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MAXIMAL INVARIANT SUBSPACES AND OBSERVABILITY OF

MULTIDIMENSIONAL SYSTEMS. PART 2: THE ALGORITHM

Valeriu Prepeliţă1, Tiberiu Vasilache2

The paper is connected with the Geometric Approach, a trend which enriched the

field of System Theory with new notions and techniques. An algorithm is proposed,

which determines the maximal invariant subspace with respect to a finite number of

commuting matrices and which is included in a given subspace. The complete proof of

the algorithm is provided. This algorithm can be used in the study of the observability of

multidimensional (nD) linear systems and to determine the subspace of the unobservable

states. A Matlab program is proposed, which implements the algorithm and computes

an orthonormal basis of the maximal invariant subspace.
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time systems.
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1. Introduction

The Geometric Approach is a trend in System and Control Theory which has pro-

vided simpler and elegant solutions for many important problems, such as controller syn-

thesis, decoupling, pole-assignment, controllability, observability, minimality, duality, etc.

The history of the Geometric Approach started with the papers of Basile and Marro (see

[3]) and was developed by Wonham and Morse [10], Silverman, Hautus, Willems et al. The

cornerstone of this approach is the concept of invariance of a subspace with respect to one

linear transformation.

In the past four decades a lot of published paper and books have been designed to

the theory of multidimensional (nD) systems, which has become a distinct and important

branch of the systems theory. The reasons for the increasing interest in this domain are

on one side the important application fields (signal processing, image processing, computer

tomography, gravity and magnetic field mapping, seismology etc.) and on the other side the

richness and significance of the theoretical approaches, some of them being distinct from

those concerning the theory of 1D systems.
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Various state space 2D discrete-time models have been proposed in literature by

Roesser [9], Fornasini-Marchesini [4], Attasi [1] etc.

This paper extends the Geometric Approach techniques to present an algorithm for

determining the maximal subspace which is invariant with respect to a finite number of

commutative matrices and is included in a given subspace. It completes [8] by providing the

proof of this algorithm and also by determining recurrently the maximal invariant subspaces

w.r.t. the first one, two etc. matrices. When the matrices represent the drifts of a multidi-

mensional linear system and the subspace is the kernel of the output matrix, this algorithm

can be adapted to determine the subspace of unobservable states, with applications in the

study of the properties connected with the concept of observability [6]. The dual algorithm

which determines the minimal invariant subspace that includes a given subspace (e.g. the

image of the input matrix) is described in [7].

Section 2 gives the description of the maximal invariant subspace with respect to

r ≥ 2 commuting matrices which is included in a given subspace. An algorithm which

calculates this maximal subspace is proposed and its proof is developed. This algorithm is

a generalization of the 1D method of G. Marro (see [5]). It was applied (without proof) in

[8] to determine the subspace of unobservable states of a multidimensional (rD) system.

Section 3 provides a Matlab program that implements Algorithm 2.1 presented in

Section 2 which computes an orthonormal basis of the maximal invariant subspace. An

example illustrates the advantages of the proposed method.

In Section 4 it is shown how Algorithm 2.1 can be applied to problems concerning the

concept of observability of a class of multidimensional discrete-time systems.

2. Algorithm of maximal invariant subspaces

Let K be a field, C a proper subspace of Kn and A1, . . . , Ar ∈ Kn×n commuting

matrices.

Definition 2.1. A subspace V of Kn is said to be (A1, . . . , Ar)-invariant if Ajv ∈ V, ∀v ∈
V, ∀j ∈ {1, 2, . . . , r}.

A subspace V of Kn is said to be (A1, . . . , Ar;C)-invariant if V is (A1, . . . , Ar)-

invariant and it is included in C. V is called maximal if, for any subspace Ṽ which is

(A1, . . . , Ar)-invariant and included in C, Ṽ ⊂ V.

Let us denote by maxI(A1, . . . , Ar;C) the maximal (A1, . . . , Ar)-invariant subspace

included in C.

