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INFLUENCE OF ELASTIC SUPPORTS ON THE DYNAMIC 

RESPONSE OF TWO RAILS CONNECTED WITH JOINT 

BARS 

Traian MAZILU1, Marius-Alin GHEȚI2, Mihai-Cornel LEU3 

In this paper, the influence of elastic supports on the dynamic behaviour of 

the two rails connected through two joint bars is presented aiming to point out the 

design requirements for supports to allow identification of the damping of the rails-

joint bars connection via a test rig. To this end, the test rig model consisting of two 

Euler-Bernoulli beams (rails) connected with an equivalent beam (joint bars) is 

proposed. The test rig and experimental results in terms of rail receptance are 

shown and analysed. The stiffness and damping of the supports and rails-joint bars 

connection are identified based on comparison between the experiment out comes 

and theoretical results from the model. Using this model, the influence of the gap 

length is revealed. 

Keywords: rail joint, joint bar, Euler-Bernoulli beam, impact hammer method, 

stiffness, hysteretic damping 

1. Introduction 

Nowadays, the jointed track still represents the most common solution for 

the secondary railway lines, where the speed and traffic are reduced, due to the 

low cost of construction and unsophisticated maintenance equipment.  

Figure 1 illustrates the main characteristic of a jointed track, namely the 

rail joint. Two rails of standard length (usually, 12, 15, 22.5, 25 or 30 m) are 

assembled by means of a joint consisting of two joint bars fixed by means of four 

bolts. A small gap of maximum 20 mm length at -16 °C [1] secures rails against 

the buckling.   

Running along a jointed track, the vehicles experience shocks and specific 

noise affecting the ride quality and ride comfort. To improve the construction and 

performance of the jointed track many theoretical and experimental studies have 

been performed.  
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Fig. 1. Jointing rails: 1. rail end; 2. joint bar; 3. bolt; 4. gap. 

 

The structural integrity and deflection performance of a bolted rail joint 

under static loading has been studied using a three-dimensional finite element 

method [2]. Using an explicit finite element wheel-IRJ dynamic interaction 

model, the high-frequency impact vibration and noise generated at a typical IRJ in 

the Dutch railway network has been studied [3]. Other related aspects such the 

elasto-plastic field [4], the surface wear at the rail joint [5] have been addressed. 

Many experimental researches in situ have been performed to validate the 

theoretical models [3, 6].  

In this paper, a different experimental approach is proposed to validate the 

rail joint model, namely using a test rig consisting of two rails connected with two 

joint bars and bolts resting on elastic foundation. According to the test rig 

structure, the rail joint model has three finite length Euler-Bernoulli beams: two 

identic beams model the rails and the third one is equivalent to the two joint bars. 

Rails – joint bars connection is modelled using Winkler foundation. Test rig 

design is based on the theoretical outcomes from the study of influence of elastic 

supports on the dynamic response of two rails connected with joint bars. Starting 

from the experimental results obtained via the impact hammer method, the 

stiffness and hysteretic damping of the test rig foundation and rails-joint bars 

connection are determined.  

2. Test rig and experimental results 

Figure 2 shows the test rig used to determine the frequency response 

function of the two rails – joint bars system using the impact hammer method. 

The system consists of 2 rails of 598 mm each, connected with two rail joint bars 

of 615 mm, which rest on elastic supports at the ends. Rails and rail joint bars 

correspond to 49 rail type.  



Influence of elastic supports on the dynamic response of two rails connected with joint bars   113 

 
 

Fig. 2. Test rig. 

 

 
 

Fig. 3. Impact hammer, chassis and laptop. 

 

The assembly is secured with 4 tightened bolts at the torque controlled 

according to the regulations. The rails – joint bars system has a gap of 7 mm 

length; the total length of test rig is 1203 mm.  

A small steel piece is glued by the two railheads over the gap to allow the 

application of the hammer blow in the middle and the distribution of the impact 

force on the two rails. The system response is measured using two piezoelectric 

accelerometers (Bruel&Kjaer, type 4514) glued on both sides of the gap at the 

distance of 28 mm.     

To put the system in vibration, an impact hammer (N.I., type PCB 

Modally Tuned®, model 086C03) with hard impact cap is used to cover a wide 

frequency range (fig. 3). Specialised chassis (NI cDAQTM-9174) is used for data 

acquisition. All data are managed by a laptop under MATLAB. 

