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LONGTIME BEHAVIOR OF A NON-AUTONOMOUS BEAM 
EQUATION 

Yonghua REN,1 Jianwen ZHANG2 

A perturbed non-autonomous equation of hyperbolic type with the structural 
damped terms, which arises from the vibration of a beam, is considered. By using a 
two-parameter operator family and decomposing the analytic semigroup, we obtain 
the compact kernel sections, which are the key ingredients to show the existence of 
the global attractor in the space ×Ω)(2

0H )(2 ΩL .  

Keywords: Non-autonomous beam equation, Structural damped, Kernel sections, 
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1. Introduction 

This paper studies the longtime asymptotic behavior of a perturbed non-
autonomous beam equation: 
         udxuuNdxuMtuuuu tttt Δ∇∇+∇+−+Δ+Δ+ ∫∫ ΩΩ

)]()()([ 2
t

22 αημ                

,,,),,( +∈>Ω∈= Rtxtxh ττ                           )1(  
associated with the following initial and boundary value conditions: 

,0),(),( =Δ= Ω∂∈Ω∂∈ xx txutxu  ,τ≥t                             (2) 
),()(),( 2

00 Ω∈= Hxuxu ττ ),()(),( 2
1 Ω∈= Lxuxut ττ ,Ω∈x           (3) 

where ),( txuu =  describes the transversal motion of a beam. x  is the space 
variable, and Eq.(1) is posed in an open bounded connected domain Ω  in nR (with 
a sufficiently smooth boundary Ω∂ ). The parameters μ  and η  are nonnegative, 
and Δ  is the Laplacian in nR . For the external force, we assume that ),( txh  is 
periodic with respect to t and satisfies: 

                                  )),(;(),( 2 Ω∈ ∞ LRLtxh  
                ))(;())(;())(;(),( 222 ΩΩ=Ω∈′ ∞ LRLLRCLRCtxh b ∩ . 

       As it is well known (see [1]), attractor is an important problem 
studying the longtime asymptotic behavior of dynamical system. System (1)-(3) 
describes the nonlinear transversal vibrated motion of an elastic beam. In this 
paper we investigate the non-autonomous system (1)-(3) via the compact kernel 
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sections of the corresponding family of processes { }∑∈ετε ),,(tS , in which Σ is a 
two-parameter set. 

        Let us recall some investigation in this area. To the best of our 
knowledge, the classical equations in hyperbolic system were presented by 
Woinowsky as a new idea in the field of nonlinear analysis [2]. After that, 
hyperbolic problem with the nonlinearity analogous with the system (1)-(3) has 
drawn much attention. Recently, many classical results of the attractor have been 
obtained. For the autonomous beam equations, Chueshov and Lasiecka in [3] 
considered the existence and structure of the global attractor for dynamic von 
Karman equations with a nonlinear boundary dissipation. If the axial force was 
added, Yang in [4] and Kolbasin in [5] were concerned with the attractor of the 
nonlinear wave equation arising in elastic waveguide model. When the attractor is 
posed on unbounded domain, the case can be complex, which is mainly caused by 
the existence of a Lyapunov functional. To solve this problem, we refer to [6-8] 
for the detailed description of the growth exponent of ),( uxf . In addition, it was 
used to testify the existence of strong solutions and global attractors for the 
suspension bridge equations in the stronger space under the condition that the 
damped term is critical [9]. Finally, in the case of plate equations, the asymptotic 
behavior of solutions with a localized damping and a critical exponent was studied 
in [10-12].  

Comparing with the autonomous case, the non-autonomous equations are 
more complex because the external force is time-dependent. Under appropriate 
assumptions, we need to prove that the external force belongs to the contractive 
function. In recent years, the non-autonomous string equations have attracted 
more attention than before. For instance, the pullback, uniform and global 
attractor of the string equations were explored in [13-17]. However, non-
autonomous beam equations have been less discussed, which is our concern in 
this paper. Furthermore, Eq.(1) contains the structural damped terms of tu2Δ  and 

udxuuN t Δ∇∇∫Ω )]( , and it makes our study more mechanically significant.  
        This paper is organized as follows. In section 2, we give some 

preparations for our consideration on forcing term ),( txh , as well as on 
nonlinearities )(⋅α  and )(⋅M . Using the new sectorial operator approach, the 
existence of solutions is proved. In section 3, we show the boundedness of 
compact kernel sections. In the last section, by decomposing the analytic 
semigroup of Eq.(1), we obtain the existence of the global attractor generated by 
the system (1)-(3). 
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2. Preliminaries 

