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COMPLEX SYSTEM DYNAMICS THROUGH A FRACTAL PARADIGM

Dorin VAIDEANU, Maria-Alexandra PAUN?Z", Maricel AGOP3#,
Vladimir-Alexandru PAUN?®, Tudor-Cristian PETRESCUS,
Constantin PLACINTA’, Decebal VASINCU?

Assimilating the complex with a fractal, non — differentiable behaviors in their
dynamics are analyzed through a fractal paradigm. It results that complex system
dynamics in the framework of hydrodynamic — type fractal regimes imply
“holographic implementation™ of the velocity fields at non — differentiable scale
resolution, by means of fractal solitons, fractal solitons — fractal kinks and fractal
minimal vortices. These vortices become turbulence sources in complex systems
dynamics at non — differentiable scale resolutions.

Keywords: complex systems, non - differentiability, fractal hydrodynamic
regimes, fractal paradigm

1. Introduction

Complex systems are large interdisciplinary research topics that have been
studied by means of a combination of basic theory, derived especially from physics
and computer simulation. Such kind of systems are composed of many interacting
entities that were called ,,agents” (structural units). Examples of complex systems
can be found in human societies, the brain, internet, ecosystems, biological
evolution, stock markets, economies and many others [1-3]. On the same topic,
probably one of the most intriguing complex systems in nature is DNA, who creates
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cells by means of a simple but very elegant language. It is responsible for the
remarkable way in which individual cells organize into complex systems like
organs and these organs form even more complex systems like organisms.

The way in which such a system manifests can’t be predicted only by the
behavior of individual elements or by adding their behavior, but is determined by
the manner in which the elements relate to influence global behavior. Among the
most significant properties of complex systems are emergence, self-organization,
adaptability etc. [4].

Usually, models used to describe complex system dynamics are based on the
uncertain hypothesis that the variables describing it are differentiable [5-7]. The
success of these models must be understood gradually on domains in which
differentiability is still valid. However, the differential procedures are not suitable
when describing processes related to complex system dynamics, which imply
nonlinearity and chaos (it is reminded that this is the de — facto case [8-11]).

Since the non-differentiability appears as a universal property of the complex
systems, it is necessary to construct a non-differentiable physics. In such conjecture,
by considering that the complexity of the interactions processes is replaced by non-
differentiability, it is no longer necessary to use the whole classical “arsenal” of
quantities from the standard physics (differentiable physics).

Therefore, in order to describe complex system dynamics by remaining faithful
to the differentiable mathematical procedures, it is necessary to employ a fractal
paradigm, which explicitly introduces scale resolutions, both in the expression of
the physical variables and in the fundamental equations which govern complex
system dynamics. This means that, instead of “working” with a single physical
variable described by a strict non-differentiable function, it is possible to “work”
only with approximations of these mathematical functions obtained by averaging
them on different scale resolutions. As a consequence, any physical variable
purposed to describe complex system dynamics will perform as the limit of a family
of mathematical functions, this being non — differentiable for null scale resolutions
and differentiable otherwise [8, 11].

In the present paper, considering the fractal paradigm as being functional, a
non — differentiable model describing the complex system dynamics is proposed.

2. Mathematical Model
2.1. Scale covariant derivative and geodesics equation

Our fundamental hypothesis is the one that the structural units’ dynamics of
any complex system are described by continuous but non-differentiable curves
(fractal curves). Indeed, such an assumption is sustained by the following example,
related to the collision processes in a complex fluid: between two successive
collisions, the trajectory of the complex fluid structural unit is a straight line that
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becomes non — differentiable in the impact point. Considering that all the collision
impact points form an uncountable set of points, it results that the trajectories of the
complex fluid structural unit become continuous and non — differentiable curves,
i.e. fractal curves. Obviously, the reality is much more complicated, taking into
account both the diversity of particles which compose a complex fluid, and the
various interactions between them, in the form of double / triple collisions etc. Then,
the complex system’s structural units trajectories become multifractal.

In such a context, the dynamics of the complex system structural units become
operational through the scale covariant derivative [9, 10]:

~
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In the above — written relations, x! is the fractal spatial coordinate, ¢ is the non
— fractal time having the role of an affine parameter of the motion curves, V! is the
complex velocity, V}, is the differential velocity independent on the scale resolution
dt, V} is the non — differentiable velocity dependent on the scale resolution, D, is
the fractal dimension of the movement curve, D' is the constant tensor associated
with the differentiable — non — differentiable transition, 24 (2%) is the constant
vector associated with the backward differentiable — non — differentiable physical
processes and AL(AP) is the constant vector associated with the forward
differentiable — non — differentiable physical processes. There are many modes, and
thus a varied selection of definitions of fractal dimensions: more precisely, the fractal
dimension in the sense of Kolmogorov, the fractal dimension in the sense of
Hausdorff — Besikovitch etc. [11-13]. Selecting one of these definitions and operating
it in the complex system dynamics, the value of the fractal dimension must be
constant and arbitrary for the entirety of the dynamical analysis: for example, it is
regularly found Dp < 2 for correlative processes, Dr > 2 for non — correlative
processes, etc. [8, 12, 13].

Now, accepting the functionality of the scale covariance principle i.e. applying
the operator (1) to the complex velocity field from (2), in the absence of any external
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constraint, the motion equations (i.e. the geodesics equation on a fractal space) takes
the following form [8, 9]:
dv'
dt
This means that the fractal acceleration 9,V the fractal convection V'9,V* and
the fractal dissipation D*9,3, V¢, make their balance in any point of the fractal
curve.

