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3D X-RAY IMAGE COMPOSITION 

Constantin Catalin ARMEANU1 

3D image reconstruction algorithms fall into one of the three major 
categories of methods:  analytical reconstruction - the filtered backprojection (FBT) 
method, iterative reconstruction - algebraic reconstruction techniques (ART), 
statistical image reconstruction techniques (SIRT) and hybrid methods. 
The analytical methods are based on filtered backprojection (FBP) are currently 
and widely used on radiology scanners because of their computational efficiency 
and numerical stability. 

These mathematical models are applied in X-ray imaging, thermograms, 
multispectral scanning and many more. Presented study is oriented on X-ray image 
reconstruction applied in the field of Cultural Heritage investigations, field in which 
it becomes one of the most important source of information. 
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1. Introduction 

Besides other data obtained in 2D and reconstructed in 3D images, X-ray 
scanning is a widely used technique in Cultural Heritage investigations because of 
the importance of the information it gives us. Practically by using one of the 
reconstruction techniques we can reproduce from the 2D images, the 3D image of 
the studied object, being able to observe by a noncontact manner, all the inside of 
an object.  

In art, it can be used X-ray scanning to reveal hidden defects, precious 
conservation hints, and even previous paintings under the visible layer. It can also 
identify certain use of some pigments. In historical artifacts imaging, it can give 
important information about the technology used by artists, previous 
conservations, degraded areas and causes of the degradation. 

Radiology can be further associated with non-destructive photonic 
techniques for a better characterization of analyzed object. Either if its 3D laser 
scanning [1], multispectral imaging, thermal imaging, laser induced fluorescence 
[2] or even laser Doppler vibrometry. In recent years a special attention was given 
to technique’s portability, since a large number of cultural goods are immovable 
(for example collections that are not allowed to leave the museum facility and all 
the analysis and measurement should be done within the premises of the 
institution) [3]. 
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Special attention can be given to other 3D imaging technique [4], as laser 
scanning, in order to associate the result and map it onto a 3D model or laser 
Doppler vibrometry, a method used to detect and identify hidden defects of mural 
paintings or statues [5]. Also, at a lower resolution, possibility to inspect the 
interior of an object can be done with VHF electromagnetic radiation, with 
frequency higher than several GHz and which can go with milimetric resolution 
[6]. 

X-ray methods do not generate three dimensional images of an object 
directly. It provides 1 or 2 dimensional projections of the studied object.  Hence, 
images have to be reconstructed from a set of projections. Real-world application 
needs image reconstruction from X-ray absorption projections obtained by 
measuring the radiation attenuation by crossing through a physical object at 
different angles. Digitalized projections are collected by X-ray devices connected 
to computers and after that acquisition a virtual image of the object is 
reconstructed using different mathematical reconstruction methods.  Energy of 
any given beam (not only X-ray beam) is absorbed depending on what it cross on 
its way between the source to the detector. This projection can be represented as 
an integral. Projection does not carry enough information to reconstruct an image, 
but it is a good starting point to build using mathematical methods to complete an 
image who approximate good enough the studied object.  

2.  3D image reconstruction algorithm 

The adopted image reconstruction method and procedure has an essential 
impact on image accuracy, on image quality, on radiation dose, on image 
usability, and financial and computational costs.  For example, if the data 
processing takes too long, for some applications can be a serious impediment. Or, 
for a given cost and available devices it is advisable to obtain reconstructed 
images with the lowest possible noise without major sacrificing image resolution, 
accuracy, readability (for the specific object and scope) and quality. Also, 
reconstructions that improve image quality can be used to reduce costs, or the 
device limitations, or computing time, or the radiation dose. 

Reconstruction algorithms fall into one of the three major categories of 
methods:   

1. analytical reconstruction: the so called filtered backprojection (FBT) 
method, 

2.  iterative reconstruction: the so called algebraic reconstruction 
techniques (ART), or the iterative statistical image reconstruction 
techniques (SIRT)  and  

3. hybrid methods who combines different analytical and iterative 
methods. 
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The analytical methods are based on filtered backprojection (FBP) are 
currently and widely used on radiology scanners because they are computational 
and time efficient and have high numerical stability. 