Fig. 4 shows the receptance of the rail calculated starting from the impact 

hammer force and the measured railhead accelerations. There are 3 diagrams from 

accelerometers and the mean diagram. There is a satisfactory reproducibility from 

a test to other one. It can be observed the peak at 33 Hz corresponding to the rigid 

mode of vibration of the rails on the elastic supports (bounce motion).  
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Fig. 4. Receptance modulus from tests. 

 

Other peak is localised at 305 Hz and it is given by the first bending mode 

of the rails-joint bars system. This peak is preceded by a dip at around 194 Hz 

when the system experiences the antiresonance behaviour. At higher frequency 

there are many peaks and dips.   

3. Mechanical model and equations of motion 

Fig. 5 shows the mechanical model based on Euler-Bernoulli beam theory 

of the test rig. The model consists of three beams, of which two are identical and 

model the rails and the third beam models the joint bars. For generality, it is 

considered that the beams system is elastically supported at each end. 
 

 
Fig. 5. Mechanical model of rails connected with joint bars. 
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Parameters for rails are: mr – the mass per unit length, EIr – the bending 

stiffness, where E is Young’s modulus and I – the second moment of area of the 

cross-section and l + l1 – the rails length. The joint bars have the following 

parameters: mb – the mass per unit length, EIb – the bending stiffness, where Ib is 

the second moment of area of the cross-section and 2·(lo + l) – the bars length. 

The connection between the rails and joint bars is modelled using Winkler 

elements of stiffness k with hysteretic damping of loss factor . The supports have 

the stiffness ks and the loss factor s.  

The beams system is under the action of a harmonic force P(t) of Po 

amplitude and of  angular frequency, P(t) = Po cos t. 

The harmonic force acts at the middle of the beams system, half on the 

right side and half on the left one. Next, only the right side of the beams system is 

considered due to symmetry reason.  

The rail displacement is wr(x,t) for 0 ≤ x < l and wr1(x1,t) for 0 ≤ x1 < l1, 

and the bar displacement is wb(x,t) for 0 ≤ x < l and wbo(xo,t) for 0 ≤ xo < lo 

To calculate the steady state harmonic behaviour of the beams system, the 

direct method is applied, and the input force and supports reaction are treated as 

boundary conditions. Also, boundary conditions must be imposed when the 

equation of motion changes as the section O for the jointed bar or the section O1 

for the rail, or at the ends beam.  

Equations of motion are as follows: 
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- for 0 ≤ xo < lo 
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where the arguments (x,t), (x1,t) or (xo,t) are missing due to the writing simplicity 

reasons. 
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Boundary conditions are as follows: 

- for xo = 0, the slope of the bars and the shear force are zero 
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- for xo = lo and x = 0, the continuity conditions between wb1 and wb 
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- for x = l, the bending moment and shear force are zero 
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- for x = 0, the bending moment is zero, and the shear force is -P(t)/2  
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- for x = l and x1 = 0, the continuity conditions between wr and wr1 
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- for x1 = l1 the bending moment is zero and the shear force is –R(t), the 

reaction due to the elastic support  
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where 1 1( ) ( , )s rR t k w l t= . 

 There are two limit cases, the support dynamic stiffness is zero (free-free)  
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and the support stiffness is infinite (rigid support)  
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Now, considering the harmonic steady state behaviour, the following 

variables are introduced 
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where Wr(x), Wr1(x1), Wr(x), Wr1(x1) are the amplitude distributions and r(x), 

r1(x1), r(x), r1(x1) are the initial phase distributions along the beams system.    

The following complex variables are associated to the real ones 
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where the complex amplitude distributions are related to the real ones 
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and the complex amplitude of the harmonic force is 0 ,i

oP P e= where i2 = -1. 

Corresponding to the Eqs. (1) – (3), it can be written  

 

- for 0 ≤ x < l 
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- for 0 ≤ x1 < l1 
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- for 0 ≤ xo < lo 
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=  are the wavenumber of the bending wave in the rail and 

joint bars, respectively.  

Boundary conditions associated to the above equations of motion are: 

 

- for xo = 0, the slope of the bars and the shear force are zero (symmetry 

condition) 
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- for xo = lo and x = 0, the continuity conditions between wb1 and wb 
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- for x = l, the bending moment and shear force are zero 
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- for x = 0, the bending moment is zero and the shear force equals -

P(t)/2   
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- for x = l and x1 = 0, the continuity conditions between wr and wr1 
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- for x1 = l1 the bending moment is zero and the shear force is –R(t), the 

reaction due to the elastic support  
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where 1 1( )s rR k W l=  and (1 η )s s sk k i= + . 