In this section, we formulate the system (1)-(3) as abstract Cauchy initial-
boundary value problem. With the usual notation, some other notations will be 
introduced and used throughout this paper. We denote the Hilbert spaces 

),(2 Ω= LH )(2
0 Ω= HV , HV ⊂ , V dense in H , the injection of V  in H  being 

continuous, and we endow these spaces with the usual scalar product and the 
norms in H  and V are, respectively, denoted by ),( ⋅⋅ , ⋅  and )),(( ⋅⋅ , ⋅ , where 

               ∫Ω= ,)()(),( dxxvxuvu   ),,(2 uuu =    ),(, 2 Ω∈∀ Lvu  

        ∫Ω ΔΔ= ,)()()),(( dxxvxuvu   )),,((2 uuu =    ).(, 2
0 Ω∈∀ Hvu  

We identify H  with its dual *H , and *H  with a dense subspace of the dual *V  of 
V (norm 

*
⋅ ); thus, 

                                  *VHV ⊂⊂ . 
So, all embeddings are continuous and their domains are dense, where the 
injections are continuous and each space is dense. Let us denote by 

HHADA →⊂)(:  the operator 
                         ,2uAu Δ=    for   )(ADu∈ . 

It is well known that the linear unbounded operator A  is an isomorphism from V  
onto *V   and it can also be considered as a self-adjoint positive operator strictly 
defined on a separable Hilbert space H with domain VAD ⊂)( , where 

                        { }0),()( 2
14 ==Ω∈= Ω∂=Ω∂= xx AHAD ϕϕϕ . 

The space )(AD  is dense in H , and it is a Banach space when endowed with the 

graph norm 
22

2
1

HH
uAuu +→ . We also assume that the resolvent of A  is compact 

in H , and one denotes by { }ke  the orthonormal basis in H , consisting of 

eigenfunctions of the operator 2
1

A  

                                         kkk eeA λ=2
1

, 
and the eigenvalues { } Nii ∈λ  of it satisfy: 
                                 "" ≤≤≤≤< mλλλ 210 ,  and  .lim +∞=

+∞→ mm
λ  

Under these hypotheses, it is possible to define the powers sA  of A  for Rs∈ , 
which operate on the spaces )( sAD . We have HAD =)( 0 , VAD =)( 2

1 , *)( 2
1

VAD =− , 
and **)( VHHVAD ⊂=⊂⊂ . Meanwhile, we write 
                                          )(2

s
s ADV = ,   Rs∈ . 

This is a Hilbert space for the scalar product and the norm as follows: 
         ),(),( 2 vAuAvu ss

s = ,   )),(( 2
2

2 ss
uuu = ,   )(, sADvu ∈∀ . 
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rA is an isomorphism from )( sAD  onto )( rsAD − , Rrs ∈∀ , , and one shows that 
under several hypotheses its longtime behavior is also described by a global 
attractor. From the Poincaré inequality, there exists a proper constant 01 >λ , such 
that                            vv 1λ≥ ,       Vv∈∀ , 
where 1λ  denotes the first eigenvalue of 2

1

A . 
        Now let us consider the system (1)-(3). In order to prove the existence of 
solutions of (1)-(3), we assume that 
          )()(),( 1 RCsNsM ∈ ,  0)(),( ≥′′ sNsM , 0)( ≥ssN , ssN ≥)( ,          )4(  

)(ta  is time-periodic, 0)( ≥ta .                                                )5(  
It is usually more convenient to reduce the system (1)-(3) to an abstract 

ordinary differential equations of the first order in time in the following manner. 
This is easy to do by letting wut = , then the system (1)-(3) can be rewritten as the 
following initial-value problem in the Hilbert space E  of the form: 

 
⎩
⎨
⎧

∈==
>Ω∈+=

,),()(
,),,(

100 EuuYY
txtYFCYY

T
ττττ

τ�                                      )6(  

where ,),( TwuY = TuuY ),()( 10 τττ = , 2
4
1

)( uAtz = , )()( 22
0 Ω×Ω= LHE  with finite 

energy norm 22
2
1

wuAY
E

+= , and we can define :C EE →  by the operator 

matrix 

            ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−−

=
)(

0
IAA

I
C

ημ
 with )()()( 2

1

ADADCD ×= , 

            TtxhuAzNzMtatYF )),()]()()([,0(),( 2
1

+++−= � .       )7(  
Next, it is going to be proved that C  is a sectorial operator and generates an 

analytic semigroup on E . 
Lemma 1. For 0, >ημ , the operator C generates an analytic semigroup Cte on 
E for 0>t with )()()( 2

1

ADADCD ×= , where A  is sectorial operator, and C  is 
defined in (6). 
Proof.  Let 

                      ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

=
IAA

I
B

ημ
0

, 

then 

                     ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−

=−
AIA

II
BI

μηλ
λ

λ
)(

)( . 

