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ON THE HEAT TRANSFER OF HOLOGRAPHIC TYPE IN 

NANOSTRUCTURES 

 

Tudor-Cristian PETRESCU1 1, Maria-Alexandra PAUN2*, Petru MIHAI3,  

Stefan-Andrei IRIMICIUC4, Vladimir-Alexandru PAUN5, Maricel AGOP6,7 
 

Assimilating any nanostructure with a fractal, in the most general 

Mandelbrot’s sense, non – differentiable behaviors in their dynamics on the heat 

transfer phenomena are analyzed. As such, nanostructure dynamics on the heat 

transfer in the form of Schrödinger – type various regimes imply “holographic 

implementation” of the thermal fields through groupal invariance of SL(2R) – 

type. Then, by means of previous groupal invariance as synchronization group 

between any nanostructure entities, both the phases and the amplitudes of the 

entities are affected from a homographic perspective. In a special case of 

synchronization of nanostructure entities, given by Riccati type gauge, period 

doubling, damping oscillations, self – modulation and chaotic regimes emerge as 

natural behaviors in the nanostructure dynamics of the heat transfer processes. 

The present model can also be applied to a large class of nanostructures (i.e. 

polymeric biocomposites, “liquid wood”, temperature – depending drug release 

systems etc.). 

 

Keywords: fractal theory of motion, groupal invariances of SL(2R) – type, heat 

transfer at various scale resolutions  

 

1. Introduction 

The problem of heat transfer in nanostructures has been analyzed in the 

better part of the past century [1 – 7].  
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Usually, models used to describe nanostructure dynamics and particularly 

the ones related to heat transfer, are based on the uncertain hypothesis that the 

variables describing it are differentiable [1 – 4, 7 – 9]. The success of these models 

must be understood gradually on domains in which differentiability is still valid. 

However, the differential procedures are not suitable when describing processes 

related to nanostructure dynamics, which imply nonlinearity and chaos (it is 

reminded that this is the de – facto case [6, 7 – 9]). 

To describe nanostructure dynamics in the fractal paradigm, but remaining 

faithful to the differentiable mathematical procedures, it is necessary to explicitly 

introduce scale resolutions, both in the expression of the physical variables and in 

the fundamental equations which govern nanostructure dynamics. This means that, 

instead of “working” with a single physical variable described by a strict non – 

differentiable function, it is possible to “work” only with approximations of these 

mathematical functions obtained by averaging them on different scale resolutions. 

As a consequence, any variable purposed to describe nanostructure dynamics will 

perform as the limit of a family of mathematical functions, this being non – 

differentiable for null scale resolutions and differentiable otherwise [10, 11]. 

In the present paper, considering the fractal paradigm as being functional, a 

non – differentiable model describing the heat transfer in nanostructures is 

proposed. 

2. Mathematical Model 

2.1 Nanostructure as a fractal medium and “holographic 

implementations” of its dynamics 

Assimilating any nanostructure with a complex system [12 – 14], it is 

behaving like a fractal medium induced by the collisions process between its 

entities. Such assumption can be theoretically sustained by a typical example: 

between two successive collisions the trajectory of the nanostructure entities is a 

straight line that becomes non – differentiable in the impact point. Considering now 

that all the collision impact points are forming an uncountable set of points, it results 

that the trajectories of nanostructure entities become continuous but non – 

differentiable curves i.e. a fractal [11]. 

In such a context, Fractal Theories of Motion becomes functional for 

describing various dynamics in nanostructures and particularly the heat transfer. 

The fundamental assumption of these models is the one that the dynamics of any 

entity of nanostructures will be described by continuous but non – differentiable 

motion curves (fractal motion curves). These fractal motion curves exhibit the 

property of self – similarity in their every point, which can be translated into a 

property of holography (every part reflects the whole) [11]. Basically, the 
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discussion will be about “holographic implementations” of dynamics of any 

nanostructure entity for example through Schrödinger – type fractal “regimes” (i.e. 

describing nanstructure dynamics and particularly the heat transfer through 

Schrödinger – type equations at various scale resolutions – Schrödinger equation of 

fractal type).  