These methods requires a reconstruction algorithm (or filter) and a stop 
procedure, who contains the procedure and the most important parameters who 
can be altered and can impact the image quality, accuracy and readability. In 
general, it is impossible to avoid reasonable compromise between resolution, 
noise, quality, readability for each algorithm. For example, a smooth algorithm 
produce lower noise images but reduce resolution. A sharp algorithm produce 
images with higher resolution, but increased image noise and more phantoms. 

The choice of the proper reconstruction algorithm is the task of the expert 
or device operator and must be based on the prior experience and the 
specific application. For example, smooth algorithms are currently used to reduce 
image noise and improve the image for low contrast objects. Radiation dose 
associated with low structure contrast objects is usually higher than that for other 
examinations based on the inherent contrast of the object structure. Sharper 
algorithms are currently used in examinations who require to evaluate high 
density structures to obtain better resolution. And lower radiation dose must be 
used in the evaluation of objects with high contrast structures. 

In addition to the usual reconstruction algorithms applied during image 
reconstruction, they are also many available noise reduction techniques, operating 
initially on the projection data, or finally on image. These methods involve non-
linear de-noising or deblurring algorithms, combined into the basic reconstruction 
algorithm for the operation facility. For some applications these methods perform 
very well to reduce image noise and blur while maintaining high-contrast 
resolution. Using these methods too aggressively, can change usability, the noise 
texture, can sacrifice the image low-contrast detectability and can affect image 
readability. Hence, careful evaluation of these algorithms and procedures must 
and should be performed by experts and operators for each task very carefully.  

Iterative reconstruction methods, has been intensively used in the early 
years of image reconstruction and abandoned because of the computing 
limitations, but has been re-evaluated recently based on the increased computing 
power of the modern computers, but also based on the necessities for better image 
quality, better resolution, better readability, and also because of the diversification 
of applications of x-ray imagery.  The attention for x-ray (and not only x-ray) 
scanning increase also because it has many other advantages compared with 
analytic reconstruction techniques. While analytic methods are widely used for 
image reconstruction, the iterative reconstruction methods offer distinct 
advantages than analytic counterparts when data are incomplete, inconsistent, and 
rather noisy.  They are also widely used for deblurring images. Key physical 
parameters like focal spot, X-ray beam energy and spectrum, photon statistics, 
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detector geometry can be easier and precisely incorporated into iterative 
reconstruction algorithms, acquiring lower noise and higher resolution compared 
with the images obtained with analytical reconstruction.  Moreover, iterative 
reconstruction methods can reduce image artifacts. The recent studies on iterative 
reconstruction methods demonstrates the high potential of these methods and of 
the hybrid methods compared with only analytical-based reconstruction 
algorithms to improve the quality, applicability, readability, resolution and many 
other. Because of to the inherent difference in data handling between analytical 
reconstruction and iterative reconstruction methods, images from different 
reconstruction methods may have a different appearance (like noise texture, or 
resolution). Hence, a careful evaluation of the technique and reconstruction 
parameter optimization is required before an iterative reconstruction algorithm can 
be accepted into practice.  

Iterative methods can have several advantages over direct methods. These 
methods can incorporate some prior knowledge, including system geometry, 
detector response, object constraints, and they also permit modeling data noise.  
Also, an assumption underlying FBP is that x-ray sources are monoenergetic; in 
practice, there is a nonuniform distribution of photons of different wavelengths, 
and hence, different energies, that leads to a phenomenon physicists call “beam 
hardening”.  In practice, X-ray beams produced in scanners are polyenergetic with 
a relatively wide energy spectrum. Moreover the attenuation coefficients are beam 
energy and spectrum dependent.  Low energy x-rays, which are more easily 
attenuated, are called soft X-rays.  The more penetrating high energy x-rays, are 
called as hard X-rays. The beam hardening phenomenon is the process of 
increasing the average energy level of an X-ray beam, as it passes through the 
scanned object. The explanation of this phenomenon is that, as a polyenergetic 
beam passes through an object, the lower-energy parts of its spectrum attenuate 
more rapidly than the higher-energy parts of the spectrum. 