First, all that we need to show is that B  is a sectorial operator. Obviously, B  
is closed and densely defined. Then, we can conclude the resolvent: 
             1)();( −−= BIBR λλ  
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[ ] 1)1()(
)( −−+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −−−
= A

IA
IAI

μλληλ
λ

μηλ
. 

Due to the fact that all of the operators can be commuted, it is easy to prove that 
this indeed is the resolvent. Since the linear operator A  is sectorial operator, the 
sector  

ϕρ ,)( aB ∑⊃                              

                      { } { }aaaC ∪≠+≤−∈= λϕπλλ ,arg; ,  )
2

,0( πϕ∈ , 

is in the resolvent set and 

,)( 1

a
MAI
−

≤− −

λ
λ  for all ϕλ ,a∑∈ ,              )8(  

some 1≥M , and some real a . After that, the boundedness should be proved to be 
able to be held (similar to [3]). 

Hence, we can conclude that BC −=  is sectorial. Meanwhile, it is known that 
if B  is sectorial, then C  generates an analytic semigroup Cte . 

At last, by the assumptions above, it is easy to show that the function 
EEtYF →:),( is locally Lipschitz continuous with respect to Y . Furthermore, by 

the classical semigroup theory concerning the existence and uniqueness of the 
solutions of abstract differential equations [1], we have the following theorem. 
Theorem 1. Consider the initial value problem (6) in the Hilbert space E . Under 
the conditions (4), (5) and 0, >ημ , for any EY ∈τ0 , there exists a unique 
continuous function ));,((),()( 0 ECYYY +∞∈⋅=⋅ ττ  such that =),( 0ττ YY  

τ0Y  and )(tY  satisfies the equation 

           ∫ −−−− +=
t tBtB dsssYFeYeYtY
τ

τ
τ

τ
τ )),((),( )(

0
)(

0 .           )9(  
where )(tY  is called a mild solution of (6), ),( 0τYtY  is jointly continuous in t  and 

τ0Y , meanwhile  
                  ))();,((),( 2

0 Ω+∞∈ HCuu t τ                                   
))],());,())();,(([ 2

0
22 Ω+Ω+∞× HTLLC τττ ∩ 0>∀T .         )10(  

Proof. The existence and uniqueness of the solutions are obviously showed from 
[1], and the global existence of solution can be obtained from the existence of an 
absorbing set below(see Lemma 3). 

For any ,τ≥t , let us introduce a map  
                    { } { } ),()(),(,:),( 0100 τττττ YtYtutuuuYtS t =→= ,    EE → ,  
where ),( 0τYtY  is the (mild) solution of (4), then { }ττ ≥ttS ),,(  is a continuous 
process on E  which has the following properties: 
        :),()1( τtS EE → , 
        ),()2( ττS  is the identity on E , 
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        ),(),(),()3( ττ tSsSstS =  for all Tst ≥≥ , 
        ),()4( τtS YY →  as τ→t  for all EY ∈ , 
        ),(),()5( EECtS ∈τ . 

In this article, we will show the existence of non-empty compact kernel 
sections for the process { }ττ ≥ttS ),,( . Then, we also prove the existence of the 
global attractor. 

3. Boundedness of Compact Kernel Sections  
In this section, we will prove the uniform boundedness of solutions for the 

system (1)-(3) in the space E . For this purpose, we define a new weighted inner 
product and norm in )()( 22

0 Ω×Ω= LHE  by 
              ),()),(()~,( 2121 vvuukE +=ϕϕ ,    EE

),(2 ϕϕϕ = ,                               )11(  
for any Tvu ),( 11=ϕ , Evu T ∈= ),(~

22ϕ , where 

)1,
2
1(

24
4

1
2

1
2

∈
+
+

=
λμ
λμk .                                                 )12(  

Obviously, the norm 
E
⋅  in (11) is equivalent to the usual norm 

E
⋅  of E . 

