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TSENG SPLITTING ALGORITHM FOR MONOTONE
INCLUSION AND VARIATIONAL INEQUALITY PROBLEMS

Jin-Lin GUAN", Yan TANG?, Zhongbing XIE>

This paper aims to investigate a new forward-backward algorithm for solving
a pseudomonotone variational inequality problem and a monotone inclusion
problem in real Hilbert spaces. Under very mild conditions, we prove a weak
convergence theorem for the proposed algorithm by using projection technique and
self-adaptive step sizes. The results improve and extend the corresponding ones
announced by some others in the earlier and recent literature.
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1. Introduction

Throughout this paper, let H be a real Hilbert spaces with inner product (-,-
), and C be a nonempty closed convex subset of H. Fix(7) is denoted as the set of
fixed points of a nonlinear mapping 7. We use x, — x and x,, — x to indicate the
strong convergence and the weak convergence of the sequence{x,} to x,
respectively.

First, we recall some notations which are needed in sequel. A mapping F :

H — H is called
(a) monotone if

(Fx —Fy,x—y)=0, Vx,y€H,
(b) pseudomonotone if
(Fx,y—x)=20=>(Fy,y—x)=>0, Vx,y €EH,
(c) #-strongly monotone if there exists # > 0 such that
(Fx = Fy,x —y) = nllx —yll>, Vx,y € H,
(d) L-Lipschitz continuous if there is L > 0 such that
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IFx — Fyll < Lllx = yll, Vx,y € H.
It is easy to see that (c) = (a) = (b), but the converse is not true.

A multi-valued mapping B : D(B) € H — 2! is called monotone if, for all
x, vy € D(B), u€ Bx and v€ By such that

(x-y, u-v)=>0.

A monotone mapping B is maximal if the Graph(B) is not properly
contained in the graph of any other monotone mapping. It is well known that a
monotone mapping B is maximal if and only if for (x,u) € D(B) X H,{(x —
y,u — v) = 0 for every(y, v)€Graph(B) implies that u€Bx.

For every point x€H, there exists a unique nearest point in C denoted by
Pcx such that

Ix-Pexl < Ix-yl, VyeC.

Pc is called the metric projection of H onto C. It is known that Pc is

nonexpansive mapping and satisfies the following inequalities:
(x-Pcx, y-Pcx)< 0, Vx€H, yeC.
Given a nonlinear mapping F : H— H, the variational inequality prob-

lem (VIP) is to find u € C such that
(Fu, v-u)>0, VYveC, (1)

the set of solutions of the VIP (1) is denoted by VI(C, F ).There are several
different approaches towards solving this problem infinite dimensional and
infinite dimensional spaces; see e.g., [1, 2, 3].

The monotone inclusion problem (MIP) is to find x€EH such that

0 € (A+ B)x, (2)

where 4 : H—H is a single-valued mapping and B: H —2% is a set-valued
mapping. The solution set of MIP (2) is denoted by Q:= (4+B)!(0). The
monotone inclusion problem has already been used in convex minimization
problems, variational inequalities and equilibrium problems, and is also at the
core of the modeling of machine learning, signal processing and image
restoration, see [4, 5, 6].

In 1979, Lions et al. [7] introduced the forward-backward algorithm for
MIP (2) by the following way

Xne1 = (L + 4,B) (I = A, A)xy, 3)

where the mapping 4, B are 1/L-co-coercive and maximally monotone,
respectively, (I-/.A4) is called a forward operator and (/[+4,B8) ! is a backward
operator.

Based on the forward-backward algorithm (3), Tseng [8] proposes a mod-
ified algorithm which is known as Tseng splitting algorithm:

Yo = I+ 2,B) 1 (I — AnA)xn,
Xn+1 :y,, 'j'n (Ay,, 'Axn)a (4)
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where 4 is L-lipschitz continuous and 4,€(0, 1/L). Under some mild restrictions
on the parameters, they obtained a strong convergence theorem. The Tseng
splitting algorithm has been widely studied in recent years, since many real-world
problems such as signal processing and image reconstruction can be cast as the
modeling, and many iterative algorithms and existence results based on Tseng
splitting algorithm for the MIP have been studied; see e.g., [9, 10, 11].

Inertial method was fistly introduced by Alvarez et al. [12] which is
designed as the following scheme:

Xn+1 = Xp + an(xn - xn—l)r

this procedure is a good tool to speeding up the convergence rate of algorithms.
As a result, many researchers have studied all kind of algorithms by utilizing
inertial methods for solving VIP (1) and MIP (2), see e.g., [13, 14, 15].

