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EXIT TIMES FOR GEOMETRIC BROWNIAN MOTION

Jingmin He', Zhonggin Gao?, Yitao Yang®

Geometric Brownian motion(GBM) process has been applied to numerous
fields including finance, insurance, engineering and so on. In this paper, the surplus
process of an insurance company are modeled by GBM. Some exit times for the process
is studied, and the Laplace-Stieltjes transform (LST) of the exit times is obtained. Then,
numerical examples are given to illustrate the applications of the LST of some exit times.
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1. Introduction

Geometric Brownian motion(GBM) process was initially proposed by Fischer Black
and Myron Scholes(1973)[2]. Since then, the model has been applied to numerous fields
including finance, insurance, engineering and has been further studied by many authors.
For example, Postali and Picchetti(2006)[14] showed that GBM process performs well as a
proxy for the movement of oil prices and for a state variable to evaluate oil deposits. Gao and
Yin(2008)[7] considered the perturbed classical compound Poisson risk model compounded
by GBM with a constant dividend barrier strategy. Vajargah and Shoghi(2015)

[15] studied the simulation of stochastic differential equation of GBM by quasi-Monte Carlo
method and its application in prediction of total index of stock market and value at risk.
The surplus process {X (¢),t > 0} of an insurance company are modeled by GBM as follows

{ dX(t) = pX (t)dt + o X (t)dB(t), (1)
X(0) = x,

where g be the drift in which represents deterministic trends, o > 0 be the volatility refer
to the influence of unpredictable events, x is the initial surplus of an insurance company,
and {B(t),t > 0} is a standard Brownian motion in which the mean change in the value of
the variable is zero and the variance of change equal to one per unit time.

For any interval [b,a], where b < u < a, define the first hitting time of the upper
barrier a and the first hitting time of the lower barrier b for the risk process {X(¢),¢ > 0}
to be

T { inf{t >0, X(t) = a}, T - { inf{t >0, X(t) = b},
“7\ oo, ifX(t)#aforallt>0, ° | oo, if X(t)#Dbforallt>0.

Then T, = Ty ATy := min(T,, Tp) is the first exit time of the process {X(¢),t > 0} from
the interval (b,a). For a boundary a and a fixed o > 0, let the Laplace-Stieltjes transforms
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(LST) of T, is E [e~*Ta] = E[e=°T«|X(0) = z]. Then the probability of T, < co can be
defined as follows

P (T, <o0)=P(T, <o0|X(0)=2x) = lig%) E,leoTa]. (2)
The mathematical expectation of T, can be obtained by the formula
B[ I(T, < 00)] = B[T,I(T, < )| X(0) = 2] = — lim dtEale™) (3)
o (e}

where I(+) is the indicator function. In particular, when a = 0, P, (Ty < 00) is the probability
of ultimate ruin and E,[ToI(Tp < 00)] is the average of the ruin time. For an interval [b, a],
let the LST of T, for T, < Ty is E,[e"T«I(T, < T})] and the LST of T}, for Ty, < T,
is B le T [(T}, < T,)]. In particular, when b = 0, the former can be represented as the
expected present value of a payment of 1 due at the time when the surplus reaches the level
a for the first time, provided that ruin has not occurred in the meantime, which plays an
important role in dividend problems with barrier strategies, the latter can be represented
as the LST of the time of ruin before reaching the upper barrier a, which plays a key role
in the problems of negative duration and occupation time. Then the probability of T, < Tj
and T, < T, can be defined as follows

Py(T, < Ty) = lim E[e™*TI(T, < Ty)),
a—

Po(Ty < T,) = lim E,[e™™I(Ty < T,)). (4)
a—

The mathematical expectation of the first exit time from the upper barrier a and the lower
barrier b can be derived by the formulas

o A(Bele T (T <Ty)))
E T I(T, <Tp)] = g‘mb T ,
i A(Bale T I(Ty<Tw)])
E.[T,I(Ty, <T,)] = Olllm0 T . (5)

Correspondingly, the relation between LST of the exit times 75, Ty and T, as follows
EyleoTav] = E,le *Te (T, < Tp)] + Exle D I(T, < T,)).

This paper investigates the LST of some exit times for GBM process. The exit
times have been studied by many authors in some risk models, such as Gerber(1990)[9]
and Alfredo and Dos Reis(1993)[6] studied some stopping times of the classical risk process.
Kella and Stadje(2001)[12] and Perry and Stadje(2001)[13] considered some exit times of
the compound Poisson risk process. Chiu and Yin (2002, 2002, 2005)[3][4][5] investigated
some passage times of the reserve-dependent risk process and the spectrally negative Lévy
process. Alili, Patie and Pedersen(2005)[1] considered the first hitting time of an Ornstein-
Uhlenbeck process. Jacobsen and Jensen(2007)[10] considered the exit times of the piecewise
exponential Markov processes with two-sided jumps.

The remainder of the paper is organized as follows. In section 2, some preliminaries
of GBM process are given. In section 3, using infinitesimal operators and martingale, the
LST of some exit times are obtained. Then, several numerical examples are discussed in
order to illustrate the influence of the upper barrier and lower barrier of an interval and the
initial surplus on the exit times in section 4.