For a subspace V of Kn, we consider the following subspaces: A−1
i = {v ∈ Kn|Aiv ∈

V}, A−ki
i = {v ∈ Kn|Aki

i v ∈ V} and (
∏r

i=1 A
−ki
i )V = {v ∈ Kn|(

∏r
i=1 A

ki
i )v ∈ V}, ki ∈ N,

where (
∏r

i=1 A
−0
i )V = V. If v ∈ A−j

i V, then Aiv ∈ A
−(j−1)
i V, ∀i ∈ {1, 2, . . . , r}, ∀j ≥ 1.



Maximal Invariant Subspaces and Observability of Multidimensional Systems. Part 2: the Algorithm 15

Proposition 2.1. The maximal (A1, . . . , Ar)-invariant subspace included in C is

maxI(A1, . . . , Ar;C) =

∞∩
k1=0

· · ·
∞∩

kr=0

(

r∏
i=1

A−ki
i )C. (1)

Proof. Let us denote by V1 the subspace from the right-hand member of (1). If v ∈ V1

then particularly v ∈ (
∏r

i=1

i ̸=j
A−ki

i )A
−(kj+1)
j C, hence Ajv ∈ (

∏r
i=1 A

−ki
i )C, ∀ki ∈ N, j ∈

{1, 2, . . . , r}. It follows that Ajv ∈ V1, ∀j ∈ {1, 2, . . . , r} i.e. V1 is (A1, . . . , Ar)-invariant.

We can write by (1) V1 = C∩
∩∞

k1=0 · · ·
∩∞

kr=0(
∏r

i=1 A
−ki
i )C where (k1, . . . , kr) ̸= (0, . . . , 0),

hence V1 is included in C.

Now, let V be any (A1, . . . , Ar)-invariant subspace included in C. Then, for any v ∈ V,

(
∏r

i=1 A
ki
i )v ∈ V ⊂ C, hence v ∈ (

∏r
i=1 A

−ki
i )C, ∀ki ≥ 0, ∀i ∈ {1, 2, . . . , r}, which implies

v ∈ V1. Therefore V ⊂ V1, i.e. V1 is the maximal such subspace. �

Proposition 2.2. The maximal (A1, . . . , Ar)-invariant subspace included in C is

maxI(A1, . . . , Ar;C) =

n−1∩
k1=0

· · ·
n−1∩
kr=0

(

r∏
i=1

A−ki
i )C. (2)

Proof. Let us denote by V2 the subspace from the right-hand member of (2). Obviously, by

Proposition 2.1, V1 ⊂ V2, where V1 = maxI(A1, . . . , Ar;C).

Now, for any v ∈ V2, (
∏r

i=1 A
ki
i )v ∈ C, ∀ki ∈ N, 0 ≤ ki ≤ n − 1, ∀i ∈ {1, 2, . . . , r}.

Let pj(s) = det(sI−Aj) = sn+an−1,js
n−1+· · ·+a1,js+a0,j be the characteristic polynomial

of the matrix Aj , j ∈ {1, 2, . . . , r}. By Hamilton-Cayley Theorem, pj(Aj) = 0n, hence

An
j = −an−1,jA

n−1
j − · · · − a1,jAj − a0,jIn. (3)

Then, for any vector v ∈ V2, A
n
j v = −

n−1∑
l=0

al,jA
l
jv. Since Aj are commutative matrices, we

can premultiply this equality by (
∏r

i=1

i ̸=j
Aki

i ) and we obtain (
∏r

i=1

i ̸=j
Aki

i )An
j v = −

n−1∑
l=0

al,j(
r∏

i=1

i ̸=j

Aki
i )Al

jv,

hence (
∏r

i=1

i ̸=j
Aki

i )An
j v ∈ C since (

∏r
i=1

i ̸=j
Aki

i )Al
jv ∈ C for 0 ≤ l ≤ n − 1 and C is a subspace.

Similarly, by postmultiplying (3) by (
∏r

i=1

i ̸=j
Aki

i )At
jv, t = 1, 2, . . ., one obtains recurrently

that (
∏r

i=1

i ̸=j
Aki

i )An+t
j v ∈ C and finally that (

∏r
i=1 A

ki
i )v ∈ C, ∀ki ≥ 0, hence v ∈ V1. It

follows that V2 ⊂ V1, hence V2 = V1 = maxI(A1, . . . , Ar;C). �

Algorithm 2.1.