The degree to which a given X-ray beam is hardened in passing through 
matter depends on both the initial X-ray energy and spectrum and the material 
composition of the scanned object.  For a fixed initial X-ray energy and spectrum 
and object material type, the beam hardening is a monotone increasing function 
depending on the distance. In other words, the attenuation coefficient depends on 
the thickness of traversed material. 

Different methods to compensate for the effects of beam hardening have 
been proposed, such as pre-filtering;  post-reconstruction; and incorporating a 
polyenergetic acquisition model.  Some iterative methods, such as statistical 
image reconstruction techniques (SIRT), can model polyenergetic x-ray sources 
and thus account for beam hardening in the reconstruction. They use a statistical 
model, in order to estimate the attenuation coefficient.  
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Statistical image reconstruction techniques are based on modeling 
assumptions that incorporate the stochastic nature of physical measurements. As 
with other reconstruction algorithms, the basic idea in SIRT is to find the 
distribution of the energy dependent attenuation coefficient given by the 
measurements. In FBP, usually monoenergetic x-ray beams are assumed, and 
therefore the issue of beam hardening is not considered. Statistical methods allow 
us to assume polyenergetic sources, and thereby reduce the negative effects of 
beam hardening artifacts.  

In statistical methods, a physical, statistical acquisition model is assumed 
first. Then a statistical model is used to estimate the attenuation coefficient. At the 
end, the estimation found is optimized, by applying an iterative method.  

Different techniques are used to reduce the incidence of beam hardening 
artifacts in x-ray reconstructions: 
1. Pre-filtering: a physical device is used to ensure that the x-ray beams used 
arecloser to be truly monoenergetic, making the assumption of monoenergeticx-
ray beams more reasonable. 
2. Post-reconstruction: this is a standard post-processing method used since 1978.  
This method relies on assumptions about the material characteristics to provide 
corrections to the measured sinogram data. The reconstruction is done in two 
stages: an approximate material distribution is assumed at first, and the 
corresponding beam hardening artifacts are then reduced. 
3. Incorporating a polyenergetic acquisition model. Statistical image 
reconstruction techniques for x-ray scanning can be developed based on physical 
models that account for polyenergetic sources. In this case, since the 
reconstruction algorithm is built upon a polyenergetic acquisition model, the beam 
hardening phenomenon is taken into account. 
The greatest challenge for iterative reconstruction has always been, and still is, 
and has affected its use in radiology imaging. Meanwhile, methods, software and 
hardware are tested and improved to accelerate iterative reconstruction. Taking 
advantage of the advances in computational theory and technology, iterative 
reconstruction are now used in some specific applications or to improve the 
analytical methods and may be incorporated into routine  practice in the future. 

Radon transform 

The Radon transform is named after Johann Radon in his work in 1917who 
showed in pure theoretic way, with no association to applications, how to describe 
a function in terms of its integral projections. The mapping from the function onto 
the projections is the Radon transform. The inverse Radon transform corresponds 
to the reconstruction of the function from the integral projections obtained by 
measuring the attenuation of X-ray radiation that passes through a physical object 
at different angles.  
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It will be used the following notations and definitions: x and y will denote  the 
spatial coordinates; I(x) is the D-dimensional image containing the N-dimensional 
shapes; p denotesthe vector containing the curve parameters; c(p) is the  member 
of a class of shapes described by the parameter vector p; c(s; p) are the 
coordinates of a point belonging to the shape c(p); C(x; p) will be the  set of 
constraint functions that  define a shape. 
The number of constraint functions depends on the dimensionality of the shape. It 
is needed D – N constraints to describe a N-dimensional shape. For a point on the 
shape, the constraint functions will be zero. The template C(x,p) is also called the 
kernel that defines the shape given by p as an image with spatial coordinates x. It 
can be modeled the image I as a sum of several of these templates. 
Observe that the parameters subset contains also the location of the shape (like the 
center of a sphere), hence we will write p = {q, xo}, with xo the location 
parameter of the shape and q the remainder of the parameters. 
The original formulation of the Radon [7] transform is as follows: 
 

