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This paper is a continuation to the study of generalized quasi contractive 

operators, essentially due to Akhtar et al. [A multi-step implicit iterative process for 

common fixed points of generalized -operators in convex metric spaces, Sci. Int., 

25(4) (2013), 887-891], in spaces of nonpositive sectional curvature. We aim to 

establish results concerning convergence characteristics of the classical iterative 

algorithms such as Picard, Mann, Ishikawa and Xu-Noor iterative algorithms 

associated with the proposed class of generalized quasi contractive operators. 

Moreover, we adopt the concept introduced by Berinde [Comparing Krasnosel’skii 

and Mann iterative methods for Lipschitzian generalized pseudo-contractions, Int. 

Conference on Fixed Point Theory Appl., 15-26, Yokohama Publ., Yokohama, 

2004.] for a comparison of the corresponding rates of convergence of these 

iterative algorithms in such setting of spaces. The results presented in this paper 

improve and extend some recent corresponding results in the literature. 
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1. Introduction 

 

Fixed point theory (FPT) contributes significantly to the theory of 

nonlinear functional analysis. Iterative algorithms, with respect to various 

nonlinear mappings, are ubiquitous in FPT and have been successfully applied in 

the study of a variety of nonlinear phenomena. The theory of iterative 

construction of fixed points of a nonlinear mapping under suitable set of control 

conditions is coined as metric fixed point theory (MFPT). MFPT is a fascinating 

field of research and has emerged as a powerful tool to solve various nonlinear 

real world problems, such as Fredholm and Volterra integral equations, ordinary 

differential equations, partial differential equations and image processing. MFPT 

has its roots in the celebrated Banach Contraction Principle (BCP) which not only 

guarantees the existence of a unique fixed point of a contraction but also describes 

an approximant for the construction of such a unique fixed point. It is worth 
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mentioning that the BCP also gives a geometric rate of convergence for the 

classical Picard iterative algorithm to the unique fixed point. The BCP is a 

frequently cited result in the whole theory of analysis and dominates FPT for the 

class of contractions. 

It is worth mentioning that the simplicity and applicability of the BCP 

paved the way for developing a new class of mappings satisfying generalized 

contractive condition. Most of the generalizations of the BCP possess the same 

characteristics regarding the existence of a unique fixed point which can be 

constructed by the Picard iterative algorithm. However, there are certain 

contractive or nonexpansive type mappings for which the construction of fixed 

points is also possible via Krasnosel’skii [21], Mann [13, 23], Ishikawa [14], 

Sintunavarat and Pitea [28], Thakur et al. [29, 30, 31] and Xu-Noor [32] iterative 

algorithms. In MFPT, different iterative algorithms can be evaluated with respect 

to various characteristics, inter alia, convergence characteristics and rates of 

convergence. The later concept has its own importance in MFPT and therefore we 

adopt the concept introduced by Berinde [3] for a comparison of the rates of 

convergence of different iterative algorithms involving a nonlinear mapping. 

Since a variety of problems corresponding to the real world nonlinear 

phenomena can be transformed into fixed point problems (FPP). Therefore, it is 

natural to study FPP associated with a class of mappings in a suitable nonlinear 

framework. The term nonlinear framework for FPT is referred as a metric space 

embedded with a "convex structure". It is remarked that the non-positively curved 

hyperbolic space, introduced by Kohlenbach [20], provides rich geometrical 

structures suitable for MFPT of various classes of mappings. For the results 

concerning MFPT in Kohlenbach hyperbolic spaces, see, for example, [8, 10, 15, 

16, 17, 18, 19] and the references cited therein. We are, therefore, interested into 

iterative construction of fixed points of the class of quasi contractive mappings in 

Kohlenbach hyperbolic spaces. As a consequence, we establish results concerning 

rates of convergence associated with the modified Mann, Ishikawa and Xu-Noor 

iterative algorithms, involving the class of quasi contractive mappings, in 

comparison to the classical Picard iterative algorithm in Kohlenbach hyperbolic 

spaces. 

 

2  Preliminaries 

Throughout this paper, we work in the setting of hyperbolic spaces 

introduced by Kohlenbach [20] and hence the term Kohlenbach hyperbolic spaces 

as one can find different notions of hyperbolic spaces in the current literature, see 

[11, 12, 25, 26]. 

