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A MODIFIED HYBRID ALGORITHM FOR SOLVING

PSEUDOMONOTONE EQUILIBRIUM PROBLEMS

Raweerote Suparatulatorn1

This work modifies a hybrid algorithm that combines the subgradient ex-

tragradient algorithm with the inertial technique to solve a pseudomonotone equilibrium

problem with a Lipschitz-like condition in a real Hilbert space. A strong convergence

theorem is established under certain mild conditions for the bifunction and the control

parameters.
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1. Introduction

Let C be a nonempty, closed and convex subset of a real Hilbert space H. Suppose

that f : C ×C → R is a bifunction with f(z, z) = 0 for all z ∈ C. The equilibrium problem

is stated as follows: find an element x∗ in C such that

f(x∗, y) ≥ 0, (1)

for all y ∈ C. We denote by EP (f, C) the solution set of the problem (1).

The equilibrium problem (1) finds versatile applications in solving a myriad of real-

world problems, encompassing variational inequalities, split feasibility problems, minimiza-

tion problems, linear programming problems, saddle point problems, and Nash equilibrium

problems, among others, as extensively documented in references [1, 2, 16, 18].

In 2008, Tran et al. [12] introduced the two-step extragradient method (TSEM) as

a solution approach for equilibrium problem (1). This method drew inspiration from the

extragradient method [6], designed for solving variational inequalities. However, it is worth

noting that the TSEM demonstrates weak convergence when applied in Hilbert spaces.

Recently, Cholamjiak and Suparatulatorn [4] proposed the modified inertial viscosity

subgradient extragradient to obtain strong convergence for addressing the equilibrium prob-

lem (1) under the bifunction f is pseudomonotone and satisfies the Lipschit-type condition.

Furthermore, the algorithm finds applications in solving problems associated with diabetes

mellitus classification. Significant research has been undertaken in the domain of algorithm

development aimed at solving equilibrium problems, with notable exemplars documented in

references [10, 14, 17, 19].
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In 2003, Nakajo and Takahashi [8] demonstrated the strong convergence of the hybrid

projection method for nonexpansive mappings in Hilbert spaces. Various other methods to

address fixed point problems have been proposed by several authors, see also [3, 5, 11, 13, 15].

Inspired by the aforementioned studies, this paper introduces a novel extragradient-

type algorithm designed to solve the equilibrium problem (1) in a real Hilbert space. Our

proposed iterative approach takes into account the pseudo-monotonicity of the bifunction

associated with the problem (1). Furthermore, we establish the strong convergence of the

generated sequence under mild conditions and within a framework of appropriate iterative

control parameters.

2. Preliminaries

In what follows, recall that H is a real Hilbert space. Let C be a nonempty, closed

and convex subset of H. We denote ⇀ and → as weak and strong convergence, respectively,

and the notation ωw (xn) is the weak ω-limit set of the sequence {xn}. We next collect some

necessary definitions and lemmas for proving our main results. For u ∈ H, define the metric

projection PC from H onto C by

PCu := argmin
v∈C

∥u− v∥.

A normal cone of C at x ∈ C is defined by

NC(x) = {z ∈ H : ⟨z, y − x⟩ ≤ 0, for all y ∈ C}.

Let g : C → R be a convex function and subdifferential of g at x ∈ C is defined by

∂g(x) = {z ∈ H : g(y)− g(x) ≥ ⟨z, y − x⟩, for all y ∈ C}.

A bifunction f : H ×H → R is said to be

(i) pseudomonotone on C if for all u, v ∈ C,

f(u, v) ≥ 0 =⇒ f(v, u) ≤ 0;

(ii) to satisfy a Lipschitz-like condition on C if there exist two positive

constants c1, c2 such that for all u, v, w ∈ C,

f(u,w) ≤ f(u, v) + f(v, w) + c1∥u− v∥2 + c2∥v − w∥2.

Lemma 2.1. [9] Let g : C → R be a subdifferentiable, convex and lower semi-continuous

function on C. Suppose C has nonempty interior, or g is continuous at a point x ∈ C.

Then, x is a minimizer of g if and only if

0 ∈ ∂g(x) +NC(x).

Lemma 2.2. [8] Let x ∈ H and y ∈ C. Then the following inequality holds:

∥y − PCx∥2 + ∥x− PCx∥2 ≤ ∥x− y∥2.