ܴሼܫሽሺ݀, ߶ሻ ൌ ׬ ߶ݏ݋ܿ ሺ݀ܫ െ ,߶݊݅ݏ ݏ ߶݊݅ݏ ݀ ൅ ோݏሻ݀߶ ݏ݋ܿ ݏ  (1) 
 

Even that initially it was a pure theoretical result, the Radon transform is mostly 
known for its role in radiology scanning. It is used to model the process of 
acquiring projections of the original object using X-rays. Given the projection 
data, the inverse Radon transform, can be applied to reconstruct the original 
object. The Radon transform can also be used for shape and pattern recognition. 
We can reformulate the Radon transform for a simpler use: 

ܴሼܫሽሺ݀, ߶ሻ ൌ න ,ݔሺܫ ݕ݀ݔሻ݀ݕ ൌ න ,ݔሺܫ ߶ݏ݋ܿ ݔሺߜሻݕ ൅ ߶݊݅ݏ ݕ െ ݀ሻ݀ݕ݀ݔ  ሺ2ሻ
ோೃሺ௫,௬ሻ

 

 
It is easy to generalize the Radon transform to arbitrary shapes c(p). We can use 
another equivalent formulation, useful for some applications: 

ܴ௖ሺ௉ሻሼܫሽሺܲሻ ൌ
׬ ݔሻ݀ݔሺܫ ൌ ׬ ;ݏሺܿሺܫ ሻሻ݌ ቛడ௖

డ௦
ቛோಿ௫ ௢௡ ௖ሺ௉ሻ ds=׬ ;ݔ൫ܿሺߜሻݔሺܫ ሺ3ሻோವ  ݔሻ൯݀݌  

 
Other formulation expresses the Radon transform as a volume integral, a form that 
is particularly practical in image analysis. 
 Imagine now that there is a shape in the image with parameter set a. When 
p്a, the Radon transform will evaluate to some finite number which is 
proportional to the number of intersections between the shapes c(p) and c(a).  
When p = a, the Radon transform yields a large response namely a peak in the 
parameter space. This response is proportional to the N-dimensional hyper-
volume of the shape. We can now interpret the Radon transform as follows: it 
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provides a function from image space to the parameter space spanned by the 
parameters p. The function P(p) created in this parameter space, contains peaks 
for those p for which the corresponding shape c(p) is present in the image. Shape 
detection is therefore reduced to the simpler problem of peak detection. 
 The third formulation of the Radon transform in equation (4) demonstrates 
an important reason for using distributions (generalized functions). In this 
formulation, it can be recognized the form of a linear integral operator, also 
known as a Fredholm operator, ܮ஼ with kernel C: 
 

ሺܮ஼ܫሻሺ݌ሻ ൌ න ,݌ሺܥ ሺ4ሻ                                         ݔሻ݀ݔሺܫሻݔ
ோವ

 

Hence, if we allow for the kernel C to be a distribution, the Radon transform can 
be treated as any other linear transformation. In fact, using distributions, the 
identity operator, using the Dirac delta distribution as well as differential and 
integral operators, using derivatives and primitives of the Dirac delta, can be 
described in integral form. Dirac introduced these in order to develop a 
continuous equivalent to matrix algebra in his work on quantum mechanics. 
 In case of a Radon transform, the kernel C is of the form:  

,݌ሺܥ ሻݔ ൌ ;ݔ൫ܿሺߜ  ሻ൯                                                 ሺ5ሻ݌
 

In terms of shape detection, the role of the operator ܮ஼ is to compute the inner 
product between the image and a template C for a given parameter set p. Here it 
can be seed see the connection between the Radon transform and template 
matching. Often, the parameters p consist of the position of the shape xo and the 
actual shape parameters q. In this case the kernel has a special (shift-invariant) 
structure: 