2.2 Scale covariant derivative and geodesics equations 

Let it be considered that the scale covariance principle (the physics laws 

applied to the heat transfer in nanostructures are invariant with respect to scale 

resolution transformations [10]) and postulate that the transition from the standard 

(differentiable) heat transfer in nanostructures to the fractal (non – differentiable) 

heat transfer in nanostructures can be implemented by replacing the standard time 

derivative 
𝑑

𝑑𝑡
 by the non – differentiable operator 

𝑑̂

𝑑𝑡
 [15 – 19]: 

𝑑̂

𝑑𝑡
= 𝜕𝑡 + 𝑉̂𝑙𝜕𝑙 +

1

4
(𝑑𝑡)

(
2

𝐷𝐹
)−1

𝐷𝑙𝑝𝜕𝑙𝜕𝑝 (1) 

where 

𝑉̂𝑙 = 𝑉𝐷
𝑙 − 𝑉𝐹

𝑙 

𝐷𝑙𝑝 = 𝑑𝑙𝑝 − 𝑖𝑑̄𝑙𝑝 

𝑑𝑙𝑝 = 𝜆+
𝑙 𝜆+

𝑝 − 𝜆−
𝑙 𝜆−

𝑝  

𝑑̄𝑙𝑝 = 𝜆+
𝑙 𝜆+

𝑝 + 𝜆−
𝑙 𝜆−

𝑝  

𝜕𝑡 =
𝜕

𝜕𝑡
, 𝜕𝑙 =

𝜕

𝜕𝑋𝑙
,  𝜕𝑙𝜕𝑝 =

𝜕

𝜕𝑋𝑙

𝜕

𝜕𝑋𝑝
, 𝑖 = √−1,   𝑙, 𝑝 = 1,2,3 

(2) 

In the above relations 𝑉̂𝑙 is the complex velocity, 𝑉𝐷
𝑙  is the differentiable 

velocity independent on the scale resolution 𝑑𝑡 and 𝑉𝐹
𝑙 is the non – differentiable 

velocity dependent on the scale resolution. 𝑋𝑙   is the fractal spatial coordinate and t 

is the non – fractal time having the role of an affine parameter of the motion curves. 

𝐷𝑙𝑝 is the constant tensor associated with the differentiable – non – differentiable 

transition of the heat transfer processes, 𝜆+
𝑙  is the constant vector associated with 

the forward differentiable – non – differentiable of heat transfer processes and 𝜆−
𝑙  

is the constant vector associated with the backwards differentiable – non – 

differentiable of heat transfer processes. 𝐷𝐹 is the fractal dimension of the 

movement curve. For the fractal dimension it is possible to choose any definition: 

Kolmogorov type fractal dimension, Hausdorff – Besikovici type fractal dimension 

etc. [11, 20, 21]. But once chosen this becomes operational, it needs to be constant 

and arbitrary: 𝐷𝐹< 2 for the corelative physical processes, 𝐷𝐹 > 2 for the non-

corelative physical processes etc. [10, 11]. 
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Now, the non – differentiable operator plays the role of the scale covariant 

derivative, namely it is used to write the fundamental equations of the heat transfer 

in the nanostructures, in the same form as in the classic (differentiable) case. Under 

these conditions, accepting the functionality of the scale covariant principle, i.e. 

applying scale covariant derivative (1) to the complex velocity field (2), in the 

absence of any external constraint, the geodesics equation of the nanostructure 

entities takes the following form [15 – 19]: 

𝑑̂𝑉̂𝑖

𝑑𝑡
= 𝜕𝑡𝑉̂𝑖 + 𝑉̂𝑙𝜕𝑙𝑉̂

𝑖 +
1

4
(𝑑𝑡)

(
2

𝐷𝐹
)−1

𝐷𝑙𝑘𝜕𝑙𝜕𝑘𝑉̂𝑖 = 0 (3) 

This means that the fractal local acceleration 𝜕𝑡𝑉̂𝑖, the fractal convection 

𝑉̂𝑙𝜕𝑙𝑉̂
𝑖 and the fractal dissipation 𝐷𝑙𝑘𝜕𝑙𝜕𝑘𝑉̂𝑖of any nanostructure entity, make their 

balance in any point of the motion fractal curve. Moreover, the presence of the 

complex coefficient of viscosity – type 4−1(𝑑𝑡)
(

2

𝐷𝐹
)−1

𝐷𝑙𝑘 in the nanostructure 

dynamics specifies that it is a rheological medium. So, the nanostructure’s 

structures have memory, as a datum, by their own structure.  

