 
transition and 𝛿𝛿𝑖𝑖𝑖𝑖 is Kronecker’s pseudo – tensor. 

Under these conditions, the geodesics equation (3) takes the simple form: 
𝑑̂𝑑𝑉𝑉� 𝑖𝑖

𝑑𝑑𝑑𝑑
= 𝜕𝜕𝑡𝑡𝑉𝑉� 𝑖𝑖 + 𝑉𝑉� 𝑙𝑙𝜕𝜕𝑙𝑙𝑉𝑉� 𝑖𝑖 − 𝑖𝑖𝑖𝑖(𝑑𝑑𝑑𝑑)

� 2𝐷𝐷𝑓𝑓
�−1

𝜕𝜕𝑙𝑙𝜕𝜕𝑙𝑙𝑉𝑉� 𝑖𝑖 = 0 (5) 

 

2.2. Dynamics of complex systems in the form of hydrodynamic – type 

fractal “regimes”.   

The separation of the complex system’s dynamics on scale resolutions implies, 
through (5), both the conservation law of the specific fractal momentum at 
differentiable scale resolution: 

𝜕𝜕𝑉𝑉𝐷𝐷𝑖𝑖

𝑑𝑑𝑑𝑑
= 𝜕𝜕𝑡𝑡𝑉𝑉𝐷𝐷𝑖𝑖 + 𝑉𝑉𝐷𝐷𝑙𝑙𝜕𝜕𝑙𝑙𝑉𝑉𝐷𝐷𝑖𝑖 − �𝑉𝑉𝐹𝐹𝑙𝑙+𝜆𝜆(𝑑𝑑𝑑𝑑)

� 2𝐷𝐷𝑓𝑓
�−1

𝜕𝜕𝑙𝑙� 𝜕𝜕𝑙𝑙𝑉𝑉𝐹𝐹𝑖𝑖 = 0, (6) 

and also the conservation laws of the specific momentum at non – differentiable 
scale resolutions: 

𝜕𝜕𝑉𝑉𝐹𝐹𝑖𝑖

𝑑𝑑𝑑𝑑
= 𝜕𝜕𝑡𝑡𝑉𝑉𝐹𝐹𝑖𝑖 + 𝑉𝑉𝐷𝐷𝑙𝑙𝜕𝜕𝑙𝑙𝑉𝑉𝐹𝐹𝑖𝑖 + �𝑉𝑉𝐹𝐹𝑙𝑙+𝜆𝜆(𝑑𝑑𝑑𝑑)

� 2𝐷𝐷𝑓𝑓
�−1

𝜕𝜕𝑙𝑙� 𝜕𝜕𝑙𝑙𝑉𝑉𝐷𝐷𝑖𝑖 = 0, (7) 

From (6) it results the specific fractal force: 

𝑓𝑓𝐹𝐹𝑖𝑖 = �𝑉𝑉𝐹𝐹𝑙𝑙+𝜆𝜆(𝑑𝑑𝑑𝑑)
� 2𝐷𝐷𝑓𝑓

�−1
𝜕𝜕𝑙𝑙� 𝜕𝜕𝑙𝑙𝑉𝑉𝐹𝐹𝑖𝑖 , (8) 

induced by the velocity fields 𝑉𝑉𝐹𝐹𝑖𝑖 which is a “measure” of non – differentiability of 
motion curves of complex system entities. 

In the case of stationary complex system dynamics �𝜕𝜕𝑡𝑡𝑉𝑉𝐷𝐷𝑖𝑖 = 0, 𝜕𝜕𝑡𝑡𝑉𝑉𝐹𝐹𝑖𝑖 = 0 �, the 
conservation laws (6), (7) become: 

𝑉𝑉𝐷𝐷𝑙𝑙𝜕𝜕𝑙𝑙𝑉𝑉𝐷𝐷𝑖𝑖 − �𝑉𝑉𝐹𝐹𝑙𝑙+𝜆𝜆(𝑑𝑑𝑑𝑑)
� 2𝐷𝐷𝑓𝑓

�−1
𝜕𝜕𝑙𝑙� 𝜕𝜕𝑙𝑙𝑉𝑉𝐹𝐹𝑖𝑖 = 0, (9) 
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𝑉𝑉𝐷𝐷𝑙𝑙𝜕𝜕𝑙𝑙𝑉𝑉𝐹𝐹𝑖𝑖 + �𝑉𝑉𝐹𝐹𝑙𝑙+𝜆𝜆(𝑑𝑑𝑑𝑑)
� 2𝐷𝐷𝑓𝑓