,ݍሺሼܥ ሻݔ଴ሽݔ ൌ ,ݍሺሼܥ ଴ݔ ൅ ݀ሽ, ݔ ൅ ݀ሻ  ሺ6ሻfor any d 
 

The operator ܮ஼ now reduces to a set of convolutions: 
ሺܮ஼ܫሻሺݍ, ଴ሻݔ ൌ ሺܭ஼ሺݍሻ כ  ଴ሻ                            ሺ7ሻݔሻሺܫݔ

 
with ܭ஼ሺݍ, ሻݔ ൌ ,ݍሺሼܥ ,ሽݔ 0ሻ                            ሺ8ሻ 

 
This implies a large speed-up: using the convolution property of the Fourier 
transform, each convolution reduces to a multiplication in the Fourier domain. 
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Hough Transform 
They are two techniques for curve detection: the first use the Radon transform. 
The second one use a transform due to Hough [8], which become very popular 
because its applications. Many authors have noted that the Radon and Hough 
transforms are very closely related [15]. 

 
 
 The Hough transform was originally defined as a shape and pattern 
recognition tool, to detect, in black and white images, straight lines, and is clearly 
discrete. It is straightforward to generalize the Hough transform to other, more 
complex shapes, and grey-value images, and we will describe it shortly in this 
form. It is defined an N-dimensional storage array, each dimension corresponding 
to one of the parameters defining the shape. Each element of this array contains 
the number of votes for the presence of a shape with the corresponding 
parameters. The votes are obtained turn by turn by considering each point in the 
input image. Now we select which shapes could potentially be a member of this 
point, with grey value g, see Figure 1. We increment the vote for each of these 
shapes with h. Of course, if a shape with parameters p exists in the image, all 
pixels that are part of it will give a vote for it, yielding a large peak in the 
accumulator array. The Hough transform, like the Radon transform, associate to 
image space a parameter space. 
 Let’s explore the relation between the Hough transform and the Radon 
transform. The Radon transform is a mapping and a mapping can be approached 
from different points of view.  

The first one is the reading paradigm. In this view we consider how a data 
point in the destination space is obtained from the data in the source space. This is 
the usual way the Radon transform is interpreted.  

The second is the writing paradigm. In this view it is to consider how a 
data point in the source space maps onto data points in the destination space. This 
is what the Hough transform does, even though in a discrete setting. Following 
this picture, the Hough transform is essentially a discretization of the Radon 
transform.  

Fig. 1 
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The mathematical formalism for the two methods is parallel and given by 
equation (4) with kernel functions of the form δ(C(x; p)). The mathematical 
formalism admit two different interpretations from computational point of view. 
Consider reading paradigm given by Radon. For each p, we pick all the values of 
I(x), then apply the template weights K(x; p), and sum everything. 
Consider now writing paradigm given by Hough. We initialize the entire function 
P(p) by zero. For each point x in the input image we have to determine its 
contribution, weighted with K(x; p), to each of the points in P(p) and then update 
P(p). 

Using this interpretation it is clear that if the input data is sparse, the 
Hough paradigm offers an immediate reduction in computation time and if the 
interest is only in a view points in parameter space, then the Radon paradigm is to 
be preferred. So, we can benefit from both methods and both mathematical 
formalism.  

The equivalence of the Radon transform, Hough transform and template 
matching has been discussed by several authors. Stockman and Agrawala [9], and 
Sklansky [10] have used arguments similar to those above to demonstrate the 
equivalence of the Hough transform and template matching. The formulation by 
Gel’fand et al. [11] of the Radon transform in terms of the Dirac delta function is 
in fact a form of template matching. Deans [12] was the first who establish the 
equivalence of the Radon and Hough transforms, as well as the first to bring the 
work of Gel’fand et al. to the attention of the field of image analysis. 