Let  

                    Tvu ),(=ϕ , ,uuv t ε+=   )
2

,
4

min(0 1
0 μ

λμεε =<< ,        

where ε  is chosen as        

                                      
1

2
1

24 λμ
μλε
+

= ,                                                          )13(  

and then the system (6) can be written as    

  
⎪⎩

⎪
⎨
⎧

+=
=Λ+

,),()(
,~

010
T

t

uuu
f

τττ

ε

ετϕ
ϕϕ                                                   )14(  

where 

,
),()]()()([

0~
2
1 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+++−

=
txhuAzNzMta

f
�

                             )15(  

.
)()()1( ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−+−

−
=Λ

IAIA
II
ηεμηεεεμ

ε
ε                         )16(  

Next, we present a positive property of the operator ),( ϕϕεΛ  defined in (16), 
which plays an important role in this article. 
Lemma 2.  For any Evu T ∈= ),(ϕ , we have 

  22

2
),( v

EE
μϕσϕϕε +≥Λ

2
2
12

2
v

E

μλϕσ +≥ ，                    )17(  

where   
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                     ,
211

1

γγγ
μλσ
+

=    

1
2

1 4 λμγ += ,    1
2

2 λμγ = .                                                  )18(  
Proof.  For any )(),( CDvu T ∈=ϕ , by (11),(16), the Poincaré inequality and 

εμ−=1k , we have  

                         −Λ E),( ϕϕε
2

2
12

2
v

E

μλϕσ −       

                     ),)(1()( 222 vAukvvuk εμηεμε −−+−−+=     

              
2

),)((
2
122 μλσσηεε −−−−+ vukvu                     

k
vuk

1

2
2
12 )()

2
()(

λ
ηεεεσημλσε −

−−−++−≥ .                )19(  

By (13) and (19), an elementary computation shows: 

k
v 2

1

22
2

2
1 )()

2
)((4

λ
ηεεεσημλσε −

≥−−+− .                     )20(  

Thus,  

                 E),( ϕϕεΛ
2

2
12

2
v

E

μλϕσ +≥ ，for any )(),( CDvu T ∈=ϕ . 

since E  is dense in )(CD . By (20), the proof is completed. 
Now, we consider the absorbing property of the semigroup { }ττε ≥ttS ),,(  on 

E . Obviously, the mapping 
                         ),( τε tS EE →: , τ≥t ,                                  

{ }Tuuvu ττττ εϕ 01000 , +==  
{ }T

t tututvtut )()()(),()( εϕ +==→ ,                                       )21(  
has the following relation with ),( τtS : 

),( τε tS εεε τ −= RtSR ),( ,                                                        )22(  
where ϕ  is the solution of (14) which satisfies =)0(ϕ 0ϕ , and ),( τtS  is the linear 
operator in E : 
                       { } →Tuu ττ 10 , { }T

t tutu )(),( . 
( u  is the solution of (1),(2)), and RR ∈εε , , is an isomorphism of E : 
                        { }→vuR ,:ε { }uvu ε+, . 
So, we only need to consider the equivalent system (14). For the boundedness of 
solutions of (14), we have 
Lemma 3.  Suppose 00 >M (independent of τ ), for any bounded set B  of E , 
there exists 0)(0 ≥BT  such that the solution { }Ttvtut )(),()( =ϕ  of (14) with B∈)(τϕ  
satisfies: 
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                     2
0

222 )()()( Mtvtukt
E

≤+=ϕ ,   ,)(0 τ≥≥∀ BTt   R∈τ ,    )23(  
in which uuv t ε+= . 
Proof.   Set { }Ttvtut )(),()( =ϕ  be a solution of (14) with initial value =)(τϕ  
{ } Euuu T ∈+ τττ ε 010 , . As indicated above, 
           ))(;,()( 2

0 Ω+∞∈ HCt τϕ                     
))],(;,())(;,([ 2

0
22 Ω+Ω+∞× HTLLC τττ ∩ 0>∀T . 

 Taking the scalar product on each side of (14) with { }Tvu,=ϕ  in E , where 
uuv t ε+= , we have 

           )),,((),)](()()([),(),( 2
1

t vtxhvuAzNzMt =+++Λ+ �αϕϕϕϕ ε . 
 Under the hypothesis above, we can conclude: 

                 
22

4
1

4
1

4
1

2
1

)()())((
2
1),)(( uAtuAtuAt

dt
dvuAt εαααα +−= � , 

                  zzMzM
dt
dvuAzM )())(~(),)(( 2

1

ε+= , 

                   zzNzzNvuAzN )]()](
2
1),)(( 2

1

���� ε+= . 