Lemma 2.3. [7] Let V be a closed and convex subset of H, {xn} ⊂ H and v ∈ H. If

ωw (xn) ⊂ V and ∥xn − v∥ ≤ ∥v − PVv∥ for all n ∈ N. Then xn → PVv as n → ∞.
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3. Main result

To study the convergence analysis, consider the following conditions.

(C1) C has nonempty interior or f(z, ·) is continuous at some point in C for every z ∈ C, f

is pseudomonotone on C, and the solution set EP (f, C) is nonempty;

(C2) f meet the Lipschitz-like condition on H through c1 > 0 and c2 > 0;

(C3) f(z, ·) is convex, subdifferentiable and lower semicontinuous function on H for each

fixed z ∈ H;

(C4) lim sup
n→∞

f(zn, y) ≤ f(z∗, y) for each y ∈ C and {zn} ⊂ C satisfies zn ⇀ z∗.

Algorithm 3.1

Initialization: Let C1 = H. Select arbitrary elements x0, x1 ∈ H and set n := 1.

Iterative Steps: Construct {xn} by using the following steps:

Step 1. Set ρn = xn + δn(xn − xn−1), where {δn} is a bounded sequence and compute

yn = argmin
y∈C

{
λnf(ρn, y) +

1

2
∥ρn − y∥2

}
,

where 0 < λn ≤ λ < min
{

1
2c1

, 1
2c2

}
. If ρn = yn, then stop. Otherwise

Step 2. Compute

un = arg min
y∈Hn

{
λnf(yn, y) +

1

2
∥ρn − y∥2

}
,

where wn ∈ ∂2f(ρn, yn) satisfying ρn − λnwn − yn ∈ NC(yn) and construct a half-space

Hn = {z ∈ H : ⟨ρn − λnwn − yn, z − yn⟩ ≤ 0}.

Step 3. Compute

xn+1 = PCn+1x1,

where

Cn+1 = {c ∈ Cn : ∥un − c∥2 + (1− 2c1λn)∥ρn − yn∥2

+ (1− 2c2λn)∥yn − un∥2 ≤ ∥ρn − c∥2 + ηn}

and ηn ∈ [0,∞).

Replace n by n+ 1 and then repeat Step 1.

Lemma 3.1. Let ρn = yn in Algorithm 3.1, then ρn ∈ EP (f, C).

Proof. By the definition of yn with Lemma 2.1, we have

0 ∈ ∂2

(
λnf(ρn, ·) +

1

2
∥ρn − ·∥2

)
(yn) +NC(yn)

Thus, we can write λnw̃n + yn − ρn + w̄n = 0, where w̃n ∈ ∂2f(ρn, yn) and w̄n ∈ NC(yn).

Due to ρn = yn implies that λnw̃n + w̄n = 0. Thus, we have

λn⟨w̃n, y − yn⟩+ ⟨w̄n, y − yn⟩ = 0
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for all y ∈ C. By w̄n ∈ NC(yn) implies ⟨w̄n, y − yn⟩ ≤ 0 for all y ∈ C and through above

expression, we obtain

λn⟨w̃n, y − yn⟩ ≥ 0 (2)

for all y ∈ C. Due to w̃n ∈ ∂2f(ρn, yn) and using the subdifferential definition, we obtain

⟨w̃n, y − yn⟩ ≤ f(ρn, y)− f(ρn, yn) (3)

for all y ∈ C. From the inequalities (2) and (3) with 0 < λn ≤ λ implies that f(ρn, y) ≥ 0

for all y ∈ C, that is, ρn ∈ EP (f, C). □

Lemma 3.2. Suppose that f : H ×H → R meet the items (C1)− (C3), we have

∥un − ξ̄∥2 + (1− 2c1λn)∥ρn − yn∥2 + (1− 2c2λn)∥yn − un∥2 ≤ ∥ρn − ξ̄∥2 + ηn (4)

for all ξ̄ ∈ EP (f, C).

Proof. Let ξ̄ ∈ EP (f, C), then by using Lemma 2.1, we have

0 ∈ ∂2

(
λnf(yn, ·) +

1

2
∥ρn − ·∥2

)
(un) +NHn(un)

Thus, we can write λnw̃n + un − ρn + w̄n = 0, where w̃n ∈ ∂2f(yn, un) and w̄n ∈ NHn(un).