Also, Princen [13] et al. have given a continuous formulation of the Hough 
transform, using an interesting approach that is perhaps more in the spirit of the 
Hough frame of mind. At the basis for their formulation are the constraint 
functions C. For any given point x in the input space, the constraints C(x; p) trace 
out a manifold in the parameter space spanned by the parameters p. Multiple 
points x give rise to multiple manifolds. These will intersect each other at the 
point ݌଴ in parameter space, and thus identifying the curve. The mathematical 
formulation of this principle is given by the familiar relation (4), unifying this 
approach with the others given above. Their claim that the Radon and Hough 
transforms are not equivalent, seems to be based on comparing the continuous 
Radon transform to the original discrete Hough transform, rather than comparing 
the continuous definitions, and not recognizing that the Radon transform can be 
written in the form of equation (4), despite using the Dirac delta in their own 
formulation of the Hough transform. 
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Iteration methods 

Iteration methods are methods which compute a sequence of progressively 
accurate iterates to approximate the solution of the linear system of 
equations ݔܣ ൌ ܾ.  
Iterative methods for ݔܣ ൌ ܾ  begin with an approximation to the solution,ݔሺ଴ሻ, 
then  provide a series of improved approximations ݔሺ଴ሻ, ,ሺଵሻݔ … , ,ሺ௞ሻݔ … that 
converge to the exact solution. For applications in image reconstruction, this 
approach is appealing because it can be stopped as soon as the approximations 
 ሺ௞ሻ  have converged to an acceptable precision߳, which might be something asݔ
10ିଷ , 10ିସ  or even smaller. With a direct method, stopping early is not an 
option; because the process of elimination and back-substitution has to be 
completed, or else abandoned altogether and provide no result. But, by far, the 
main attraction of iterative methods, is that for certain problems, especially for 
those where the matrix ܣ is large and sparse, they are much faster than direct 
methods and with much lower computational. On the other hand, iterative 
methods can be unreliable; for some problems they may confront to very slow 
convergence, or they may not converge at all. 
Such methods are very usefully for solving large linear systems as the systems of 
image reconstruction are. In this case, the matrix is almost always too large to be 
stored even in the computer memory, making a direct method too difficult or 
impossible to use. 
Very important also, the operations cost and hence computing time of ଶ

ଷ
݊ଷsteps 

for Gaussian elimination is too large for most large systems. 
With iteration methods, the operations cost can often be reduced to something of 
cost Oሺ݊ଶሻ or even less. Even when a special form for A can be used to reduce the 
cost of elimination, iteration will be faster. 
The general procedure for iterative methods is as follows. Rewrite  ݔܣ ൌ ܾ as  
ݔܰ ൌ ܾ ൅ ܣ with ݔܲ ൌ ܰ െ ܲ a picked splittingof ܣ, where ܰ is chosen to be 
nonsingular, and usually we select it such that the equation ܰݖ ൌ ݂ is easy 
solvable for any ݂.  For example we choose N such that it is easy to invert it. 
The iteration method is based on constructing ݔሺ௞ሻ by the formula 
 

ሺ௞ାଵሻݔܰ ൌ ܾ ൅ ,ሺ௞ሻݔܲ ݇ ൌ 0,1,2, … 
 
Applying the general convergence theorem [14] we have that  ݔሺ௞ሻ converge for 
any  ܾ and all initial guesses  ݔሺ଴ሻ if and only if all eigenvalues  ߤof the matrix 
ܯ ൌ ܰିଵܲsatisfy  |ߤ| ൏ 1.  This is the basis of deriving splitting ܣ ൌ ܰ െ ܲ that 
leads to different convergent iteration methods whose main step is to choose a 
comfortable N. 
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6. Discussions 

The iterative method is the most accurate algorithm, but it also requires, as 
the resolutions increased, a powerful computational station, as used in CT. It is 
easy to notice that the fastest method, considering the quality of the image 
reconstructed, is a hybrid of Radon and Hough transforms, the two being 
complementary with each other. As an addition, iterative method is perhaps the 
only solution when we have a very limited set of data (e.g. on human subjects the 
exposures are limited and the data are few), but also can be used to refine certain 
zones in which Radon and Hough transforms couldnot form a clear image.  
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