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SMITH METHOD FOR PROJECTED LYAPUNOV AND STEIN
EQUATIONS

Bo YU∗1, Hung-Yuan FAN,2, Eric King-Wah CHU3

We consider the projected Lyapunov and Stein equations arising in model
order reduction and optimal control of descriptor systems. The projected Lya-
punov equation is transformed to an equivalent projected Stein equation then
solved by a generalized Smith iterative method. For a projected general Stein
equation with a singular matrix “E”, a double Cayley transform is devised to
remove the singularity, and then the generalized Smith method is applied. Nu-
merical examples are provided to demonstrate the feasibility and efficiency of
our approach.
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1 Introduction

Consider the projected Lyapunov equation (PLE) [1, 4, 23, 24, 25]:

EXA> +AXE> +Q = 0, X = PrXP
>
r , (1)

where Q = PlBB
>P>l , E,A,X ∈ Rn×n, B ∈ Rn×m with m� n ( m far less than n)

and Pr, Pl are the spectral projectors onto the right and left deflating subspaces of
the matrix pencil λE−A corresponding to the finite eigenvalues along the deflating
subspaces associated with the infinite eigenvalues. The definition of the deflating
subspace for a matrix pencil, similar to the notion of the invariant subspace for a
single matrix, is stated as follows.

Definition 1 ([8]). Let A and B be n × n matrices. The k-dimensional subspace
S ⊆ Rn is a deflating subspace for the matrix pencil A−λB if the subspace {Ax+By :
x, y ∈ S} has dimension k or less.

1School of Science, Hunan University of Technology, Zhuzhou, 412008, P.R. China. e-mail:
wenyubwenyub@aliyun.com. (∗ Corresponding Author)

2Department of Mathematics, National Taiwan Normal University, Taipei 116, Taiwan. e-mail:
hyfan@math.ntnu.edu.tw.

3School of Mathematical Sciences, Monash University, 9 Rainforest Walk, Victoria 3800, Aus-
tralia. e-mail: eric.chu@monash.edu.



192 Bo Yu, Hung-yuan Fan, Eric King-wah Chu

The PLE (1) mainly arises from the periodic descriptor systems [22] of model
order reduction and optimal control [1, 4, 16] and can be viewed as a generalization
of the Lyapunov equation

XA> +AX +Q = 0. (2)

There is an abundance of literature for the computation of the solution of Lyapunov
equations [2, 3, 5, 6, 7, 10, 11, 13, 14, 17, 18, 19, 20, 26]. In general, the Cayley
transformation is used for converting (2) into the so-called Stein equation [14]

AXA> −X +Q = 0, (3)

and then the Smith method [21]

Xk+1 = Q+AXkA
> (4)

with X0 = Q is employed for calculating the corresponded solution when some
stability condition in descriptor systems is available.

Definition 2 ([16]). A matrix A (or matrix pencil A − λB) is c-stable if its all
eigenvalues (or finite eigenvalues) lie in the open left half complex plane and d-stable
if its all eigenvalues (or finite eigenvalues) lie inside the unit circle in complex plane.

It is known in [14] that if A in (2) is c-stable, then the Cayley-transformed
matrix A in (3) becomes d-stable. So the Smith method (4) is definitely convergent.
For the PLE (1) in periodic descriptor systems, we similarly assume that λE − A
is c-stable, making the PLE uniquely solvable [24, 25]. Some numerical methods
have been considered successfully for the solution of PLE [1, 24, 25, 25] and the
associated Stein equations [4, 5, 16]. However, the Smith method (4) seems merely
to be linearly convergent when computing the corresponded solution. Additionally,
for the projected general Stein equation (PGSE)

AXA> − EXE> +Q = 0, X = PrXP
>
r , Q = PlBB

>P>l , (5)

direct application of Smith method might be invalid as E is possibly singular. In
this paper, we design a double Cayley transform to remove the singularity of E and
give a generalized Smith method that can retain the quadratic convergence.