Then,                
22

4
1

)([
2
1 uAt

dt
d

E
αϕ + ))(~2 zM+

24
]4

1

E
uA ϕσε ++  

  )(~))()((
2

4
1

zMuAtt εαεα +−+ � 2

2
1

),(
2

1 txh
μλ

≤ , τ≥∀t .       )24(  

Let  
                

22
4
1

))()(()( uAtattY
E

�−+= εαϕσ )(~ zMε+  

  
22

4
1

))()(([ uAtat
E ε

εαϕ
ε
σε

�−
+= )](~ zM+ ,                           )25(  

and, 
      

22
4
1

)()( uAttL
E

αϕ += )(~2 zM+
4

4
1

uAε+ .                              )26(  

So, 

                )()(4 tLtY −
ε

2
22 )2

2
()14( 4

1

a
b

uAb
E

++−≥ ϕ
ε
σ                

                                      2
24

))(4)(3(
4
12)

2
( 4

1

tata
b
auAb �

ε
ε −−−−+     

          
2

))(4)(3(
4
12 02

2 Ctata
b
a

≥−−−≥ �
ε

.                       )27(  

Set 



Longtime behavior of a non-autonomous beam equation                           143 

                               
2
ε

=k ,       
⎭
⎬
⎫

⎩
⎨
⎧<

2
,4min bσε . 

Then, by (24) and (27), 
2

02
1

0
1)()( hCtkLtL

dt
d

μλ
+≤+ ,                                        )28(  

where ),(sup
0

txhh Rt∈= . Applying the Gronwall’s inequality, we obtain the 

following absorbing inequality in the space :),(
E

E ⋅    

                         +≤≤ −− )(2 )()()( ττϕ tk
E

eLtLt ],[2
02

1

2

0 C
h

k
+

μλ
   τ≥t , 

Or ,)(suplim 2
0

2 Mt
E

t
≤

+∞→
ϕ               τ≥t .                                      )29(  

Taking  

                         += −− )(2
0 )( ττ tkeLM ],[2

02
1

2

0 C
h

k
+

μλ
                                

(independent of τ ), the proof is completed. 
Let 0B  be a bounded closed ball of E  centered at 0 of radius 0M : 

{ }222
0 )()(:),( ρ≤+∈= tvtuEvuB .                              )30(  

Then, 0B  is the bounded absorbing set of the analytic semigroups{ },),( τε tS  τ≥t  
of (1)-(3). 
Corollary 1.  For any initial value 0)( B∈∀ τϕ , that is, +=

2
0

2)( ττϕ uk
E

 
2
0

2
01 Muu ≤+ ττ ε , there exists 01 >M  such that the solution of (14) 

{ }Ttvtut )(),()( =ϕ  satisfies 1)( Mt
E
≤ϕ  , τ≥t . 

 

4. Existence of the Global Attractor 

To obtain the global attractor for the process { }ττε ≥ttS ),,( , we need to show 
the uniform asymptotic compactness of the process { }ττε ≥ttS ),,(  in E , that is, 
{ }ττε ≥ttS ),,(  possesses a uniformly attracting compact set in E  with respect to 

R∈τ . Next, let us recall some concepts in [1]. 
Definition 1. The kernel K of the process { }ττε ≥ttS ),,(  consists of all bounded 
complete trajectories of the process { }ττε ≥ttS ),,( : 

{ )(:)( ⋅⋅= ϕϕK  is a solution of (14), }RtMt
E

∈∀≤ ,)( ϕϕ ,            )31(  
and the section EsK ⊂)(  of the kernel K at times Rs∈  is 
                                     { }KssK ∈⋅= )(:)()( ϕϕ . 
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Definition 2. A process { }ττε ≥ttS ),,(  possessing a compact uniformly attracting 
set is said to be uniformly asymptotically compact. 
Lemma 4. Let { }ττε ≥ttS ),,(  be a uniformly compact process acting in the space 
E, with a compact uniformly attracting set E⊂Λ . Each mapping ),( τε tS : EE →  
is assumed continuous. Then the kernel sections )(sK  of the process { }ττε ≥ttS ),,(  
are all compact, and Λ⊆)(sK . 
Lemma 5.  For the initial value 0)( B∈∀ τϕ , the solution of (14) ),(()( tut =ϕ  