If the fractalization in the dynamics of nanostructures is achieved by Markov 

– type stochastic processes, which involve Lévy type movements [10, 11, 20, 21] 

of the nanostructure entities, then: 

𝜆+
𝑖 𝜆+

𝑙 = 𝜆−
𝑖 𝜆−

𝑙 = 2𝜆𝛿𝑖𝑙 (4) 

where   is a coefficient associated to the differentiable – non – differentiable 

transition and  
il  is Kronecker’s pseudo – tensor.  

Under these conditions, the geodesics equation (motion equation) takes the 

simple form: 

𝑑̂𝑉̂𝑖

𝑑𝑡
= 𝜕𝑡𝑉̂𝑖 + 𝑉̂𝑙𝜕𝑙𝑉̂𝑖 − 𝑖𝜆(𝑑𝑡)

(
2

𝐷𝐹
)−1

𝜕𝑙𝜕𝑙𝑉̂𝑖 = 0 (5) 

For irrotational motions of the nanostructure entities, the complex velocity 

field ˆ iV  takes the form: 

𝑉̂𝑖 = −2𝑖𝜆(𝑑𝑡)
(

2
𝐷𝐹

)−1
𝜕𝑖 𝑙𝑛 𝛹 (6) 

Then substituting (6) in (5), the geodesics equation (5) (for details see 

method from [15 – 19]) becomes Schrödinger – type equation at various scale 

resolutions (Schrödinger equation of fractal type): 

𝜆2(𝑑𝑡)
(

4
𝐷𝐹

)−2
𝜕𝑙𝜕𝑙𝛹 + 𝑖𝜆(𝑑𝑡)

(
2

𝐷𝐹
)−1

𝜕𝑡𝛹 = 0 (7) 
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The variable 𝛷 = −2𝑖𝜆(𝑑𝑡)(2/𝐷𝐹)−1 𝑙𝑛 𝛹
 
defines, through (6), the complex 

scalar potential of the complex velocity field, while 𝛹 corresponds to the state 

function of fractal type. Both variables, 𝛷 and 𝛹, have no direct physical meaning, 

but possible “combinations” of them can acquire it if they satisfy certain 

conservation laws.  

Let it be made explicit such a situation for 𝛹. For this purpose, it is first 

noticed that the complex conjugate of  𝛹, that is 𝛹, satisfies through (7) the 

equation: 

𝜆2(𝑑𝑡)
(

4
𝐷𝐹

)−2
𝜕𝑙𝜕𝑙𝛹 − 𝑖𝜆(𝑑𝑡)

(
2

𝐷𝐹
)−1

𝜕𝑡𝛹 = 0 (8) 

Multiplying (7) by 𝛹 and (8) by 𝛹, subtracting the results and introducing 

the notations: 

𝜌 = 𝛹𝛹,  𝑱 = 𝑖𝜆(𝑑𝑡)
(

4
𝐷𝐹

)−1
(𝛹 𝛻𝛹̅ − 𝛹̅𝛻𝛹) (9) 

it is possible to obtain the conservation law of states density of fractal type: 

𝜕𝑡𝜌 + 𝛻𝐽 = 0 (10) 

In (10) 𝜌 corresponds to the states density of fractal type and 𝑱 corresponds 

to the states density current of fractal type. 