The rest of the paper is organized as follows. Section 2 reviews the Cayley
transform of PLE into projected Stein equation and gives a generalized version of
the Smith method. The concrete algorithm and detailed implementations for large-
scale projected Stein equation are shown in Section 3. The mutual transformation
between the PLE and the PGSE is stated in Section 4 and the double Cayley
transformation follows in Section 5. Numerical experiments are reported in the last
section to show the efficiency of the proposed algorithm for computing the solution
of large-scale PLE and PGSE.
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2 Cayley Transform and Generalized Smith Method

By the Cayley transform with γ > 0, PLE (1) is equivalent to

(A+ γE)X(A+ γE)> − (A− γE)X(A− γE)> = 2γ(EXA> +AXE>) = −2γQ,

or the projected Stein equation (PSE)

S(X) := ÃXÃ> −X + Q̃ = 0, X = PrXP
>
r , (6)

with Aγ := A−γE nonsingular, Ã := A−1γ A−γ = I+2γA−1γ E, Q̃ := 2γA−1γ QA−>γ =

B̃B̃> and B̃ :=
√

2γA−1γ PlB.

Insert X = ÃXÃ> + Q̃ into X = PrXP
>
r in (6), we have

X = Pr

 ∞∑
j=0

ÃjQ̃(Ã>)j

P>r =
∞∑
j=0

PrÃ
jQ̃(Ã>)jP>r . (7)

Proposition 3. If Ã in (6) is semi-d-stable (with all finite eigenvalues on or inside
the unit circle D) and Pr is associated with the d-stable sub-spectrum, the sum in
(7) is convergent.

Proof. Let

Ã = [Pr1, P̃r1]

[
Λs 0
0 Λ1

]
[Pr2, P̃r2]

>

be the eigen-decomposition of Ã, where diagonal matrices Λs ∈ Rr1×r1 and Λ1 ∈
R(n−r1)×(n−r1) contain respectively the d-stable and unimodular eigenvalues of Ã,
the corresponded eigenvector matrix is [Pr1, P̃r1] with sub-blocks Pr1 ∈ Rn×r1 , P̃r1 ∈
Rn×(n−r1) and its inverse denoting by [Pr2, P̃r2]

> with sub-blocks Pr2 ∈ Rn×r1 ,
P̃r2 ∈ Rn×(n−r1) (i.e. [Pr1, P̃r1] × [Pr2, P̃r2]

> = [Pr2, P̃r2]
> × [Pr1, P̃r1] = In). Now

set Pr = Pr1P
>
r2 and filter off the unimodular sub-spectrum, we have

X = PrXP
>
r = Pr1P

>
r2

 ∞∑
j=0

ÃjQ̃(Ã>)j

Pr2P>r1
= Pr1

 ∞∑
j=0

ΛjsP
>
r2Q̃Pr2

(
Λ>s

)jP>r1. (8)

Obviously, the above sum converges as the spectral radius of Λs less than one
[1, 4, 24, 25].

Furthermore, the generalized Smith method (GSM) can be deduced from (8)
as follows. Let X0 = PrQ̃P

>
r and A0 = Ã with Q̃ and Ã defined in (6), consider

the iteration

Ak+1 = A2
k, Xk+1 = Xk + PrAkXkA

>
k P
>
r (k ≥ 0), (9)
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with Akv constructed recursively, not explicitly. Again, the projections Pr and P>r
in (9) are filtering off components associated with the unimodular subspectrum so
that {Xk} converges.

It is no difficult to show that (or see [12] for example), if

Zk = Pr

 k∑
j=0

ÃjQ̃(Ãj)>

P>r (k ≥ 0),

and X0 = Z0 = PrQ̃P
>
r , the k-th iteration of GSM (9) has

Xk = Pr

2k−1∑
j=0

ÃjQ̃(Ãj)>

P>r = Z2k−1 (k ≥ 0),

which implies a faster quadratic convergence.