 For the limit cases: 

 

- free-free  
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- rigid support 
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From Eqs. (13) it results 
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Trying solutions of the following shape 
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the characteristic equation is obtained 
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Solving the first equation (24), it obtains  
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where i, i = 1÷ 8, are the eingenvalues and ( )4 1α λi r i rEI k k −= + . 

 It can be shown that the solutions to Eqs. (14) and (15) are 
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where ri and bi are the components of the vectors r,b·[1 –1 i –i].  

 Inserting (25) and (26) in the boundary conditions (16 – 21), it results 
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For the limit cases, the equation (42) is replaced by: 

for unsupported beam (free-free) 
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for rigid support 
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Solving the above algebraic systems of equations, the harmonic steady-

state behaviour of the beams system can be studied. 

 

3. Numerical application 

In this section, the following values of the model parameters are 

considered: mr = 49 kg/m, mb = 42.5 kg/m, E = 210 GPa, Ir = 18.19·10–6 m4, Ib = 

2·1.635·10–6 m4, lo = 3.5 mm, l = 304 mm and l1 = 294 mm. The values 

parameters correspond to the 49 rail which is used at CFR (Romanian Railway).  
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In the first part of this section, some aspects regarding the influence of the 

stiffness and damping of the supports are addressed. The second part is dedicated 

to the identification of the parameters values of the rails - joint bars system based 

on the results of the measurement shown in Section 2. 

Fig. 6 shows the receptance of the rail calculated next to the gap, 

considering undamped case. Three support stiffness values are considered: ks= 2 

MN/m2 - continuous red line, ks = 8 MN/m2 – interrupted red line and ks = 32 

MN/m2 – dotted red line. The limit cases are displayed too: free-free boundary 

conditions – green line, and rigid support (ks→∞) – blue line. The stiffness of the 

rails-joint bars connection is k = 5.2 GN/m2. Frequency ranges from 20 to 3000 

Hz. 
 

 
Fig. 6. Rail receptance – influence of the 

stiffness of the supports. 
Fig. 7. Rail receptance – influence of the 

hysterertic damping. 
 

At low frequency, the free-free beams system experiences the inertial 

behaviour and the receptance continuous decreases, and the beams system with 

rigid supports exhibits the elastic behaviour – receptance is constant 

(approximatively). The first resonance of the free-free beams system is at 296 Hz, 

while the system with rigid supports has the first resonance at 123 Hz. Higher 

resonances can be noted at 1959 and 2344 Hz for the free-free beams system and 

at 1674, 2230 and 2633 Hz for the system with rigid supports. When the elasticity 

of the supports is accounted for, the first resonance is lower than the one of the 

system fitted with rigid supports, but its second resonance is higher than the first 

resonance of the free-free beams system. Decreasing the supports stiffness, the 

first two resonances becomes lower. At high frequency, the stiffness of the 

supports has little influence on the rail receptance for the three values considered 

here and the rail behaviour is similar with the one of the free-free beams system.  

Figure 7 presents the rail receptance calculated next to the gap using only 

the elastic support model (ks ϵ {2 MN/m2, 8 MN/m2, 32 MN/m2}), considering the 

hysteretic damping for both supports and rail-joint bar connection. The loss factor 
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is 0.15 for the supports damping and the loss factor of 0.035 is for the rails-joint 

bars connection.  

It can be observed the three red lines which correspond to the rail 

receptance calculated for s = 0.15 and  = 0.  It results that the supports damping 

influences strongly the rail response at the first two resonances, but this has very 

little influence on the higher resonances.  

The three black lines show the rail receptance calculated when the 

damping of the rails-joint bars connection is considered (s = 0.15 and  = 0.035).  

It results that the damping of the rails-joint bars connection has strong influence 

on the higher resonances and significant influence on the second resonance; this 

observation is for  = 0.035. On the other hand, the damping of the rails-bars 

connection has no influence on the first resonance. 

 
Fig. 8. Rail receptance – influence of the hysterertic damping (detail). 