Ttv ))(  c a n  b e  d e c o m p o s e d ,  w h e r e  ,))(),(()( T
iii tvtut =ϕ ),()( )( tuutv ititi ε+=  

2,1=i , satisfy, respectively, 
,)()()( 2

1
2

1
2

1
2

1 Mtvtukt
E

≤+=ϕ        τ≥t ,                           )33(  
and 

              ,)()()( 2
2

2

2

2

2

2

2
22

1
2 MtvAtuAktA

E
≤+=

+ βββ

ϕ        τ≥t ,           )34(  

where 

2
1

2
11

2

1
1

44 λμλμλμ
μλσ

+++
= .                                               )35(  

Proof.  Let ,))(),(()( Ttvtut =ϕ  τ≥t  be a solution of (14). Thus, 
   2

0
2

01
2

0
2)( Muuuk
E

≤++= τττ ετϕ .                                        )36(  
 Let ,))(),(())(),(()( 2211

TT tvtutvtut +=ϕ )()()( tututv iiti ε+= , 2,1=i , satisfy, 
respectively, 

⎩
⎨
⎧
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≥=+Δ+Δ+

,)(,)(
,,0

1101
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2

1
2

1

ττ ττ
τημ

uuuu
tuuuu

t

tttt                                    )37(  

and  

                    
⎪
⎩

⎪
⎨

⎧

Δ++==
==

≥+=+Δ+Δ+

.)]()()([)(),,()(
,0)()(

,),()(
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2

2
2

2

uzNzMtatbtxhtb
uu

ttbtbuuuu

t

tttt

�
ττ

τημ
                            )38(  

Let T
t uuuy ),( 111 ε+= , then T

t uuuy ),()( 0110 ττ ετ += , where 

1
2

1
1 24 λμ

μλε
+

= ,                                                             )39(  

(37) can be written as  
        0=+ Hyyt ,                                                                  )40(  

where 

             ⎟⎟
⎠

⎞
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⎝

⎛
−−−+−

−
=

IAIA
II

H
)()()1( 1111

1

ηεμηεεμε
ε

.                  )41(  

Similar to Lemma 2, for any Euuy T ∈= )~,( 11 , 
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2
1

2
1

~
2

),( uyyHy
EE

μσ +≥
2

1

2
12

1
~

2
uy

E

μλσ +≥ ,                  )42(  

where 1σ  is as in (35). Taking the inner product of (40) with y  in E , we obtain   
))(2exp())(()( 1

2
0101

2
0

2 τσεεε ττττ −−−+++≤ tuuuukty
E

 

                         ))(2exp()42( 1
22

1 τσρεε −−−+≤ t  
        ))(2exp( 1

2 τσρ −−≤ tC ,             τ≥∀t .                             )43(  
Thus,               2

11
2

1
2 )()()()( tututukt tE

εϕ ++=  

                  ))(2exp()42( 1
22

1 τσρεε −−−+≤ t ,   τ≥∀t .                  )44(  

Setting ))(2exp()42( 1
22

1
2

1 τσρεε −−−+= tM , one obtains (33). 
In the following, we prove that )(2 tu  satisfies (34). Setting 2uAβς = , 

ζεζς 1+= t , then, (38) can be written as  
                          )(~~~

22 tBHt =+ ϕϕ ,        T),(~
2 ςζϕ = , 

TtbtbAtB )))()((,0()(~
21 += β ,     0)(~ =τϕ .                              )45(  

Taking the scalar product E),( ⋅⋅  of (45) with T),(~
2 ςζϕ = , we have  

     ))).()((,()~,~(~
2
1

2122
2

2 tbtbAH
dt
d

EE
+=+ βςϕϕϕ                       )46(  

By the embedding theorem, we obtain 

                     2
)1(42

1 ),(
2

2),())(,( 2
1

txh
k

AktxhAtbA
β

ββ πςςς
β

−−

+≤≤
+

. 

Meanwhile, by (42) and (46), we have  
                     ),)](()()([))(,( 2

1

2 ςς ββ AuAzNzMtatbA �++−=                        

),( 22
1

ς
ββ

AuAC
+

≤ ς
ββ
22

1

AuAC
+

≤ )(
22

22
1

ς
ββ

AuAC +≤
+

. 