3 Algorithm for Large-Scale Problems

For large-scale PLE (1), we assume A and E are sparse, m � n and products of
Aγ , Pr, Pl and their transposes with v ∈ Cn can be computed efficiently in O(n)
complexity. Products of A−1γ and given vectors can be obtained in ns flops for one
solve of the linear system defined by Aγ , where ns is reasonably small for structured
A. Then the GSM (9) can be applied to solve PLE or PGSE, after appropriate
Cayley or double Cayley (see Section 5) transforms, in O(2kn) + O(2kns) flops at
the kth iteration. Except in extraordinarily bad examples, the method quickly
converges in k iterations, the operation count will be relative low, with acceptably
small values for the coefficient 2k. If the solution X is numerically low-ranked (i.e.
for the given tolerance τ > 0, rankτ (X) ≤ cτ for a constant cτ independent of n),
we have the following result with its neglected proof similar to that of [14, Thm
2.1].

Theorem 4. Let the GMS algorithm converge in k iterations, according to a given
accuracy tolerance. For a given tolerance τ > 0, the projected Stein equation has a
numerically low-ranked solution X relative to n when 2k = O(1).

The relationship between some Krylov subspaces and the numerically low-
ranked solution in (8) is given in [14]. Similarly, the GSM (9) keeps adding dimin-
ishing low-ranked components to the approximate solution, whose growth of the
rank can be controlled by the truncation and compression procedure, implemented
using QR decomposition by column pivoting as follows.

3.1 Truncation and Compression

Recall Q̃ = B̃B̃>, the GSM (9) for large-scale system is essential the growth of the
numerical ranks in Xk = CkTkC

>
k , with Tk being symmetric and invertible. As the
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GSM converges, increasingly smaller but higher-rank components are added to Ck.
Apparent from (9), the growth in the sizes and ranks of these iterates is potentially
exponential. To reduce the dimensions of Ck, we shall compress their columns by
orthogonalization. As in [6, 13, 14], consider the economic QR decompositions with
column pivoting:

Ck = QkUk + Q̃kŨk, ‖Ũk‖ ≤ τ.
From here on, all norms are the 2-norm. Here τ is some small tolerance controlling
the compression and truncation process, nk is the number of columns in Ck bounded

from above by lmax and its rank satisfies r
(b)
k := rankCk ≤ nk ≤ lmax � n. Also

Qk ∈ Rn×r
(b)
k is unitary and Uk ∈ Rr

(b)
k ×nk is full-rank and upper triangular. We

have

Xk = CkTkC
>
k = Qk

(
UkTkU

>
k

)
Q>k +O(τ), (10)

and we should replace Ck and Tk by the leaner Qk and UkTkU
>
k . As a result,

we ignore the O(τ) term, control the growth of r
(b)
k while sacrificing a hopefully

negligible O(τ) bit of accuracy. We also restrict the widths of Ck, now relabelled

lk = r
(b)
k after the compression and truncation in (10), by setting a reasonable upper

limit lmax.
One beneficial consequence of the truncation and compression process, for the

orthogonality of Ck, is the simplified evaluation:

‖Xk‖ = ‖CkTkC>k ‖+O(τ) = ‖Tk‖+O(τ). (11)

3.2 Computational Issues and Algorithms

The concrete algorithm for solving the transformed PSE (6) is described in Algo-
rithm 1. Note the computational issues, flop counts and error analysis are analogous
to those in [14], only with some modifications for the filtering by Pr. From our ex-
perience, the shift parameter γ in the Cayley transform is not critical and can be
chosen efficiently by trial-and-error.

Algorithm 1 (GSM for Large-Scale Projected Stein Equations)

Input: Ã ∈ Rn×n, B̃ ∈ Rn×l; positive tolerances τ and ε, and lmax;

Output: Cε ∈ Rn×lε and Tε = T>ε ∈ Rlε×lε , with CεTεC>ε approximating X;

Compute the QR decomposition B̃ = CR, R ∈ Rl×l;
Set k = 0, r̃0 = 2ε; A0 = Ã, C0 = PrC and T0 = RR>;

Compute h = ‖Q̃‖ = ‖T0‖;
Do until convergence:

Compute rk = ‖S(Xk)‖, hk = ‖Xk‖ and mk = ‖ÃXkÃ>‖;
If the relative residual r̃k = |rk/(hk +mk + h)| < ε,

Set Cε = Ck and Tε = Tk;
Exit

End If
Compute Ck+1 = [Ck, PrA

>
k Ck], Tk+1 = Tk ⊕ Tk, with Ak+1 = A2

k;
Compress Ck+1, using the tolerance τ , and modify Tk+1 accordingly;
Set k ← k + 1;

End Do
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For the iterate Xk, the residual rk and relative residual r̃k for (6) are defined
as

rk := ‖S(Xk)‖, r̃k :=
rk

‖Q̃‖+ ‖ÃXkÃ>‖+ ‖Xk‖
. (12)

Remark 1. (i) The direction sum A⊕B denotes the matrix diag{A, B}.
(ii) Note Xk = CkTkC

>
k with Ck ∈ Rn×lk and Tk ∈ Rlk×lk , then the residual

S(Xk) = ĈkT̃kĈ
>
k with Ĉk = [B̃, Ck, ÃCk] ∈ Rn×(2lk+l) and T̃k = Il ⊕ (−Tk)⊕ Tk ∈

R(2lk+l)×(2lk+l), the QR decomposition on Ĉk with O(n) complexity is used for the
computation of rk. After a similar orthogonalization procedure as in Section 3.1,
the norms of S(Xk) can be obtained efficiently as in (11). Also as ÃXkÃ

> =
ÃCkTk(ÃCk)

>, similar comments hold for mk.
(iii) The width of Ck+1 nearly doubled that of Ck, so lmax = 2kl. For a

given compression accuracy τ in our numerical experiments, the actual rank of the
compressed Ck is much less than lmax.

(iv) The shift parameter γ in the Cayley transform is not critical and can be
chosen efficiently by trial-and-error.

(v) To avoid computing and storing the large Ak+1, Algorithm 1 works with
the thin and tall matrix A>k Ck at step k, requiring two products A>k−1Ck and

A>k−1(A
>
k−1Ck) for a given Ck. For each column of Ck, we also require at most

O(2k) products A−1γ v (for some vector v), or at most O(2k) linear solves associating
with Aγ . Fortunately, k is normally small from the fast convergence of the algorithm
(see also in Section 6). Also, the last iteration in the Algorithm 1 is virtually free
because there is no need to prepare Ck+1. This together with Theorem 3.1 imply
that Algorithm 1 is expect to be of O(n) + O(ns) computational complexity for
the kth iteration for large-scale problems. We have the following result with an
analogous proof to [14, Cor 6.1].

Proposition 5. Let the Algorithm 1 method converge after k iterations to an ap-
proximate solution Xk with rank (Xk) ≤ 2kl = O(1), according to a given accuracy
tolerance. Then the Algorithm 1 has an O(n) computational complexity and mem-
ory requirement.

4 Projected General Stein Equations

Consider the projected general Stein equation (5). This equation can be solved
numerically by the GSM (9) when E is nonsingular and well-conditioned, after
being transformed to PSE in (6). Otherwise, the direct application of GSM (9)
might be invalid as the singularity of E. We will devise a double Cayley transform
in Section 5 to remove the singularity. Before that, a preliminary theorem is given
as follows (the general complex conjugate transpose with (·)H is described and γ
should be chosen to be real for the special case with (·)>).

Theorem 6. (i) Assume that λE −A is c-stable. The uniquely solvable PLE:

AXEH + EXAH +Q = 0, X = PrXP
H
r ,
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is equivalent to the uniquely solvable PGSE:

A−γXA
H
−γ −AγXAHγ + 2<e(γ)Q = 0, X = PrXP

H
r ,

with the real part <e(γ) > 0. Furthermore, Aγ := A−γE is c-stable (and nonsingu-
lar) with A−1γ A−γ being semi-d-stable, with the original infinite eigenvalues mapped
to unity.