�−1
𝜕𝜕𝑙𝑙� 𝜕𝜕𝑙𝑙𝑉𝑉𝐷𝐷𝑖𝑖 = 0, (10) 

while in the static case (𝜕𝜕𝑡𝑡𝑉𝑉𝐷𝐷𝑖𝑖 = 0,𝑉𝑉𝐷𝐷𝑖𝑖 = 0,𝜕𝜕𝑡𝑡𝑉𝑉𝐹𝐹𝑖𝑖 = 0) these take the form: 

�𝑉𝑉𝐹𝐹𝑙𝑙+𝜆𝜆(𝑑𝑑𝑑𝑑)
� 2𝐷𝐷𝑓𝑓

�−1
𝜕𝜕𝑙𝑙� 𝜕𝜕𝑙𝑙𝑉𝑉𝐹𝐹𝑖𝑖 = 0, (11) 

The result (11) specifies that, although at differentiable scale resolution, the 
complex system dynamics are absent while, at the non – differentiable scale 
resolution, the complex system dynamics can be “dictated” by the hydrodynamic 
fractal – type equations: 

𝑉𝑉𝐹𝐹𝑙𝑙𝜕𝜕𝑙𝑙𝑉𝑉𝐹𝐹𝑖𝑖 + 𝜆𝜆(𝑑𝑑𝑑𝑑)
� 2𝐷𝐷𝑓𝑓

�−1
𝜕𝜕𝑙𝑙𝜕𝜕𝑙𝑙𝑉𝑉𝐹𝐹𝑖𝑖 = 0 (12) 

𝜕𝜕𝑙𝑙𝑉𝑉𝐹𝐹𝑙𝑙 = 0. (13) 
Equation (13) corresponds to the fractal fluid incompressibility at the non – 

differentiable scale resolution (i.e. the states’ density ρ at the non – differentiable 
scale resolution is constant). 

Generally, it is difficult to obtain an analytical solution for the previous 
equation system, taking into account its non – linear nature. However, it is still 
possible to obtain an analytic solution in the case of plane symmetry (for example, 
in (𝑥𝑥, 𝑦𝑦) coordinates) of the complex system dynamics. In such a context, let it be 
considered the equations system (12) and (13) in the form: 

𝑈𝑈0𝜕𝜕𝑥𝑥𝑈𝑈0 + 𝑉𝑉0𝜕𝜕𝑦𝑦𝑈𝑈0 = 𝜎𝜎0𝜕𝜕𝑦𝑦𝑦𝑦2 𝑈𝑈0, (14) 
𝜕𝜕𝑥𝑥𝑈𝑈0 + 𝜕𝜕𝑦𝑦𝑉𝑉0 = 0, (15) 

where: 

𝑉𝑉𝐹𝐹𝐹𝐹 = 𝑈𝑈0(𝑥𝑥,𝑦𝑦), 𝑉𝑉𝐹𝐹𝐹𝐹 = 𝑉𝑉0(𝑥𝑥,𝑦𝑦), 𝜎𝜎0 = 𝜆𝜆(𝑑𝑑𝑑𝑑)
� 2𝐷𝐷𝑓𝑓

�−1
 (16) 

Imposing the following restrictions:  

lim
𝑦𝑦→0

𝑉𝑉0(𝑥𝑥, 𝑦𝑦) = 0, lim
𝑦𝑦→0

𝜕𝜕𝑈𝑈0
𝜕𝜕𝜕𝜕

= 0, lim
𝑦𝑦→∞

𝑈𝑈0(𝑥𝑥,𝑦𝑦) = 0, (17) 

and considering the constant flux moment per unit of depth: 

𝑄𝑄 = 𝜌𝜌 � 𝑈𝑈02𝑑𝑑𝑑𝑑 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.
+∞

−∞

, (18) 

the velocity fields as solution of the equations system ((14), (15)) takes the form 
(for details on the similarities method, see [14, 15]): 

𝑈𝑈0 =
1.5 � 𝑄𝑄6𝜌𝜌�

2
3

(𝜎𝜎0𝑥𝑥)
1
3

sech2

⎣
⎢
⎢
⎢
⎡0.5𝑦𝑦 � 𝑄𝑄6𝜌𝜌�

1
3

(𝜎𝜎0𝑥𝑥)
2
3

⎦
⎥
⎥
⎥
⎤
, (19) 
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𝑉𝑉0 =
1.9 � 𝑄𝑄6𝜌𝜌�

2
3

(𝜎𝜎0𝑥𝑥)
1
3

⎩
⎪
⎨

⎪
⎧𝑦𝑦 � 𝑄𝑄6𝜌𝜌�

1
3

(𝜎𝜎0𝑥𝑥)
2
3

sech2

⎣
⎢
⎢
⎢
⎡0.5𝑦𝑦 � 𝑄𝑄6𝜌𝜌�

1
3

(𝜎𝜎0𝑥𝑥)
2
3

⎦
⎥
⎥
⎥
⎤
− tanh

⎣
⎢
⎢
⎢
⎡0.5𝑦𝑦 � 𝑄𝑄6𝜌𝜌�

1
3

(𝜎𝜎0𝑥𝑥)
2
3

⎦
⎥
⎥
⎥
⎤

⎭
⎪
⎬

⎪
⎫

, (20) 