By (45), (46) and the positivity of H in the new norm, we fine 

C
dt
d

EE
≤+

2
21

2
2

~2~ ϕσϕ ,               τ≥∀t .                                )47(  

By the Gronwall inequality and zero initial value at τ=t , we obtain 
2
2

2
2

~ M
E
≤ϕ ,           τ≥∀t .                                                        )48(  

The proof is completed. 
Let 

2
βB  be the ball of EVV ⊂×+

22
1 ββ  of radius 2M , i.e. 

2
),( βϕ Bvu T ∈=∀  

satisfying .2
2

2
2 MA

E
≤ϕ

β

 

Theorem 2.  The process { }ττε ≥ttS ),,(  possesses a kernel K such that the kernel 
section K(s) at the time s is compact and 

2
)( βBsK ⊆ , Rs∈∀ . 

Proof.  The proof is omitted. 
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Theorem 3. The analytic semigroup { }ττε ≥ttS ),,(  of (14) possesses a global 
attractor B  in E. 
Proof. By Theorem 2, (9) and Cte  is compact, we complete the proof of Theorem 
3. 

 Acknowledgements 

This paper was supported by National Natural Science Foundation of 
China under the grants 11172194, Provincial Natural Science Foundation of 
Shanxi under the grants 2010011008 and School Foundation of TUT under the 
grants 900103-03020715. 

R E F E R E N C E S 
 

[1] R. Témam , Infinite-dimensional Dynamical Systems in Mechanics and Physics, 
Springer Press, 1988. 

[2] S.K. Woinowsky, The effect of axial force on the vibration of hinged bars, J. Appl. Mech. 17 
(1950), 35-36. 

[3] I. Chueshov, I. Lasiecka, Global attractors for von Karman evolutions with a 
nonlinear boundary dissipation, J. Differential Equations 198 (2004), 196-231. 

[4] Z.J. Yang, Global attractor for a nonlinear wave equation arising in elastic 
waveguide model, Nonlinear Anal. 70 (2009), 2132-2142. 

[5] S. Kolbasin, Attractors for Kirchhoff’s equation with a nonlinear damping 
coefficient, Nonlinear Anal. 71 (2009), 2361-2371. 

[6] G.C. Yue, C.K. Zhong, Global attractors for plate equations with critical exponent in 
locally uniform spaces, Nonlinear Anal. 71 (2009), 4105-4114. 

[7] H.B. Xiao, Asymptotic dynamics of plate equations with a critical exponent on  
unbounded domain, Nonlinear Anal. 70 (2009), 1288-1301. 

[8] T.F. Ma, V. Narciso, Global attractor for a model of extensible beam with 
nonlinear damping and source terms, Nonlinear Anal. 73 (2009), 3402-3412. 

[9] C.K. Zhong, Q.Z. Ma, C.Y. Sun, Existence of strong solutions and global attractors for the 
suspension bridge equations, Nonlinear Anal. 67 (2007), 442-454. 

[10] Y. Lu, C.K. Zhong, Global attractor for plate equation with nonlinear damping, 
Nonlinear Anal. 69  (2008), 3802-3810. 

[11] I. Chueshov, S. Kolbasin, Plate models with state-dependent damping codfficient and their 
quasi-static limits, Nonlinear Anal. 73 (2010), 1626-1644.  

[12] A.Kh. Khanmamedov, Global attractors for the plate equation with a localized damping  and a 
critical exponent in an unbounded domain, J. Differential Equations 225 (2006), 528-548. 

[13] X.M. Fan, Y.G. Wang, Attractors for a second order nonautonomous lattice dynamical 
system with nonlinear damping, Physics Letters A 365 (2007), 17-27. 

[14] Y.H. Wang, C.K. Zhong, Pullback D-attractors for nonautonomous sine-Gordon 
equations, Nonlinear Anal. 67 (2007), 2137-2148. 

[15] H.Y. Li, S.F. Zhou, On non-autonomous strongly damping wave equations with a 
uniform attractor and some averaging, J. Math. Anal. Appl. 341 (2008), 791-802. 

[16] Y. Lu, Uniform attractor for non-autonomous hyperbolic equation with critical exponent, 
Appl. Math. Comput. 203 (2008), 895-902. 

[17] X.M. Fan, S.F. Zhou, Kernel sections for non-autonomous strongly damped wave 
equations of non-Degenerate Kirchhoff-type, Appl. Math. Comput. 158 (2004), 253-266. 