In 2018, Yang et al. [16] proposed the following inertial algorithm for the
VIP (1):

ynzxn+§n (xn'xn—l)a
anZPC(xn'j'nFyn)a

where F : C — H is monotone. Under some mild restrictions on the parame- ters,
they obtained a weak convergence theorem.

Very recently, Inkrong et al. [17] studied a double inertial forward-
backward algorithm for MIP (2), and they design the following scheme:

Wy, =Uy T, (un'un— 1 )+ﬁn (un—l 'un—Z)a
¥, 20,6 (-6, Fyw,,
un+1=yn'§n(Fyn'Fwn)a

where
) :“”Wn'yn”
—— 0,tC V|| Fw,-F 0,
5,1+1: mln{”FWn'Fyn” n (n} ” Wy yn”?é
ot , otherwise;

As a result, they proved a weak convergence of the algorithm above under
appropriate assumptions on the parameters.

Motivated and inspired by the results above, we introduce a new Tseng
splitting algorithm for solving a pseudomonotone variational inequality problem
and a monotone inclusion problem. Under some suitable assumptions, a weak
convergence of the proposed algorithm is proved by using projection technique
and self-adaptive step sizes.

2. Preliminaries

In this section, we first recall some lemmas which are needed in sequel.
Lemma 2.1. ([18]) Let H be a real Hilbert space. Then the following inequality
holds:
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(i) loeH(L-DpP=txlP+(1-H)p1P-1(1-0)x-yI?, Vr€[0,1], x, yEH;

(ii) etyP=IxP+2(x , ) Hiyl?, Vx, yEH.

Lemma 2.2. ([19]) Assuming A : H — H is L-Lipschitz and monotone, and B : H

— 2 is a maximally monotone operator, it follows that the operator A+B is also

maximally monotone.

Lemma 2.3. ([20]) Let A : H — H be a mapping and B : H — 2 be a maximally

monotone mapping. Define T) := (I + JB) '(I-AA) for />0. Then Fix(T))={x : Tix

=x}=(4+B)"Y(0).

Lemma 2.4. ([21]) Assume that C is a closed and convex subset of a real Hilbert

space H. Let operator F : H — H be continuous and pseudomonotone. Then, x"is

a solution of VIP (1) if and only if (Fx,x — x*) = 0,Vx € C.

Lemma 2.5. ([22]) Let {¢n}, {0n} and {on} be sequences in [0, +o0) such that
(Fx,x —x*) =2 0,Vx € C.

and there exists a real number o with 0 < a, <o <1 for all n € N. Then the

following hold:

() S21 (0,9, ,1,<o0 where [{],:=max { £,0};

(ii) there exists " €[0,+o0) such that I}mgo 9, =p".

Lemma 2.6. ([23]) Let {w.},{pn} and {b,} be nonnegative sequences that satisfy
W, < (I4b,)y, +4,, n>1.

If Yoiiby<tooand Y5 & <too, then limn-co yn exists.

Lemma 2.7. ([24]) Let Q be a subset of H and {u,} be a sequence in H that satisfy

the following:

(i) for every u €Q, linzo lu,-ul exists;

(ii) each weak-cluster point of the sequence {un}! is in Q. Then {u,! converges
weakly to an element in Q.
Lemma 2.8. ([17]) Let ¢-1, ¢o > 0 and {¢n}, {an} and {f.} be sequences of
nonnegative real numbers that satisfy the following conditions:

9,= (o) o, B ), 8,9, 5, NEN.
Then ¢, <KII%( 1+2aj+2ﬁj), where K = max{¢-1, ¢o, ¢1}. Furthermore,

if Yoomy 0y <too and Y-, ff, <too, then {$n} is bounded.

3. Main results

In this section, we introduce a new forward-backward algorithm with
double inertial step for finding a common solution of a pseudomonotone vari-
ational inequality problem and a monotone inclusion problem in real Hilbert
spaces. Subsequently, we give the main results about our algorithm. We firstly
give the following assumptions:
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(C1) The mappings 4 - H — H is Li-Lipschitz continuous and monotone
and B : H — 2" is maximally monotone.

(C2) Pc is the metric projection of H, F' : H — H is pseudo-monotone and
L>-Lipschitz continuous with L, > 0.