If the fractalisation is achieved by Markov — type stochastic processes [11 —
13], then:

o1 2\ .
=0, Vi+ VoVt + Z(dt)<Df) 1D”<alakl/l =0, (3)

AL =282 =228, 4)
where A is a coefficient associated to the differentiable — non — differentiable
transition and 6% is Kronecker’s pseudo — tensor.

Under these conditions, the geodesics equation (3) takes the simple form:
av? I 2. Ny
— =0+ Vo, vt — iA(dt)(Df) 9la,0i =0 ®)

2.2. Dynamics of complex systems in the form of hydrodynamic — type
fractal “regimes”.

The separation of the complex system’s dynamics on scale resolutions implies,
through (5), both the conservation law of the specific fractal momentum at

differentiable scale resolution:
i

vt . 0 ()17 10
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and also the conservation laws of the specific momentum at non — differentiable
scale resolutions:

Vi
dt
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From (6) it results the specific fractal force:
2

fi = lV15+/1(dt)<D_f)_1azl 0'Vs, (8)

induced by the velocity fields V which is a “measure” of non — differentiability of
motion curves of complex system entities.

In the case of stationary complex system dynamics (9,V} = 0,9,V = 0 ), the
conservation laws (6), (7) become:

2
vio,vh — [V;H(dt)(’)f) 1all Vi =0, (9)
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2
Viavi + [V}H(dt) (©;) 1all Wi =0, (10)

while in the static case (3,V} = 0,V} = 0,9,V} = 0) these take the form:
2

lv,,é+/1(dt)('3—f)‘1all oL =0, (11)

The result (11) specifies that, although at differentiable scale resolution, the
complex system dynamics are absent while, at the non — differentiable scale
resolution, the complex system dynamics can be “dictated” by the hydrodynamic
fractal — type equations:

2
Via, Vi + A(dt)(D_f)_lalalV; =0 (12)
a,Vt=0. (13)

Equation (13) corresponds to the fractal fluid incompressibility at the non —
differentiable scale resolution (i.e. the states’ density p at the non — differentiable
scale resolution is constant).

Generally, it is difficult to obtain an analytical solution for the previous
equation system, taking into account its non — linear nature. However, it is still
possible to obtain an analytic solution in the case of plane symmetry (for example,
in (x, y) coordinates) of the complex system dynamics. In such a context, let it be
considered the equations system (12) and (13) in the form:

Uo0xUq + Vo0, Uy = 082, U,, (14)
0, U + 0,V = 0, (15)
where:
(5;)-1 16
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Imposing the following restrictions:
lim V,(x,y) =0, lim% =0, lim Uy(x,y) =0, a7
y—0 y—0 dy Yoo
and considering the constant flux moment per unit of depth:
+00
Q=p f Uzdy = const., (18)

the velocity fields as solution_of the equations system ((14), (15)) takes the form
(for details on the similarities method, see [14, 15]):
2
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The previous equations are simplified through non — dimensional variables and
non — dimensional parameters:

X U V.
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where x,, vy, wy and v, represent specific lengths, specific velocity and “fractal
degree” of the complex system dynamics. In these conditions, the normalized
velocity fields become:

1.5 0.5Y
U= 7 sech? al (23)
(uXx)3 (uX)3
19 | v ,| 0.5y 0.5Y
V= T Zsech |~ tanh 2| (24)
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Any of the above relations specify the nonlinearity of the velocity fields: fractal
soliton (i.e. soliton depending on non — differentiable scale resolution) for the
velocity field across the Ox axis, respectively “mixtures” of fractal soliton — fractal
kink (i.e. kink dependent on non — differentiable scale resolution), for the velocity
fields across the Ox axis. The specificities in the complex system dynamics are
“explained” in Figures la — d, and 2a — d. Details on the soliton, kink and other
classical nonlinear solutions are given in [12, 13].

The velocity fields (23) and (24) induce the fractal minimal vortex Q as in the
following expression (Figures 3a-d).
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Fig. 1. Normalized velocity field U for various fractal degrees: a) u = 0.45; b) p = 1;
c)u=155,d)u=270
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Fig. 2. Normalized velocity field V for various fractal degrees: a) 4 = 0.45;b) u = 1;
c)pu=155;d)u=270
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Fig. 3. Fractal minimal vortex field Q for various fractal degrees: a) u = 0.45; b) u = 1;
c)u=155;d)yu=2.70
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This previous result was used to specify the fact that the turbulence sources
[16-18] may be induced by fractal vortices. Such turbulences can appear in many
complex systems and phenomena, from microscales to macroscales (for details see

[19-22]).

3. Conclusions

The main conclusions of the present paper are the following:

Assimilating the complex sytem with a fractal, dynamics at non-
differentiable scale resolution are analyzed. The following results have been
obtained:

) The complex system dynamics in the framework of hydrodynamic
— type fractal regimes, specify velocity fields at non — differentiable scale
resolution, in the form of fractal solitons, fractal solitons — fractal kinks and
fractal minimal vortices.

i) The fractal vortices can be linked to turbulence sources in complex
systems dynamics at non — differentiable scale resolutions. As long as the
complex system is not constrained externally, fractal vortices do not
manifest themselves. In other words, they are “virtual” fractal vortices and
manifest as “virtual” turbulence sources. In the presence of an external
constraint, they become “real” and the turbulence mechanism is triggered.
Essentially, the discussion revolves around “holographic implementation”
of turbulences in the complex system dynamics at non-differentiable scale
resolution. Since the dynamics of complex system entities are described by
continuous but non - differentiable curves, curves which exhibit the
property of self — similarity in every one of its points, these can be viewed
as a holographic mechanism (every part reflects the whole) of the dynamics
description.
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