(ii) Assume that λE −A is d-stable. The uniquely solvable PGSE:

AXAH − EXEH +Q = 0, X = PrXP
H
r ,

is equivalent to the uniquely solvable PLE:

A−γXA
H
γ +AγXA

H
−γ + 2Q = 0, X = PrXP

H
r ,

with |γ| = 1. Furthermore, Aγ is nonsingular with σ(A−1γ A−γ) ⊂ C−∪{1}, with the
original infinite eigenvalues mapped to unity, here C− is the open left half complex
plane.

Proof. The results can be deduced from the following equalities:
(for <e(γ) > 0)

A−γXA
H
−γ −AγXAHγ

= (A+ γE)X(A+ γE)H − (A− γE)X(A− γE)H

= 2<e(γ)(EXAH +AXEH) = −2<e(γ)Q,

and (for |γ| = 1)

A−γXA
H
γ +AγXA

H
−γ

= (A+ γE)X(A− γE)H + (A− γE)X(A+ γE)H

= 2(AXAH − EXEH) = −2Q.

The invertibility of Aγ and the stability of λAγ − A−γ or λAγ − A−γ can be
easily verified by routine manipulation. The solvability of PLEs and PSEs comes
from standard classical results for linear matrix equations.

From the above theorem, the PLE (1) is transformed to PSE (6) and the GSM
(9) is applied, as discussed previously. As for general PGSE (5) with E possibly
singular, it is first transformed into PLE, as suggested in (ii) in Theorem 6, then
followed by a transform back to an equivalent PGSE with nonsingular E and finally
reduced to a PSE and solved by the GSM. Such a process is called the double Cayley
transform in next section.

5 Double Cayley Transform

We devise a double Cayley transform to remove the singularity of E or A, then
the GSM (9) can apply. We consider the more general complex cases for the trans-
forms PGSE→PLE→PGSE and PLE→PGSE→PLE. Note that the double Cayley
transforms here only involve linear combinations of A and E with minimal costs,
especially when the transformed pencils are not explicitly formed or stored.
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5.1 PGSE→PLE→PGSE

Applying firstly (ii) with γ = eiθ and then (i) with <(γ) > 0 in Theorem 6, the
PGSE

AXAH − EXEH +Q = 0, X = PrXP
H
r ,

is equivalent to the PGSE:

ÂXÂH − ÊXÊH + 4<e(γ)Q = 0, X = PrXP
H
r ,

where Â ≡ (1 + γ̄)A + eiθ(1 − γ̄)E and Ê ≡ (1 − γ)A + eiθ(1 + γ)E. Clearly, the
matrix pencil λÊ− Â returns to the original 2(eiθλE−A) when γ = 1. But for any
positive γ 6= 1, any eigenvalue λ of λE −A are mapped to λ̂ of λÊ − Â with

λ̂ =
(1 + γ̄)λ+ eiθ(1− γ̄)

(1− γ)λ+ eiθ(1 + γ)
, (λ finite); (13)

λ̂u =
1 + γ̄

1− γ
, (λ infinite). (14)

Let γ = γr + γii. The denominator (1 − γ)λ + eiθ(1 + γ) in (13) will not vanish.
Otherwise,

λ = eiθ
1 + γ

1− γ
= eiθ

1− |γ|2 + 2γii

1 + |γ|2 − 2γr
,

|λ|2 =
1 + |γ|4 + 2γ2i − 2γ2r

1 + |γ|4 + 2γ2i − 2γ2r − δ
≥ 1. (15)

Moreover, it follows from (14) that

λ̂u ≡ 1 + γ̄

1− γ
=

1− γ2r + γ2i + 2γrγii

1 + |γ|2 − 2γr
,

|λ̂u|2 =
(1− γ2r + γ2i )2 + 4γ2rγ

2
i

(1− γ2r + γ2i )2 + 4γ2rγ
2
i − δ

,

where δ ≡ 4γr
[
(γr − 1)2 + γ2i

]
≥ 0, implying that |λ̂u|2 ≥ 1, and λ̂u is unstable.