This implies that

⟨ρn − un, y − un⟩ = λn⟨w̃n, y − un⟩+ ⟨w̄n, y − un⟩

for all y ∈ Hn. Given that w̄n ∈ NHn
(un) then ⟨w̄n, y − un⟩ ≤ 0 for all y ∈ Hn. Therefore,

we have

⟨ρn − un, y − un⟩ ≤ λn⟨w̃n, y − un⟩ (5)

for all y ∈ Hn. Since w̃n ∈ ∂2f(yn, un), we have

⟨w̃n, y − un⟩ ≤ f(yn, y)− f(yn, un) (6)

for all y ∈ H. From (5) and (6), we get

⟨ρn − un, y − un⟩ ≤ λnf(yn, y)− λnf(yn, un) (7)

for all y ∈ Hn. Substituting y = ξ̄ in (7), we obtain

⟨ρn − un, ξ̄ − un⟩ ≤ λnf(yn, ξ̄)− λnf(yn, un). (8)

Given ξ̄ ∈ EP (f, C) imply that f(ξ̄, yn) ≥ 0 and owing to the item (C1) gives that f(yn, ξ̄) ≤
0. Thus, we obtain

⟨ρn − un, un − ξ̄⟩ ≥ λnf(yn, un). (9)

Following the condition (C2), we have

f(yn, un) ≥ f(ρn, un)− f(ρn, yn)− c1∥ρn − yn∥2 − c2∥yn − un∥2. (10)

Combining (9) and (10), we get

⟨ρn − un, un − ξ̄⟩ ≥ λnf(ρn, un)− λnf(ρn, yn)− c1λn∥ρn − yn∥2

− c2λn∥yn − un∥2. (11)
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By using the half-space definition, we have ⟨ρn − λnwn − yn, un − yn⟩ ≤ 0, which implies

that

⟨ρn − yn, un − yn⟩ ≤ λn⟨wn, un − yn⟩. (12)

Since wn ∈ ∂2f(ρn, yn), we obtain

⟨wn, y − yn⟩ ≤ f(ρn, y)− f(ρn, yn)

for all y ∈ H. By replacing y = un, we obtain

⟨wn, un − yn⟩ ≤ f(ρn, un)− f(ρn, yn). (13)

It follows from inequalities (12) and (13) that

⟨ρn − yn, un − yn⟩ ≤ λnf(ρn, un)− λnf(ρn, yn). (14)

From (11) and (14), we have

⟨ρn − un, un − ξ̄⟩ ≥ ⟨ρn − yn, un − yn⟩ − c1λn∥ρn − yn∥2 − c2λn∥yn − un∥2. (15)

Now, we obtain the following equalities:

∥ρn − ξ̄∥2 − ∥un − ρn∥2 − ∥un − ξ̄∥2 = 2⟨ρn − un, un − ξ̄⟩

and

∥ρn − yn∥2 + ∥un − yn∥2 − ∥ρn − un∥2 = 2⟨ρn − yn, un − yn⟩.

Combining the above equalities with expression (15), it can be implied that

∥un − ξ̄∥2 + (1− 2c1λn)∥ρn − yn∥2 + (1− 2c2λn)∥yn − un∥2 ≤ ∥ρn − ξ̄∥2

≤ ∥ρn − ξ̄∥2 + ηn.

□

Lemma 3.3. Assume that the items (C1) − (C4) hold. If there is a subsequence {ρnk
} of

{ρn} such that ρnk
⇀ x∗ ∈ H and

lim
k→∞

∥ρnk
− ynk

∥ = lim
k→∞

∥ρnk
− unk

∥ = lim
k→∞

∥unk
− ynk

∥ = 0. (16)

Then x∗ ∈ EP (f, C).

Proof. From yn ∈ C, ρnk
⇀ x∗ and lim

k→∞
∥ρnk

− ynk
∥ = 0, we get ynk

⇀ x∗ ∈ C. This

follows from lim
k→∞

∥unk
− ynk

∥ = 0 that the subsequence {unk
} is bounded. For any y ∈ Hn,

using (7), (10) and (14), we have

λnk
f(ynk

, y) ≥ λnk
f(ynk

, unk
) + ⟨ρnk

− unk
, y − unk

⟩

≥ λnk
f(ρnk

, unk
)− λnk

f(ρnk
, ynk

)− c1λnk
∥ρnk

− ynk
∥2

− c2λnk
∥ynk

− unk
∥2 + ⟨ρnk

− unk
, y − unk

⟩

≥ ⟨ρnk
− ynk

, unk
− ynk

⟩+ ⟨ρnk
− unk

, y − unk
⟩

− c1λnk
∥ρnk

− ynk
∥2 − c2λnk

∥ynk
− unk

∥2.