 

It is interesting what happens at the second resonance (fig. 8). The 

supports damping and the one of the rails-joint bars connection lead to rail 

receptance limitation. From this point of view, it is important to identify the 

parameters configuration allowing to evidence the influence of the rails-joint bars 

connection damping which is much lower than the supports damping. Only that 

parameters configuration is proper to assess the damping of the rails-joint bars 

connection via measurements. Diagrams in Fig. 8 show that when the support 

stiffness is high (ks = 32 MN/m2), the influence of the damping of the rails-joint 

bars connection is practically undetectable. Situation is somehow improved for ks 

= 8 MN/m2, but this becomes very promising when the soft supports are used in 

calculation (ks = 2 MN/m2).  

It should be emphasized that this observation was the basis for the design 

of the rail joint test rig (Section 2). 

Figure 9 a shows the receptance of the rail calculated for the undamped 

case at 28 mm from the gap and the receptance of the rail obtained from 

measurement; the distance of 28 mm from the gap corresponds to the 
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accelerometers position. The stiffness of the supports is ks = 2 MN/m and the 

stiffness of the connection between rails and joint bars is k = 5.2 GN/m2. There is 

good agreement between the predicted receptance and the measured one up to 6-

700 Hz, excepting the receptance at the first two resonances due to the lack of 

damping in the theoretical model. At higher frequency, the dynamic behaviour has 

more peaks and deeps then those predicted by the above model.  

 

 
Fig. 9. Predicted rail receptance at 28 mm from the gap vs. measured rail receptance:  

a) s =  = 0; b) s = 0.15,  = 0; c) s = 0.15,  = 0.035. 

 

Next step, the hysteretic damping is considered. First, the damping of the 

support is ‘accorded’ with the measured data. Fig. 9 b presents the rail receptance 

when the loss factor of the supports is 0.15, and the loss factor of the rails-joint 

bars connection is zero. In this case, the agreement between the predicted and 

measured receptance is very good even at the first resonance of 33 Hz, but a 

discrepancy can be observed at the second resonance.  

Finally, the damping of the rails-joint bars connection is fitted according to 

the measured data at the second resonance. Figure 9 c shows the rail receptance 

when both damping of the supports and rails-joint bars connection are taken for 

(s = 0.15 and  =0.035). The discrepancy is vanished.  
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Fig. 10. Influence of the gap length on the rail receptance:  

a) 20 – 3000 Hz; b) 250 – 400 Hz;c) 1800-2500 Hz. 
 

Figure 10 shows the rail receptance next to the gap for three values of the 

gap length: 0, 7 and 20 mm. When the gap length increases, the rail joint becomes 

more elastic and the resonance frequencies decrease. This tendency can be 

observed at all resonance frequencies. For instance, the resonance frequency 

decreases by 13 Hz at the second resonance, 12 Hz at the third resonance, and 40 

Hz at the third resonance. Rail receptance has little variation at the second 

resonance, 1%. Higher variation can be noticed at the third resonance (decrease of 

27 %) and the fourth resonance (increase of 17 %) when the gap length passes 

from 0 to 20 mm.       

6. Conclusions 

In this paper, the model of the rail joint test rig, consisting of two rails 

connected by two joint bars and bolts, elastically supported at the ends, is 

elaborated and used to point out the influence of elastic supports on the dynamic 

behaviour of the rail joint. The model is based on the Euler-Bernoulli beam theory 

and includes two beams for the rails and an equivalent beam for the two joint bars. 
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Rails – joint bars connection is modelled using Winkler foundation with hysteretic 

damping.  

The resonances of the model are pointed out and it is shown that the 

hysteretic damping of the supports influences the first two resonances, and the 

hysteretic damping of the rails–joint bars connection influences the second 

resonance and the higher resonances. The impact of the damping of the rails-joint 

bars connection on the rail response at the second resonance is increasing when 

the softer supports are used. This important result has been used to design the rail 

joint test rig. 

Rail response in terms of receptance has been obtained using the rail joint 

test rig by applying the impact hammer method. The stiffness and hysteretic of the 

supports and rails-joint bars connection has been determined based on the 

comparison between the theoretical and experimental results.  

The proposed model can be applied up to 6-700 Hz and should be used to 

predict the interaction between the wheelset and jointed track.  

The gap length has little influence on the rail response at the second 

resonance: the resonance frequency decreases by 13 Hz and the receptance 

modulus increases by 1 %, when the gap length increases from 0 to 20 mm.  
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