Therefore, the original infinite eigenvalues are now mapped to the unstable λ̂u but
the original d-stable finite eigenvalues λ are mapped to the d-stable eigenvalues
λ̂. However, this does not affect the convergence of the GSM (9), as the unstable
component are filtered off by the projection Pr, similar to the infinite components
being filtered off for the original PSE.

The parameter γ is not hard to choose. For the real cases, the choice of
γ > 0 seems noncritical according to our numerical experiments except in the
neigbourhood of zero, one or infinity. For γ near zero or infinity, λ̂ will be near 1,
implying the slow convergence of GSM (9). If γ is too near 1, the λ̂u will be very
unstable with large magnitude but λ̂ ≈ λ will be more d-stable.
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5.2 PLE→PGSE→PLE

Let γ1 be the shift for the previous PLE→PGSE step in Theorem 6. Besides
<e(γ1) > 0, the new constraint <e(γ1eiθ) ≥ 0 is required. Also a complex shift
γ2 = eiθ 6= ±1 in Theorem 6 has to be chosen for the PGSE→PLE step.

Applying firstly (i) with γ = γ1 and <e(γ) > 0 and then (ii) with γ2 = eiθ 6=
±1 in Theorem 6, the PLE

AXEH + EXAH +Q = 0, X = PrXP
H
r ,

is equivalent to the PLE:

ÂXÊH + ÊXÂH + 4<e(γ)Q = 0, X = PrXP
H
r ,

where <e(γ) > 0 preserves whatever definiteness existed in Q and Â ≡ (1 + eiθ)A+
(γ − γeiθ)E and Ê ≡ (1 − eiθ)A + (γ + γeiθ)E. The eigenvalues λ of λE − A are
mapped to λ̂ of λÊ − Â and

λ̂ =
(1 + eiθ)λ+ (γ − γeiθ)
(1− eiθ)λ+ (γ + γeiθ)

, (λ finite);

λ̂u =
1 + eiθ

1− eiθ
, (λ infinite).

The eigenvalues of Ê or (1− eiθ)λ+ (γ + γeiθ) does not vanish as that implies

λ =
γ + γeiθ

eiθ − 1
=

2i=m{γ(1− eiθ)}
|eiθ − 1|2

,

which is purely imaginary and not c-stable. Also note that the original infinite
eigenvalues are now mapped to the purely imaginary and unstable λ̂u but the o-
riginal c-stable finite eigenvalues λ are mapped to the c-stable finite eigenvalues λ̂,
and this does not affect the solution process as the unstable component are filtered
off Pr.

Again, a feasible choice of γ, which is positive in the real cases, can be found
by simple try-and-error. Note that λÊ− Â will return to the original matrix pencil
2(γλE − A) or 2(λA − γE) when γ2 = ±1. In practice, the choice of γ seems
noncritical but it has to be kept away from zero or infinity, as the latter drives λ̂
towards the unstable (1 + eiθ)/(1− eiθ) or (1− eiθ)/(1 + eiθ).

6 Numerical Examples

In this section, we illustrate the effectiveness of Algorithm 1 (and the double Cayley
transform) for large-scale PLEs (and PGSEs). Algorithm 1 was coded in MATLAB
2010b on a 64-bit PC with 3.4 GHz Intel Core i3 processor and 8G RAM. The
machine accuracy is reflected by eps = 2.22×10−16 in MATLAB. With the relative
residual r̃k in (12) for the PSE (6) in Example 1 (or after the Cayley transform
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from the PLE in Example 2), the stopping criterion is r̃k ≤ ε for a small tolerance
ε > 0. We denote the relative accuracy of Xk by

dk ≡
‖Xk+1 −Xk‖
‖Xk+1‖

,

and the width of Bk at the kth iteration mk. For the last iteration in both examples,
the relative accuracy dk was not computed as the iteration terminated before Xk+1

can be formed. We recorded the sub-total CPU time in tk =
∑k

i=1 δti with δti being
the CPU-time required for the ith iteration.