3. Heat transfer in nanostructures through groupal invariance of SL(2R) 

– type by means of Riccati gauge 

The idea of motion equation has an enlarged significance, starting with the 

Fractal Theory of Motion under the form of Scale Relativity [10, 15, 19]. Let it be 

noted that Schrödinger’s equation of fractal type – motion equation for the state 

function 𝛹 of fractal type – besides the fact that it is invariant with respect to the 

Galilei vectorial transformation group, it is also invariant, in a separate way, to time 

transformations and one – dimensional coordinates (let it be x) represent a group in 

themselves [22, 23]. They constitute, in the most general case of motion in a single 

direction, a realization of the group SL(2R) [24, 25], but with two variables and 

three parameters, through the action [22, 23]:  

𝑡′ =
𝛼𝑡 + 𝛽

𝛾𝑡 + 𝛿
, 𝑥′ =

𝑥

𝛾𝑡 + 𝛿
 (11) 

Every vector in the tangent space SL(2R) is a linear combination of the three 

fundamental vectors, the infinitesimal action generators: 
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𝑋1 =
𝜕

𝜕𝑡
, 𝑋2 = 𝑡

𝜕

𝜕𝑡
+

𝑥

2

𝜕

𝜕𝑥
, 𝑋3 = 𝑡2

𝜕

𝜕𝑡
+ 𝑡𝑥

𝜕

𝜕𝑥
 (12) 

These satisfy the basic structure equations: 
[𝑋1, 𝑋2] = 𝑋1, [𝑋2, 𝑋3] = 𝑋3, [𝑋3, 𝑋1] = −2𝑋2 (13) 

which are taken as standard commutation relations for this type of algebraic 

structure. The group has an invariant function, which can be obtained as the solution 

of a partial differential equation: 
(𝑐𝑋1 + 2𝑏𝑋2 + 𝑎𝑋3)𝑓(𝑡, 𝑥) = 0 (14) 

which, in view of (12), means: 

(𝑎𝑡2 + 2𝑏𝑡 + 𝑐)
𝜕𝑓(𝑡, 𝑥)

𝜕𝑡
+ (𝑎𝑡 + 𝑏)𝑥

𝜕𝑓(𝑡, 𝑥)

𝜕𝑥
= 0 (15) 

The general solution of this equation is a function of the arbitrary value of 

the ratio: 

𝑥2

𝑎𝑡2 + 2𝑏𝑡 + 𝑐
 (16) 

which represent the different path of transitivity of the action described by operators 

from (12). In the particular case in which such a function is linear and, moreover, 

is a constant, it is possible to state that it represents a motion equation, be it a free 

entity, either a geodesic motion on the surface of a cone, or a non – standard 

interpretation if the statistical description is pertinent regarding the argument. 

It is understood that the motion equation is linked, according to these 

interpretations, to the invariant functions of the SL(2R) algebra which, as an idea, 

may be introduced here by a generalization of the grouping procedure. 

Then, in the first of equations (11), this requirement would mean that the 

nanostructure entities are considered simultaneously. Each entity can be located in 

the “swarm” (i.e. in the nanostructure) by four homogenous coordinates(𝛼, 𝛽, 𝛾, 𝛿), 

or three non – homogenous coordinates, if the equation (11) represents the context 

of time and a one – dimensional coordinate for the space domain, covered by this 

nanostructure. The simultaneity condition of the free entities of the “swarm” (i.e. in 

the nanostructure) can be differently characterized, from a Riccati equation in pure 

differentials (this will be named the Riccati type gauge) [24, 25]: 

𝑑
𝛼𝑡 + 𝛽

𝛾𝑡 + 𝛿
= 0, 𝑑𝑡 = 𝜔1𝑡2 + 𝜔2𝑡 + 𝜔3 (17) 
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Thus, for the description of the nanostructure dynamics as a succession of 

states of an ensemble of simultaneous entities, as it were, it suffices to have three 

differentiable 1 – forms, representing a coframe of SL(2R) algebra [26]:  