(C3) The common solution set of the VIP (1) and MIP (2) is nonempty,
that is, Q NVI (C, F) # Q.

Algorithm 1 Given u, p€(0, I), a1, p1, 41, &1, 11, 61 >0 and choose three
arbitrary initial guesses u-1, uo, u1€H. For n€N, let {u,} be a sequence of H
generated by the following steps:

Step 1 Choose a,, » and compute

Wy =Uy T, (un'un— 1 )+ﬁn (un—l 'un—Z)a
¥, =B (- A,

where
ﬂ nV,
” ” AT b, -Ay ||#0,
=4 " Ttwy Ay,
i,,+r,, , otherwise,
Step 2 Calculate
Zn:PC(Wn'anwn)a
where
ming AN 10
€n+1= ”Fun'FZn” o " " ’
¢, , otherwise,

Step 3 Compute
unﬂzen [yn'j'n(Ayn'AWn)]_{—(l'Hn)[zn'én(FZn'Fwn)]-
Set n ;= n+1 and return to Step 1.
where {a.}, {fn}, {An}, {&n}, {t:} and {6,} are parameters and the following
conditions hold:

@) o, B,>0, X7 10c <00, Y1 B, <00, Xy T, <00;

(i) 0<f<6,< — O'E(O +00).

(1i1)

Lemma 3.1. The sequences {A,} and {&,} from Algorithm 1 satisfy the following
properties:

(1) {2} is bounded with {2,}C[min{w/L\ , 11}, Ai+1I'] and there exists A >
0 such that limn-w A, =A €[min{w/L1 , 1}, M+ 1T, where T=Y71,.

(2) There exists &> 0 such that limn—ew én =¢ and & = mini{p/Ly , & }.
Proof. (1) First, by the definition of {,}, if 4wn #A4yn, we have
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pww,-y | ,ullwn-y I N3
lAw,-Ay II_L 1w,y | L’

which implies

. Hwyy M
Jpt1=min {m,znm}zmm {L—l,zn},
By induction, we obtain
ApZmin { =, 2, }2min {=, min { =, 4,5} }>>min { =, 4}, (5)
Ly Ly L L
Sincel'=},,_, 7,, we have
j~n+1§ /1n+Tn < /11_'_2;0:1 Tn =j*1+[" (6)

In view of (5) and (6), we obtain
min {Lﬁ,ﬂ,l} <Ay <A+,
1

which implies {/,} is bounded. Setting [As+1—4x]- := max{0, A,—A,+1}and [Ap+1—
Anl+ := max{0, An+1—4s}, we deduce that

7\rn+1 - )\an = [7\4#1 - )\an]+_ [Alﬁl_in]* )
by induction, we derive

T Z oA, Z[Am-ﬂl]

Since {4.} is bounded and X[ nﬂ-in] <Yon_;t,=I', we have
voq [ Aps1-4,1 1s convergent. Thus, A, < A1+I". In addition, we note that
A1 S Ay, = 210 (A1 -4,) 5
By using Lemma 2.5 in the inequality above, there exists A €[min{u/L; ,
A1}, 21+ 1] such that limy—e 4, = A.

(2) It follows from the definition of {&,+1} that 0 < &,;+1 < &, which implies
that there exists ¢ >0 such that lim,—.» &= £. Since F is Lo-Lipschitz continuous,
we get

IFw,-Fy IS Lylw,-y |,
which implies
plu,-z,| P
Fw, Fy 1~ L S LBy,

it follows that £ >min { fl’L } and ¢ me { cfl,L— }+. This completes the proof.
2 2

Lemma 3.2. Assume that the sequence {u,} is generated by Algorithm 1. Then for
all peQ N VI(C, F), the following assertions hold:

242
(D) Iy, -3, (Ay -Aw,)-pl* < ||w,,—p||2-(1-§2/1"
n+l1

12
n'y,, :
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2
(2) Iz,-& (Fz,-Fw,)-pl* < ||wn-p||2-(1-;g5 Yz,-w, I
nt+1

Proof. (1) First, we note that

ly -Au(Ap -Aw,)-pl’
=ly pP+il4y -Aw,*-22,(y -p.Ay -Aw,)
=ly -w, P Hw,pP+2(y -w,,w,-p)
+alAy -Aw, P20,y -p.Ay -Aw,)
=y -w,PHw,pl 200 W,y w2y -w,, » -p)
Ay -Aw, 20,y -p, Ay -Aw,)
= w,plP-ly -w, P2 W, -p)
Ay -Aw, 20,y -p, Ay -Aw,)
= 1w, plP-ly, W, 22y -p, W,y -2, (AW,-Ay )