Example 1. Consider the descriptor system Eẋ(t) = Ax(t) +Bu(t) with

E =

[
E11 E12

0 0

]
, A =

[
A11 A12

A21 A22

]
and the sub-block E11 is nonsingular. This system arises from a fully linearized 1-D
heat equation

∂T (x, t)

∂t
= α

∂2T (x, t)

∂2x
+ u(x, t),

which describes the heat transfer T along x at time t [9].
In the corresponding PGSE in (5), the descriptor matrix E arises from the

finite difference discretization with the weighted Crank-Nicolson formula [15]. It
contains some zero rows from the zero boundary conditions. The matrix A is
sparse and the vector B ∈ Rn×1 is random. Let the matrix A21E

−1
11 E12 − A22 be

nonsingular, then the projection Pl and Pr are given by

Pl =

[
I (A12 −A11E

−1
11 E12)(A21E

−1
11 E12 −A22)

−1

0 0

]
Pr =

[
I − E−111 E12(A21E

−1
11 E12 −A22)

−1A21 −E−111 E12(A21E
−1
11 E12 −A22)

−1A22

(A21E
−1
11 E12 −A22)

−1A21 I + (A21E
−1
11 E12 −A22)

−1A22

]
.

For n = 10000, 50000 and 100000, we set the truncation tolerance τ = 10−15

and the maximum dimension of the subspace lmax = 100. We stopped the iteration
after r̃k ≤ ε = 9.0× 10−15. The numerical results are summarized in Tables 1–3.

Table.1 Example 1 (n = 10000 with γ = 0.4, τ = 10−15, lmax = 100)

k dk rk r̃k lk δtk tk
1 1.93e−01 4.05e−02 6.27e−02 2 0.007 0.007
2 3.77e−02 7.90e−03 1.08e−02 4 0.018 0.025
3 1.14e−03 3.04e−04 4.06e−04 8 0.044 0.069
4 2.19e−06 4.58e−07 6.10e−07 16 0.142 0.211
5 5.05e−12 1.05e−12 1.40e−12 30 0.443 0.654
6 — 1.95e−15 2.60e−15 53 0.343 0.997

We can see from tables that the solutions are low-ranked when r̃k attained the
prescribed accuracy. The relative residuals are decreasing quadratically, indicating
the fast convergence.
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Table.2 Example 1 (n = 50000, γ = 0.45, τ = 10−15, lmax = 100)

k dk rk r̃k lk δtk tk
1 1.56e−01 1.78e−01 5.30e−02 2 0.037 0.038
2 2.48e−02 2.82e−02 7.60e−03 4 0.100 0.138
3 6.30e−04 7.17e−04 1.89e−04 8 0.266 0.464
4 4.11e−07 4.67e−07 1.23e−07 16 0.803 1.267
5 1.77e−13 1.98e−13 5.23e−14 30 2.961 4.228
6 — 3.13e−14 8.28e−15 53 2.141 6.369

Table.3 Example 1 (n = 100000, γ = 0.4, τ = 10−15, lmax = 100)

k dk rk r̃k lk δtk tk
1 1.39e−01 4.08e−02 6.28e−02 2 0.084 0.086
2 3.78e−02 7.96e−03 1.08e−02 4 0.195 0.281
3 1.46e−03 3.06e−03 4.06e−04 8 0.514 0.795
4 2.20e−06 4.61e−06 6.11e−07 16 1.635 2.430
5 5.06e−12 1.05e−11 1.40e−12 30 6.008 8.438
6 — 2.37e−14 3.15e−15 53 4.462 12.900

Example 2. A multi-body damped mass-spring system with holonomic con-
straints can be described by a nonlinear differential-algebraic equation of the first
order. Linearization around an equilibrium state leads to the descriptor system
Eẋ = Ax+Bu with

E =

 I 0 0
0 M 0
0 0 0

 , A =

 0 I 0
−K −D −GT
G 0 0

 ,
where M is the positive definite mass matrix, K the stiffness matrix, D the damping
matrix and G the matrix of constraints. Let G be of full row rank and

Pl =

 Π 0 ΠM−1DG1

ΠTD(I −Π) ΠT ΠT (K −DΠM−1D)G1

0 0 0

 ,
Pr =

 Π 0 0
ΠM−1D(I −Π) Π 0

−GT1 (KΠ−DΠM−1D(I −Π)) −GT1DΠ 0

 ,
with G1 = M−1GT (GM−1GT )−1 and Π = I −M−1GT (GM−1GT )−1G.