The previous equations are simplified through non – dimensional variables and 
non – dimensional parameters: 

𝑋𝑋 =
𝑥𝑥
𝑥𝑥0

,𝑌𝑌 =
𝑦𝑦
𝑦𝑦0

,𝑈𝑈 =
𝑈𝑈0
𝑤𝑤0

,𝑉𝑉 =
𝑉𝑉0
𝑤𝑤0

, (21) 

𝜇𝜇 =
𝜎𝜎0
𝜐𝜐0

, 𝜐𝜐0 =
𝑦𝑦0

3
2

𝑥𝑥0
�
𝑄𝑄
6𝜌𝜌
�
1
2

,𝑤𝑤0 =
1

(𝑦𝑦0)
1
2
�
𝑄𝑄
6𝜌𝜌
�
1
2

, (22) 

where 𝑥𝑥0, 𝑦𝑦0, 𝑤𝑤0 and 𝜈𝜈0 represent specific lengths, specific velocity and “fractal 
degree” of the complex system dynamics. In these conditions, the normalized 
velocity fields become: 

𝑈𝑈 =
1.5

(𝜇𝜇𝜇𝜇)
1
3

sech2 �
0.5𝑌𝑌

(𝜇𝜇𝜇𝜇)
2
3
�, (23) 

𝑉𝑉 =
1.9

(𝜇𝜇𝜇𝜇)
1
3
�

𝑌𝑌

(𝜇𝜇𝜇𝜇)
2
3

sech2 �
0.5𝑌𝑌

(𝜇𝜇𝜇𝜇)
2
3
� − tanh �

0.5𝑌𝑌

(𝜇𝜇𝜇𝜇)
2
3
��, (24) 

 
Any of the above relations specify the nonlinearity of the velocity fields: fractal 

soliton (i.e.  soliton depending on non – differentiable scale resolution) for the 
velocity field across the Ox axis, respectively “mixtures” of fractal soliton – fractal 
kink (i.e. kink dependent on non – differentiable  scale resolution), for the velocity 
fields across the Ox axis. The specificities in the complex system dynamics are 
“explained” in Figures 1a – d, and 2a – d. Details on the soliton, kink and other 
classical nonlinear solutions are given in [12, 13]. 

The velocity fields (23) and (24) induce the fractal minimal vortex Ω as in the 
following expression (Figures 3a-d). 
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�
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(25) 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Normalized velocity field 𝑈𝑈 for various fractal degrees: a) 𝜇𝜇 = 0.45; b) 𝜇𝜇 = 1;           

c) 𝜇𝜇 = 1.55; d) 𝜇𝜇 = 2.70 
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Fig. 2. Normalized velocity field 𝑉𝑉 for various fractal degrees: a) 𝜇𝜇 = 0.45; b) 𝜇𝜇 = 1;                     

c) 𝜇𝜇 = 1.55; d) 𝜇𝜇 = 2.70 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3. Fractal minimal vortex field Ω for various fractal degrees: a) 𝜇𝜇 = 0.45; b) 𝜇𝜇 = 1;                

c) 𝜇𝜇 = 1.55; d) 𝜇𝜇 = 2.70 
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This previous result was used to specify the fact that the turbulence sources 
[16-18] may be induced by fractal vortices. Such turbulences can appear in many 
complex systems and phenomena, from microscales to macroscales (for details see 
[19-22]). 
 

3. Conclusions 

The main conclusions of the present paper are the following: 
Assimilating the complex sytem with a fractal, dynamics at non-
differentiable scale resolution are analyzed. The following results have been 
obtained:  
i) The complex system dynamics in the framework of hydrodynamic 
– type fractal regimes, specify velocity fields at non – differentiable scale 
resolution, in the form of fractal solitons, fractal solitons – fractal kinks and 
fractal minimal vortices.  
ii) The fractal vortices can be linked to turbulence sources in complex 
systems dynamics at non – differentiable scale resolutions. As long as the 
complex system is not constrained externally, fractal vortices do not 
manifest themselves. In other words, they are “virtual” fractal vortices and 
manifest as “virtual” turbulence sources. In the presence of an external 
constraint, they become “real” and the turbulence mechanism is triggered. 
Essentially, the discussion revolves around “holographic implementation” 
of turbulences in the complex system dynamics at non-differentiable scale 
resolution. Since the dynamics of complex system entities are described by 
continuous but non – differentiable curves, curves which exhibit the 
property of self – similarity in every one of its points, these can be viewed 
as a holographic mechanism (every part reflects the whole) of the dynamics 
description. 
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