A Kohlenbach hyperbolic space  is a metric space  together with a 

convexity mapping   satisfying 
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for all  and  A subset  of a hyperbolic space  is 

convex if  for all  and  A hyperbolic space  is 

uniformly convex [22] if for all   and  there exists 

 such that     

whenever  and  

A mapping  providing such  for given 

 and  is called modulus of uniform convexity. For more on 

hyperbolic spaces, we refer the reader to [20, p.384]. 

We now recall some mappings satisfying generalized contractive 

condition. A mapping  is called: 

(i) Zamfirescu mapping [33], if there exist real numbers  and  satisfying 

 and  such that for each pair of points  in  we have 

   (2.1) 

(ii) -mapping [7], if for some  and for all  we have 

  (2.2) 

(iii) generalized contractive mapping [24], if for some  and for all 

 we have 

 (2.3) 

(iv) generalized -mapping [1], if for some  and for all  we 

have 

  (2.4) 

 

Remark 2.1. It is evident from the above definitions that the class of mappings 

defined in (2.4) contains properly the corresponding classes of mappings defined 

in (2.1)-(2.3). However, the class of Zamfirescu mapping is one of the most 

studied class of contractive mappings. For more on contractive type mapping, we 

refer the reader to [6]. 

 

We now introduce different iterative algorithm, required in the sequel, in 

Kohlenbach hyperbolic spaces. Let  be a given mapping and  be 

chosen arbitrarily, then the Picard, Mann, Ishikawa and Xu-Noor iterative 

algorithms be defined, respectively, as follows: 

      (2.5) 
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   (2.6) 

where  

                                  
           (2.7) 

where   

                               

                                                        (2.8) 

                                   

where   

We now recall the concept introduced by Berinde [3] for a comparison of 

the rates of convergence of different iterative algorithms involving a nonlinear 

mapping. 

Let  be two sequences of positive numbers that converge 

to  respectively. Assume that the limit     

exists. If  then the sequence  converges to  faster than  to 

 If  then we say that the two sequence  and  have the 

same rate of convergence. It is remarked that the results concerning rates of 

convergence associated with the classes of mappings defined in (2.1)-(2.3) have 

been established in [2, 4, 5, 27]. See, also, [9] and the references cited therein. We 

are now in a position to prove our main results. 

 

3  Main Results 

 

This section is devoted to establish the results concerning iterative 

construction of fixed points of the class of generalized -mappings and 

consequent rates of convergence for the modified Mann, Ishikawa and Xu-Noor 

iterative algorithms in comparison to the classical Picard iterative algorithm in 

Kohlenbach hyperbolic spaces. 

Theorem 3.1. Let  be a nonempty closed convex subset of a uniformly convex 

Kohlenbach hyperbolic space  and let  be a generalized -mapping. 

Assume that  the set of fixed points of  is nonempty and the sequence 

 satisfies the following conditions: 

(C1): ; 

(C2):  

Then the iterative algorithms defined in (2.5) and (2.6) converges to a fixed point 

 of  provided that the iterative algorithms have same initial guess  

Moreover, iterative algorithm defined in (2.5) converges faster than (2.6) to the 

fixed point of  

Proof. Since  is a generalized -mapping, therefore, if 

, then (2.4) becomes 
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So, we have 

  (3.1) 

If , then (2.4) becomes 

  

Again, we have   

Letting  the above estimate implies that 

  (3.2) 

Similarly, we can calculate the following inequality 

  (3.3) 

Let  then it follows from the estimate (3.2) and the sequence (2.5) that 

  

Continuing in this fashion, we have 

  (3.4) 

Since  therefore, (3.4) implies that 

  (3.5) 

Now utilizing the estimate (3.2) for the sequence (2.6), we get 

    

                      (3.6) 

The estimate (3.6) inductively yields 

  (3.7) 

Making use of conditions (C1) and (C2), the estimate (3.7) implies that 

                        (3.8) 

Hence the convergence of iterative algorithms (2.5) and (2.6) follows from the 

estimates (3.5) and (3.8), respectively. In order to compare the rates of 

convergence of iterative algorithms (2.5) and (2.6), we let  and 

 

Now, consider 

                                  

                                    

                                            

                                                 

                                       

Moreover   

Since  then   

Hence (2.5) converges faster than (2.6) to the fixed point of                               ■ 
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Theorem 3.2. Let  be a nonempty closed convex subset of a uniformly convex 

Kohlenbach hyperbolic space  and let  be a generalized -mapping. 