+aldy -Aw, I, (7)
from the definition of {1,}, one has
2
l4y -Aw,I* < p ly -w, . (8)
n+l1
In addition, since 4 is monotone, we have
(4y -Ap, y -p)>0. )

Moreover, since B is maximally monotone and y,=(I+A.B) '(I—JnA)Wn , We
deduce that
Wyy, A AW,
T €By ,
thus
W=y <A, AW,
"/1—+AynE(A+B)yn.
It follows from the monotonicity of 4, B and Lemma 2.2 that A+B is maximally
monotone. Since p€ Q NV I(C, F)cQ, we deduce 0€(4+B)p and —ApEBp. We get
from the maximal monotonicity of B that
W=y A, Aw,
————*p,y, )20,
which together with (9), implies that
W=y AW,

] tAy .y, p)=0,

that is,
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(Way, - An(AW,-Ay,), ,-P)=0. (10)
It follows from (7), (8) and (10) that
2}%
IIyn—ﬂ,,,(Ayn-Aw,,)-pllzfllw,,-pllz—(1—';tz—)Ilw,,—ynllz.
n+1
(2) First, we claim
|Fz,-Fw,| < fL Iz, -w,|. (11)
n+l

Indeed, if Fz, = Fwy,, then (11) holds clearly. Otherwise, from the definition of

{&i1}, we have
plz,-w,| plz,-w,|

= m.n ——————— ———————
S I e 1 S T, Fw 1

which implies

Iz, -Fw, | < Iz, -w,|.
nt+l
Next, we observe that

Iz,-& (Fz,-Fw,)-pl®

=z, -pIP+ENFz,-Fw, P -2E (2,-p,Fz,-Fw,)
=lw, -pl*+z,-w, I*+2(z,-w,,w,p)

+fi \Fz,-Fw, ||2-2fn (z,-p,Fz,-Fw,)

=||wn-p||2+||zn-wn ||2-2(zn-wn ZnW ) H2(z,-W,,2,-D)

+fi \Fz,-Fw, ||2-2fn (z,-p,Fz,-Fw,)

=lw, -pl*-Iz,-w, 1*+2(z,,-w,.,z,-P)
+ENFz,-Fwy P28 (2,-p,Fz,-Fw,). (12)

Since z, =Pc (wn — &F'wy), by the property of projection, we deduce
(Za Wit Wy, 2y DYSP (Wi Wy )-(Wy-C Fw,), Pe(w,-C, Fw,)-p)=0,
that is,
<Zn'wna Zn'p)s'fn<Fwna Zn'p>- (13)
By peV I(C, F), we get (Fp, y -p)=0. It follows from the pseudomono- tonicity of
F that (Fz,, z,-p)>0, this together with (11), (12) and (13), yields that
Iz,-& (Fz,-Fw,)-pl®
=lw, -pI*-Iz,,-w, I*+2(z,-w,,, z,-p)
+ENFz,-Fw,I>-2¢ (2,-p, Fz,-Fw,)
<Iwy-pl*-lz,-w, I*-2& (Fw,, z,-p)
p*&;
+2—”Wn - Zn”2 — 28n(2n — P, F 2y — Fwy)
€n+1
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pE
=lw,-pl*-(1- 522w, -2, I -2& (z,p, Fz,))
5!
2
<hw, -pl?-(1-2 f" Yo, 2, 1.
n+1

This completes the proof.

Theorem 3.1. Assume that the sequence {un} is generated by Algorithm I.
Assume that assumptions (C1)-(C3) and conditions (i), (ii) hold. Then {u,}
converges weakly to a pointin Q N VI(C, F).