This damped mass-spring system has g masses. The ith mass of weight mi is
connected to the (i+1)-th mass by a spring and a damper with constants ki and di,
respectively, and also to the ground by another spring and damper with constants
δi and κi respectively. The first mass is connected to the last one by a rigid bar,
which can be influenced by a control. In the PLE (1) for g = 500, 5000, 50000 and
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the state space dimensions n = 1001, 10001, 100001, B ∈ Rn×1 is random. The
system parameters are m1 = ... = mg and

k1 = ... = kg − 1 = k = 2, κ1 = ... = κg = κ = 4,

d1 = ... = dg − 1 = d = 3, δ1 = ... = δg = δ = 7.

We set the truncation tolerance τ = 10−15 for Xk and the maximum dimen-
sion of the subspace lmax = 200. We stopped the iteration after r̃k ≤ ε = 9.0×10−15.
The numerical results are summarised in Tables 4–6.

Table 4. Example 2 (n = 10001, γ = 0.2, τ = 10−15, lmax = 200)

k dk rk r̃k lk δtk tk
1 4.45e−01 2.47e+03 1.57e−01 2 0.069 0.071
2 2.24e−01 1.23e+03 6.07e−02 4 0.130 0.201
3 5.52e−02 2.93e+02 1.26e−02 8 0.268 0.469
4 3.24e−03 1.70e+01 7.06e−04 16 0.703 1.172
5 1.11e−05 5.81e−02 2.40e−06 32 2.181 3.353
6 1.34e−10 6.98e−07 2.89e−11 63 7.430 10.783
7 — 1.13e−10 6.36e−15 117 1.182 11.965

Table 5. Example 2 (n = 50001, γ = 0.30, τ = 10−15, lmax = 200)

k dk rk r̃k lk δtk tk
1 6.24e−01 1.29e+04 1.79e−01 2 0.326 0.335
2 1.72e−01 1.39e+03 1.43e−02 4 0.661 0.996
3 6.91e−02 1.95e+03 1.72e−02 8 1.588 2.584
4 5.14e−03 1.44e+02 1.21e−03 16 4.561 7.145
5 2.81e−05 7.95e−01 6.68e−06 32 14.494 21.639
6 8.35e−10 2.25e−05 1.89e−10 64 49.686 71.325
7 — 7.04e−10 5.91e−15 119 7.409 78.734

Table 6. Example 2 (n = 100001, γ = 0.35, τ = 10−15, lmax = 200)

k dk rk r̃k lk δtk tk
1 5.89e−01 1.69e+04 1.23e−01 2 0.706 0.810
2 1.66e−01 3.13e+03 1.61e−02 4 1.417 2.227
3 7.66e−02 1.97e+03 8.88e−03 8 3.489 5.716
4 5.51e−03 1.19e+02 5.04e−04 16 9.965 15.681
5 4.46e−05 3.76e−01 1.58e−06 32 32.929 48.610
6 3.19e−09 1.66e−04 7.00e−10 64 116.690 165.300
7 — 1.10e−09 4.65e−15 120 16.358 181.658

The results show that the relative residuals achieve an accuracy of 10−15 in
about 12, 79 and 182 seconds with rank(Xk) equal 117, 119 and 120 for n = 10001,
50001 and 100001, respectively.



Smith method for projected Lyapunov and Stein equations 203

7 Conclusions

We have presented a generalized Smith method for the projected Lyapunov and
Stein equations, of computational complexity O(n) + O(ns) for large-scale prob-
lems. A double Cayley transform is proposed for a PGSE with possible singular
E, removing the singularity before the GSM is applied. Numerical experiments
show that the proposed algorithm and the double Cayley technique are efficient for
computing the solution of the equations.
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