Assume that  the set of fixed points of  is nonempty and the sequences 

 and  satisfy the following conditions: 

(C1): ; 

(C2):  

Then the iterative algorithms defined in (2.6) and (2.7) converges to a fixed point 

 of  provided that the iterative algorithms have same initial guess  

Moreover, iterative algorithm defined in (2.6) converges faster than (2.7) to the 

fixed point of  

 

Proof. Note that the convergence of (2.6) has already been established in 

Theorem 3.1. It remains to establish the convergence of (2.7) involving the class 

of generalized -mapping. For this, we proceed with the following estimate: 

  

On using (3.2), we get 

             (3.9) 

Consider 

  

Again, using (3.2), we get 

  

                  

Substituting the above estimate in (3.9), we have 

  

                      

                      

                                   

                                           (3.10) 

Consider 

                        

   

        

    

Utilizing the above assertion, the estimate (3.10) implies that 

           (3.11) 

Continuing in this fashion, we have 

  

Using the fact that  and conditions (C1)-(C2), we get 

                       (3.12) 

The estimate (3.12) implies that the iterative algorithm (2.7) converges to the 
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fixed point of  In order to compare the rates of convergence of (2.6) and (2.7), 

we must compare  and  

For this, we reason as follow: 

                      

                                

                           

                                   

Also   

Since   then     

Hence (2.6) converges faster than (2.7) to the fixed point of                              ■ 

 

Theorem 3.3. Let  be a nonempty closed convex subset of a uniformly convex 

Kohlenbach hyperbolic space  and let  be a generalized -mapping. 

Assume that  the set of fixed points of  is nonempty and the sequences 

 and  satisfy the following conditions: 

(C1): ; 

(C2):  

Then the iterative algorithms defined in (2.7) and (2.8) converges to a fixed point 

 of  provided that the iterative algorithms have same initial guess  

Moreover, iterative algorithm defined in (2.7) converges faster than (2.8) to the 

fixed point of  

 

Proof. Note that the convergence of (2.7) has already been established in 

Theorem 3.2. It remains to establish the convergence of (2.8) involving the class 

of generalized -mapping. For this, we proceed with the following estimates: 

   

                  

                                                     (3.13) 

and 

   

                  

                                                     (3.14) 

Substituting (3.13) in (3.14), we have 

. (3.15) 

Moreover 

  

                       

                      .                        (3.16) 
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Substituting (3.15) in (3.16), we get 

 

 

                     

 

                     

 

                     

 

                      

                      

Making use of conditions (C1) and (C2), the above estimate implies that 

                                                (3.17) 

Now we use the estimate (3.3) for the iterative algorithm (2.8) to get the following 

estimates: 

   

                  

                   

                                                     (3.18) 

and 

             (3.19) 

Substituting (3.18) in (3.19), we get 

                (3.20) 

Now, consider 

             (3.21) 

Substituting (3.20) in (3.21) and then simplifying the terms, we have 

   

                                                         (3.22) 

Again, making use of conditions (C1) and (C2), the above estimate implies that 

                         (3.23) 

The estimate (3.23) implies that the iterative algorithm (2.8) converges to the 

fixed point of  In order to compare the rates of convergence of (2.7) and (2.8), 

we must compare  and  

For this, we have the following two cases: 

Case (I). Let  then  and  therefore, we have  

 . 

Case (II). Let  then again  and 
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So   

Consequently 

  

Since  

therefore, we get       

This implies that, in both cases, (2.7) converges faster than (2.8) to the fixed point 

of                                                                                                                           ■ 

Remark 3.4. As an applications of Theorems (3.1)-(3.3), we can establish similar 

kind of results for the classes of mappings defined in (2.1)-(2.3) in Kohlenbach 

hyperbolic spaces. As a consequence, our results generalize the corresponding 

results from linear spaces to more general setup of spaces. 
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