𝜔1 =
𝛼𝑑𝛾 − 𝛾𝑑𝛼

𝛼𝛿 − 𝛽𝛾
 

𝜔2 =
𝛼𝑑𝛿 − 𝛿𝑑𝛼 + 𝛽𝑑𝛾 − 𝛾𝑑𝛽

𝛼𝛿 − 𝛽𝛾
 

𝜔3 =
𝛽𝑑𝛿 − 𝛿𝑑𝛽

𝛼𝛿 − 𝛽𝛾
 

(18) 

That this coframe refers to such algebra can be checked by direct calculation 

of the Maurer – Cartan equations [24, 25], which are characteristic: 

𝑑 ∧ 𝜔1 − 𝜔1 ∧ 𝜔2 = 0 

𝑑𝜔2 + 2(𝜔3 ∧ 𝜔1) = 0 

𝑑𝜔3 − 𝜔2 ∧ 𝜔3 = 0 

(19) 

Élie Cartan has shown that under these conditions, one can prove that the 

right hand side of equation (17) is an exact differential [27], therefore it should 

always have an integral. The Cartan – Killing metric of this coframe is given by the 

quadratic form [28]: 

𝑑𝑠2 =
1

4
(𝜔2

2 − 4𝜔1𝜔2)

=
(𝛼𝑑𝛿 + 𝛿𝑑𝛼 − 𝛽𝑑𝛾 − 𝛾𝑑𝛽)2

4(𝛼𝛿 − 𝛽𝛾)2
−

𝑑𝛼𝑑𝛿 − 𝑑𝛽𝑑𝛾

𝛼𝛿 − 𝛽𝛾
 

(20) 

so that a state of a nanostructure in a given dynamic can be organized as a metric 

plan space, i.e. a Riemannian three – dimensional space [28]. The geodesics of this 

Riemannian space are given by some conservation laws of equations:  

𝜔1 = 𝑎1𝑑𝜏, 𝜔2 = 2𝑎2𝑑𝜏, 𝜔3 = 𝑎3𝑑𝜏 (21) 

where 𝑎1, 𝑎2, 𝑎3 are constant and 𝜏 is the affine parameter of the geodesics, so that, 

along these geodesics of differential equation (17) is an ordinary differential of 

Riccati type:  
𝑑𝑡

𝑑𝜏
= 𝑎1𝑡2 + 2𝑎2𝑡 + 𝑎3 (22) 

Mathematically, this requires an ensemble generated by a harmonic 

mapping between the positions in space and the nanostructure entities, with the 
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square of the coordinate 𝑥 measuring the variance of the distribution which 

describes the spreading of nanostructure entities in space. 

Because in thermodynamic systems the time, 𝑡, is inversely proportional 

with the temperature, 𝑇, [29, 30] under the shape of 𝑡 ≡
𝜇

𝑇
  with 𝜇 = 𝑐𝑜𝑛𝑠𝑡., 

equation (22) with the substitutions: 

−
𝜇

𝑎3
= 𝐴, −

𝑎2𝜇

𝑎3
= 𝐵, −

𝑎1𝜇2

𝑎3
= 𝐴𝐶 (23) 

takes the shape: 

𝐴
𝑑𝑇

𝑑𝜏
− 𝑇2 + 2𝐵𝑇 + 𝐴𝐶 = 0 (24) 

Because the roots of the polynom: 

𝑃(𝑇) = 𝑇2 − 2𝐵𝑇 − 𝐴𝐶 (25) 

can be written in the shape: 

𝑇1 = 𝐵 + 𝑖𝐴Ω 

𝑇2 = 𝐵 − 𝑖𝐴Ω 

Ω2 =
𝐶

𝐴
− (

𝐵

𝐴
)

2

 

(26) 

the change of variable: 

𝑧 =
𝑇 − 𝑇1

𝑇 − 𝑇2
 (27) 

transforms the equation (24) in: 

𝑧̇ = 2𝑖Ω𝑧 (28) 

of solution: 

𝑧(𝜏) = 𝑧(0)𝑒2𝑖Ωτ (29) 

As such, if the initial condition 𝑧(0) is conveniently expressed, then it is 

possible to construct the general solution of equation (24), by writing the 

transformation (27) in the shape:  