2. Preliminaries

The model (1) is a time-homogeneous Markov process (see Karatzas and Shreve(1991)[11])
taking values in R with generator &7 that satisfies

A f(z) = T2f"(2) + paf!(2),
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where f belongs to the domain 2(<) of the generator <7 of {X(¢),t > 0}. Furthermore
(X (t),t) is also Markovian with generator % that satisfies

Bh(z,t) = A h(z,t) + Zh(z,1), (6)

provided that h(z,-) has a continuous first derivative for each z and that, for each ¢, h(-, ) is
in the domain of &, then h(z,t) € 2(#). Denote by % = o{X(s),0 < s < t} the natural
filtration. For later use, we give the following Lemma.

Lemma 2.1. If h(z,t) is a twice continuously differentiable in z and once in t function with
bounded first derivative in z, then h(z,t) € P(AB) and furthermore

My(t) = h(X(t),t) — [} Bh(X(s),s)ds
is a martingale.

In order to obtain the LST of some exit times, it is required to find a solution of the
equation as follows

A f(z) =af(z), fora>0, (7)
that is
22 f"(2) + paf'(2) = af (2).

The above equation is a second-order linear differential equation, the general solution is a
linear combination of the form Cihq(2z)+ Coha(z), where Cy, Cq are arbitrary constants and
the two positive independent solutions h1, ho as follows

—2V2u+v202 —\/8u2+16a02 —8po2+204

hl(Z) =z 2v20% )
—2V2u+V2024/8u2+16002 —8uc2 4204
hQ(z) =z 2202

It is easy to verify that hy is strictly decreasing, hs is strictly increasing and hq(z) — 0 as
z — +00.
3. The LST of some exit times

Theorem 3.1. Given that the initial surplus 0 < a < x, the LST of the time to hit a
boundary a is given by

Eolem™] = 23 (8)
where f1(z) = hi(2).

Proof. Let h(z,t) takes the form h(z,t) = e~ f1(2), it is clear that h(z,t) is in the domain
of A. Tt follows from (6) and (7) that

Bh(z,t) = A h(z,t)+ %h(z,t) =0, forall zandt?>0.

By Lemma 2.1, one can get E,[e~ ! f1(X(¢)] = f1(z). Thus, for every stopping time T}, and
initial surplus z, one have

Byle UM f1(X (t A Ta))) = fi(@). (9)

Because f1(z) is bounded on the range of possible values of {X (tAT,),t > 0}, letting ¢ — oo
in (9), dominated convergence theorem yields

Eyle=T fi(X(Ta))] = fila)Ezle~ "] = fi(a).
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So that
fi(z)

—aTy,1
E.le | = @)

This completes the proof.

Theorem 3.2. For 0 < b < x < a, the LST of the first exit time from the upper barrier a
1s given by

Ey[emoTe (T, < Ty)] = 3, (10)
where fa(z) = C1h1(2) + Caha(z) and C1, Cy satisfies f2(b) = 0.

Proof. Let h(z,t) takes the form h(z,t) = e~ f5(z), it is clear that h(z, ) is in the domain
of A. It follows from (6) and (7) that

Bh(z,t) = dh(z,t) + Zh(z,t) =

0,
By Lemma 2.1, one can get E le”® fo(X (t)] = fa(x). Thus, for every stopping time T,
and initial surplus x, one have

Ey[em W) fo (X (t ATup))] = fo(2). (11)
Letting ¢ — oo in (11), dominated convergence theorem yields
Eyle Mot fo(X(Tap))] = fo(@).
By the definitions of T, , one have
Ele oTa fo(X(T)I(T, < Tp)] + Ep[e T fo( X (Ty)) (T < T,)] = fa(x).
It follows from f2(b) = 0 that
Eyle T fo(X(T))(Ty < Tp)] = fa(a)Exle™ T I(T, < Ty)] = fa().

for all z and ¢t > 0.

Thus,

Ja(z)

E e (T, < Ty)] = )

This completes the proof.

Theorem 3.3. For 0 < b < x < a, the LST of the first exit time from the lower barrier b
s given by
Byl I(T} < T,)] = £, (12)
where f3(z) = C1h1(2) + Caha(z) and C1, Cy satisfies fz(a) = 0.
Proof. Let h(z,t) takes the form h(z,t) = e~ f3(z), it is clear that h(z,t) is in the domain
of A. Tt follows from (6) and (7) that
PBh(z,t) = A h(z,1) + %h(z,t) =0,
By Lemma 2.1, one can get E e~ f3(X(t)] = fs(x). Thus, for every stopping time T,
and initial surplus «, one have
By le N Ted) f3(X(t A Tap))] = fa(2). (13)
Letting ¢ — oo in (13), dominated convergence theorem yields
Eyle=Ter f3(X(Tap))] = f3(2).
By the definitions of T, ;, one have
ByleTe f5(X(Tu))(Ta < Ty)] + Eyle™ ™ f5(X(T1))(Ty < Tu)] = f(2).

for all z and t > 0.
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It follows from f3(a) = 0 that
B e f3(X(T)) [(Ty < To)] = f3(b)Ba[e™ T I(T} < To)] = fa(a).
Thus,

Eyle T I(T}, < Ty)] = ?;((Z))

This completes the proof.