Proof. Take peQ NVI(C, F ). It follows from the definition of y, that (/-
AW, €(I+1,B)y . Since B is maximally monotone, there exists v, € By,

with (I-4,A)w, =y, +4,v,, that is,
V= (W, p AW, ). (14)

Moreover, we have 0€ (4+B)p and Ay,+v,E(A+B)y,. By the monotonicity of 4, B
and Lemma 2.2, we have 4+B is maximally monotone, which implies that

<Ayn+vn'yn_p) = 0. (15)
In view of (14) and (15), we have

1
T <Wn'yn'AnAWn+inAyna y,,'p>20

In addition, by using Lemma 3.2, we obtain

ltti1-PP =10, 2 Ay -AW,)H(1-0,)[2,-E (Fz,-Fw,)]-pl
:Hen[yn'in(Ayn'AWn)'p]—i_(l'en)[zn'én(FZn'Fwn)'p]"2

<01y 1Ay ~Aw,)-pIP+(1-0,)z,-¢ (Fz,-Fw,)-pl’
242

A
<0, (1w, plP-(1- 5w,y 1)
nt+1
22
+(1-6,)(Iw, -plP~(1-2 25" Yz,-w, I%)
nt+l
2,2 2.2
:nwn-puz-e,,a-’;f" Mw,-y, ||2-(1-9n)(1-’gif" Yz,-w, I (16)
n+l1 n+1
On the other hand, we observe that
[lwyn, = DIl = l[up + an(Un — Up—1) + Br(Un-1 — Up—2) — Pl
< ”un - p” + an”un - un—l” + ﬁn”un—l - un—2”- (17)

From Lemma 3.1, there exist 4, ¢ such that lim 4, =4, lim ¢, =¢, it follows that

2,2 2
lim ( 1-’; 21” y=1->>0 and lim ( 1-/;2—52")=1-p2>0. Thus, there is ny€N such that
n—0 n+1 n—0 +1

n
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2,2 2
1-’;2/1" >0 and 1-/;252” >0, Vn > ny,which together with (16) and (17), implies
n+1 nt+l

that, for n > n,
lu,1-pI<lw,-pl
<lu,-plto,lu, -, 145 lu,_-u,.l
<lu,-pl+a,(lu,-pl+lu,_ -p)+ (lu,.-pl+iu,,-pl)
=(1+a,)lu,-pl+(a,tf Nu,-pl+ lu,,-pl. (18)
Using Lemma 2.8, we obtain

I, . -pl < Kl_[( 1427428, n=n,
=

and lu,-pl is bounded, where K=max { lu,, »-pl, lu, -pl, lu, -pl}.
Next, we prove that un converges weakly to a point in QNVI(C, F) .
It follows from condition (i) that )., a, lu,-u,. 1<t and Y:7_; B ||Un_1 —
Up—2|| < +o0. Set y = lu,pl, ¢, = a,lu,-u, I+ lu, -u,,l. Then, we have
n=1$, <oo. From (18), we get
Ity -pl < lu-plton b, -u, 4By, y-uy, 5],
That is,
Vit SV, 10,

Applying Lemma 2.6 in the inequality above, we deduce that lim y exists, i.c.,

n—0oo

lim | u,-pl exists.

n—0oo

Now, we note that
W pt? = ottt (=t V5B, (110 )PV
= "(un 'p)+an(un 'un—1)+ﬁn (un— 1 'un—Z)"2
= 1ty p)+an, (et WA ity -t
+2<un proy, (un'un- 1 )7 ﬂn (un-l 'un-Z))
= lu,,-plP+a2lu,-u, | I*+2(u,-p, o, (u,-tt,.1))
Ny 24200+ 0 (1), B (1 2)
= lu,~pl*+02 1, -u, | 1P*+2{u,-p, o, (1, -tt,.1)
Byt 24200, B (1 102)
+2<an (un 'un—l)a ﬁn (un—l 'un—2)>
< N, -plP+02lu,-u,_ 1P*+2a, lu,-pllu,-u, |
B2 1ty P2 Tt -pllus, -,
20, Wttty Mty -uy, 511 (19)
Substituting (19) into (16), we deduce
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2 2 2
Ity 11 -pI” < Nuty=pV* a2, -1, 1 1 +200, M1, -pllus,,-14,, 4 |
2 2
B Ny -1, 21 +2B Nty -pllus,,_y-uy, 21420, B Votyy-14,, Wty -1 5

2 ],2 22
0,(1- 55w,y P-(1-6,)(1-2 f" Nz, -w, I,
/111-%1 n+l
which means that
2 /12 22
0,(1- 52w,y 124(1-6,)(1-2 f”)uzn-wnn2
nt+1 n+l
< (It V-t -pIP Y+ 02Nttty P,y -1t 2200, 1, plbet 10,
28 lu,-pllu, -, 214200, uy-u, W, -1, (20)
Meanwhile, since lim lu,-pl exists. It follows from conditions (i), (ii) and (20)
Nn—0o0
that
lim -y I=1lim Iz,-w,|=0. 1)
n—aoo n—ao