This implies by (16) and the boundedness of {unk
} that the right hand side tends to zero.

Due to 0 < λnk
≤ λ < min

{
1

2c1
, 1
2c2

}
, the condition (C4), and ynk

⇀ x∗, we obtain
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0 ≤ lim sup
k→∞

f(ynk
, y) ≤ f(x∗, y) for all y ∈ Hn. Since C ⊂ Hn, we get f(x∗, y) ≥ 0 for all

y ∈ C, that is, x∗ ∈ EP (f, C). □

With the above results we are now ready for the main convergence theorem.

Theorem 3.1. Suppose that lim
n→∞

ηn = 0 and the items (C1)− (C4) are satisfied. Then, the

sequence {xn} generated due to Algorithm 3.1 converges strongly to υ = PEP (f,C)x1.

Proof. For the beginning, we separate the proof into the claims listed below.

Claim 1. {xn} is well defined.

Lemma 3.2 then guarantees that EP (f, C) ⊂ Cn and thus Cn is nonempty for all n ∈ N.
Indeed, one sees that C1 = H is closed and convex. This follows from [7, Lemma 1.3]

and mathematical induction that Cn is closed and convex for all n ∈ N. Thus, Claim 1 is

attained.

Claim 2. lim
n→∞

∥xn+1 − xn∥ = 0.

Since f satisfies the conditions (C1)− (C4), we have that the solution set EP (f, C) is closed

and convex, see [12]. Then, there is a unique υ ∈ EP (f, C) such that υ = PEP (f,C)x1.

Applying EP (f, C) ⊂ Cn to the definition of {xn}, we obtain for every n ∈ N,

∥xn − x1∥ ≤ ∥υ − x1∥ , (17)

implying that {xn} is bounded. Since xn+1 ∈ Cn, we have that

∥xn − x1∥ ≤ ∥xn+1 − x1∥ for all n ∈ N, which leads to lim
n→∞

∥xn − x1∥ exists. This implies by

Lemma 2.2 that ∥xn+1 − xn∥2 ≤ ∥xn+1 − x1∥2 −∥xk − x1∥2 and hence Claim 2 is attained.

Claim 3. lim
n→∞

∥ρn − yn∥ = lim
n→∞

∥ρn − un∥ = lim
n→∞

∥un − yn∥ = 0.

From the boundedness of {δn}, there exists some δ > 0 such that |δn| ≤ δ for all n ∈ N.
Using this to Claim 2 yields that

∥ρn − xn∥ = |δn| ∥xn − xn−1∥ ≤ δ ∥xn − xn−1∥ → 0 as n → ∞ (18)

and so

∥ρn − xn+1∥ ≤ ∥ρn − xn∥+ ∥xn − xn+1∥ → 0 as n → ∞. (19)

Meanwhile, since xn+1 ∈ Cn+1, we have

∥un − xn+1∥2 + (1− 2c1λn)∥ρn − yn∥2 + (1− 2c2λn)∥yn − un∥2

≤ ∥ρn − xn+1∥2 + ηn.

This implies by (19), 0 < λn ≤ λ < min
{

1
2c1

, 1
2c2

}
and lim

n→∞
ηn = 0 that

lim
n→∞

∥un − xn+1∥ = lim
n→∞

∥ρn − yn∥ = lim
n→∞

∥yn − un∥ = 0. (20)

Further, from the expressions (19) and (20), we have

∥ρn − un∥ ≤ ∥ρn − xn+1∥+ ∥xn+1 − un∥ → 0 as n → ∞. (21)

Therefore, Claim 3 is established from the expressions (20) and (21).

Claim 4. xn → υ as n → ∞.

Let r̄ ∈ ωw (xn). Then, the expression (18) gives that r̄ ∈ ωw (ρn). In light of Claim

3, one can obtain by Lemma 3.3 that r̄ ∈ EP (f, C) and so ωw (xn) ⊂ EP (f, C) for all
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n ∈ N. Finally, employing this to Lemma 2.3 with the inequality (17) delivers the desired

conclusion. □

4. Conclusions

We established the strong convergence theorem of the sequence generated by the mod-

ified algorithm under suitable conditions for solving pseudomonotone equilibrium problems.

In future research work, we intend to develop novel algorithms aimed at addressing the

aforementioned problem and its associated problems.
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