4. Numerical examples

In this section, numerical examples are presented to illustrate the application of the
exit times for GBM process. Gao(2010)[8] used GMB to describe stock price indices and
estimated p = 0.53512, 0 = 0.30758 by means of the Shanghai Composite Index (000001)
closing index from December 1, 2008 to November 30, 2009. Wang(2007)[16]used GMB to
depict the price of oil and obtained p = 0.1, = 0.11 with the aid of an oil project in the
Gulf of Mexico from 1970 to 1997. In describing oil prices and some stock prices with GBM,
the drift coefficient and volatility coefficient are roughly equivalent. Thus, we take the drift
coefficient and volatility coefficient as one unit to study. All illustrations will be based on
the parameters =1 and o = 1.

By Theorem 3.1, we study the LST of exit time T,. The LST of T, are plotted in
Figure 1 for different initial surplus and different boundaries. It follows from (2), (3) that
the numerical characteristics of T, are obtained in Table 1.

FiGURE 1. The LST of T,

TABLE 1. The numerical characteristics of T,

a b = Py [To < 00] Ez(Ta]

1 b 3 0.3333333333333333  0.7324081924454064*
1 b 4 0.25 0.6931471805599453¢
2 b 3 0.6666666666666666 0.5406201441442191°¢
2 b 4 0.5 0.6931471805599453¢
2 b 5 0.4 0.7330325854993242¢
3 b 4 0.75 0.4315231086776712¢
3 b 5 0.6 0.6129907485191889°¢

The results in Figure 1 and Table 1 show that, the LST of exit time 7, and the
probability of T, < oo trend to decreasing along with the initial surplus increased, the
mathematical expectation of T, trends to increasing along with the initial surplus increased.
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Note that, on one hand, E,[e~%74] is decreasing as « increases and increasing as a increases.
On the other hand, E,[e~%T<] and P,(T, < co) are increasing as a increases, and E,[T,] is

decreasing as a increases.

By Theorem 3.2 and Theorem 3.3, we study the LST of the first exit times from an
interval [b, a]. The LST of T, for T, < T} are plotted in Figure 2 for different upper barriers
of an interval. The LST of T}, for T}, < T, are plotted in Figure 3 for different lower barriers
of an interval. It follows from (4) and (5) that the numerical characteristics of Ty, and T}

are obtained in Table 2.

TABLE 2. The numerical characteristics of T, and

50 = 6

FiGURE 2. The LST of T, for T, < Tp

=4

10@:471):3

T

Py [Tq < Tp)

Py [Ty < Tq]

Ex[Tal(Ta < Tp)]

Ex [Ty I(Ty < Ta)]

coee
R

0.9183673469387754
0.9693877551020407
0.9661016949152542
0.9830508474576269

0.08163265306122448
0.03061224489795918
0.033898305084745756
0.016949152542372878

2.309559326812696

1.474680930389038
1.7816140086446755
1.1744964314976283

0.27061886451621503
0.11838892078203708
0.13802788650699355
0.07300658852998436

0.625
0.8333333333333334
0.8

0.375
0.1666666666666666
0.2

0.4183941587141433¢
0.3615538188582179¢
0.49798188733289184¢

0.2071088707085913¢
0.12361812452906257¢
0.17160868609577648¢

NN N ==

W WWWNWN N =R

[2NNCLIEN Eor NG e o R RG] §S)

0.6666666666666667
0.5555555555555556
0.75

0.3333333333333333
0.4444444444444444
0.25

0.06948800151868384*
0.12298463018393169¢
0.17667455348457528¢

0.04377802301158035°
0.08418596679324386°
0.08494951839769871°
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The results in Figure 2 — 3 and Table 2 show that the LST of T, for T, < T}, and the
LST of Ty, for T, < T, is decreasing as « increases. It Follows from Figure 2 and Table 2
that, the LST of T, for T, < T}, and the probability of T, < T} trend to increasing along
with the initial surplus increased, the mathematical expectation of the first exit time from
the upper barrier a trends to decreasing along with the initial surplus increased. Note that,
on one hand, E,[e~*Te (T, < T})] and P,(T, < T)) are decreasing as a or b increases. On
the other hand, E,[T,I(T, < Tp)] is increasing as a increases and decreasing as b increases.
It Follows from Figure 3 that, the situation is converse, the LST of T} for T}, < Ty, the
probability of T < T, and the mathematical expectation of the first exit time from the
lower barrier b trend to decreasing along with the initial surplus increased. Note that,
E le= T [(Ty, < T,)], Pu(Ty < T,) and E.[TyI(T, < T,)] are increasing as a or b increases.
It means that the change of a and b has a great influence on its value.
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