In addition, notice that
"Wn'un I= ||un+an(un'un-l)+ﬂn(un-l'un-Z)'un I
< oyl -1, HB -1,
by condition (i), we deduce that
limlw,-u, |=0.

n—00

Let (s, £)€Graph(4+B), which implies that -As€Bs. For {n;}c{n}, we get
Vi~ (I+/1nkB)'l(I-inkA)wnk, which means (I-inkA)wnkE(H/lnkB)ynk. It follows that

% (w, k-ynk-ﬂ,,,kAw,,k)EBynk. Since B is maximally monotone, we obtain that
nj;
1
<S-ynk’ t-As- r (Wnk'ynk'inkAwnk»ZO-

ng
and hence

1
<S_ynk’ t>2 <S-ynk’ AS+T (Wnk'ynk'inkAwnk))

ng
1
= {(s-y,,» As-Awy ) sy, T Wiy,))
1
= (sy,,» As-Ay, Y sy, A, AW, ) sy, e W, )

1
> (59, AV, AW, YK, 2 00,9,)). (22)
nje

In light of (21) and the Lipschitz continuity of A4, we deduce
l}im I Awnk-Aynkll = 0. Let p be a weak cluster point of {u,}. Since {u,} is bounded,

there is a subsequence {u,} of {u,} such that u, —p. Furthermore, y —p. It



160 Jin-Lin Guan, Yan Tang, Zhongbing Xie

follows from (22) that (s-p, £)>0. Thus, by the maximal monotonicity of 4+B, we
have 0€(4+B)(p), that is pe(4+B) ' (0).
On the other hand, let

F(x)+N (x), x€eC,
S )= (/ y , XEH |C,

where N is the normal cone of C at x€C. Obviously, f is maximal monotone and
fl(O) =VI(C, F). If (x,r)€Graph (f), since r€f(x)=F(x)+Nc(x), we have
r-F(x) ENc(x), which leads to

(r-F(x), x-v)>0, VveC. (23)
Note that z,= Pc(w, — &.Fwy), we obtain

(Wy-C, Fwy-z,,, 2,-x)>0, Vx€C.

that is,

(Z"CW" +Fw,, x-2,)>0, Vx€C. (24)

Since lim |z,-w,l = 0, applying (23) with {zk } _, » We have
(r-F(x), x—zkj)zo, vxecC. (25)
In view of (24) and (25), we get
(r, x—zkj)z (Fx, x—zkj)

Zk]-ij
> (Fx, x-zkj)-( +Fwy, x-zkj)

ki
Zk]-ij
= (Fx-kaj, x-zkj)-( é— , x-zkj)
ki
ij-ij
= (Fx-Fz;, x-z;. Y H{(Fzp. -Fwy., x-z;. ) —, x-2;.)
Y Y vl vl Y dfk' v
i
2k Wiy
> <FZk -FWk WX Zk) < f -ij>.
k

Thus, (7, x-zkj)z 0. Let j—o0, we obtain (r, x-p)> 0. Since f'is maximal monotone,

we deduce thatﬁEfl(O) = VI (C, F).Therefore, peQ NVI (C, F). By Lemma 2.7,
{u,} converges weakly to a point of Q NVI (C, F). This completes the proof.

Remark 3.1. Compared with Theorem 3.1 of Inkrong et al. [17], our Theorem 3.1
extends, improves and develops it in the following aspects:
(i) Our iterative scheme is more general than it in [l17]. Especially, an

extragradient algorithm is added to construct our iteration process, which is not
applied in [17].
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(ii) The result in [17] can only be applied to solve a monotone inclusion problem,
while our result can be applied to solve a pseudomonotone variational inequality
problem and a monotone inclusion problem, which makes our result more
applicable and valid.

4. Conclusions

In this paper, we introduce a new double inertial forward-backward
algorithm with adaptive step size that does not depend on the knowledge of the
Lipschitz constant and norms of the nonlinear operators to approximating a
common solution of a monotone inclusion problem and a pseudomonotone
variational inequality problem. Under some suitable assumptions on the
parameters, we prove a weak convergence of our algorithm by using inertial
technique, self-adaptive step sizes, and the properties of pseudomonotone
mapping and monotone mapping.
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