𝑇 =
𝑇1 + 𝑟𝑒2𝑖Ω(𝜏−𝜏0)𝑇2

1 + 𝑟𝑒2𝑖Ω(𝜏−𝜏0)
 (30) 

where 𝑟 and 𝜏0 are two integration constants. Using relations (26), it is possible to 

write this solution in real terms: 
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𝑧 = 𝐵 + 𝐴Ω {
2𝑟 sin[2Ω(𝜏 − 𝜏0)]

1 + 𝑟2 + 2𝑟 cos[2Ω(𝜏 − 𝜏0)]

+ 𝑖
1 − 𝑟2

1 + 𝑟2 + 2𝑟 cos[2Ω(𝜏 − 𝜏0)]
} 

(31) 

Therefore, synchronization of phase – amplitude type between 

nanostructure entities in the heat transfer process implies groupal invariance of 

SL(2R) – type. Then, period doubling, damping oscillations, self – modulation and 

chaotic regimes emerge as natural behaviors in the nanostructure heat transfer (see 

Figures 1 a – l for 𝑟 = 0.5 and Real [(𝑧 − 𝐵)/𝐴] ≡Amplitude at various scale 

resolutions, given by means of the maximum value of Ω). 

   
(a) (b) (c) 

 

 

 
  

(d) (e) (f) 
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(g) (h) (i) 

 

 

 
  

(j) (k) (l) 

 
Figs. 1 a-l. Various types of evolutions during thermal transfer in nanostructures (3D, contour 

plot and time series) representation: period doubling (a, b, c), damped oscillation regimes (d, e, f), 

signal modulation (g, h, i) and chaotic behavior (j, k, l)). 

 

A similar work, with a rigorous mathematical model and using a fractal 

method, can be found in the paper [31].  

4. Conclusions 

In the motion fractal paradigm, a new model on the heat transfer in 

nanostructures is established. So: 

 

i) Assimilating any nanostructure with a complex system, the said system is 

behaving as a fractal medium. In other words, the nanostructure becomes a 

fractal in the most general Mandelbrot’s sense. 

ii) The fundamental assumption of the author’s model is the one that the dynamics 

of any entity of nanostructures are described by continuous but non – 

differentiable motion curves (fractal motion curves). These fractal motion 

curves exhibit the property of self – similarity in its every point, which can be 

translated into a property of holography (every part reflects the whole). 

iii) In the previously – mentioned context, the authors discuss about “holographic 

implementations” of heat transfer phenomena in any nanostructure through 

Schrödinger – type fractal “regimes” (i.e. describing heat transfer through 

Schrödinger – type equations at various scale resolutions). 

iv) Through a special invariance of SL(2R) – type of the Schrödinger – type fractal 

equation, various heat transfer regimes, in the form of synchronization between 

any entities of the nanostructure, are highlighted. More precisely, by means of 

SL(2R) – type group, the phase is only moved with a quantity depending on 
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the amplitude of the nanostructure entity at the transition among various 

entities of the nanostructure. More than that, the amplitude of the entity of the 

nanostructure is also affected from a homographic perspective. The usual 

“synchronization” manifested through the delay of the amplitudes and phases 

of the entities of the nanostructure must represent here only a fully particular 

case.  

v) In a particular case of synchronization of nanostructure entities, given by 

Riccati type gauge, period doubling, damping oscillations, self – modulation 

and chaotic regimes emerge as natural behaviors in the nanostructure 

dynamics. 

vi) According to the presented model, it can be observed that two temporal scales 

exist: it is not necessary to postulate them. It is about the time of describable 

phenomena in the nanostructure landmark 𝜏, one one hand, and the time 

corresponding to the 20 metrics 20, 𝑡, on the other hand.   

 

An observation is made, in that this model may be developed for use to other 

classes of materials, such as biomaterials, biocomposites and other high – end 

materials. Particularly, this model holds true for “liquid wood”, a material which 

lies at the boundary between natural and artificial. More than that, the same model 

can be used in the dynamics analysis which involve drug release systems which are 

temperature – depending.  
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