Stage 1. Determine the sequence of subspaces (Si1,0,...,0,0)0≤i1≤n of the spaceX = Kn:

S0,0,...,0,0 = C; (4)

Si1,0,...,0,0 = C ∩A−1
1 Si1−1,0,...,0,0, i1 = 1, ..., n; (5)



16 Valeriu Prepeliţă, Tiberiu Vasilache

Stage 2. Determine i01, the first index in {0, 1, . . . , n− 1} which verifies

Si01+1,0,...,0,0 = Si01,0,...,0,0
. (6)

% Si01,0,...,0,0
is the maximal A1-invariant subspace which is included in C.

If i01 = n− 1, then maxI(A1, . . . , Ar;C) = {0} ⊂ Kn. STOP

If i01 < n− 1, put j := 2 and GO TO Stage 3.

Stage 3. Determine by (7) the sequence of subspaces (Si01,i
0
2,...,i

0
j−1,ij ,0,...,0

)0≤ij≤n of

the space X = Kn: for ij = 1, 2, . . . , n,

Si01,i
0
2,...,i

0
j−1,ij ,0,...,0

= Si01,i
0
2,...,i

0
j−1,ij−1,0,...,0 ∩A−1

j Si01,i
0
2,...,i

0
j−1,ij−1,0,...,0. (7)

Stage 4. Determine i0j , the first index ij in {0, 1, . . . , n− 1} which verifies

Si01,i
0
2,...,i

0
j−1,i

0
j+1,0,...,0 = Si01,i

0
2,...,i

0
j−1,i

0
j ,0,...,0

. (8)

% Si01,i
0
2,...,i

0
j−1,i

0
j ,0,...,0

is the maximal (A1, . . . , Aj)-invariant subspace which is in-

cluded in C

If i0j = n− 1 then maxI(A1, . . . , Ar;C) = {0} ⊂ Kn. STOP

If i0j < n− 1 then GO TO Stage 5.

Stage 5. If j < r then put j := j + 1 and GO TO Stage 3.

If j = r, then maxI(A1, . . . , Ar;C) = Si01,i
0
2,...,i

0
j−1,i

0
j ,...,i

0
r
. STOP

Proof. We consider the rD chain of subspaces

S̃i1,i2,...,ir =

i1∩
k1=0

i2∩
k2=0

· · ·
ir∩

kr=0

A−k1
1 A−k2

2 · · ·A−kr
r C, (9)

ij ∈ {0, 1, . . . , n}, j ∈ {0, 1, . . . , r}. Obviously, for ij ≤ lj , ∀j ∈ {0, 1, . . . , r},

S̃i1,i2,...,ir ⊇ S̃l1,l2,...,lr . (10)

By (9) and Proposition 2.1 we obtain S̃i1,i2,...,ir ⊇ maxI(A1, . . . , Ar;C), ∀ij ≥ 0, ∀j ∈
{1, 2, . . . , r} and it follows from Proposition 2.2 that S̃n−1,n−1,...,n−1 = maxI(A1, . . . , Ar;C).

From (4) and (9) one obtains S̃0,0,...,0,0 = A−0
1 A−0

2 · · ·A−0
r C = C = S0,0,...,0,0. Let

us assume that S̃i1−1,0,...,0,0 = Si1−1,0,...,0,0 for some i1 ∈ {1, 2, . . . , n}. Applying (9), (5)

and the change of the index k1 − 1 = k, we get S̃i1,0,...,0,0 =
∩i1

k1=0 A
−k1
1 C = A−0

1 C ∩
A−1

1

∩i1
k1=1 A

−(k1−1)
1 C = C ∩ A−1

1

∩i1−1
k=0 A−k

1 C = C ∩ A−1
1 S̃i1−1,0,...,0,0 = Si1,0,...,0,0, hence we

obtained by induction and by (10) the following relations:

S̃i1,0,...,0 = Si1,0,...,0, ∀i1 ∈ {1, 2, . . . , n}, (11)

Si1,0,...,0 ⊃ Si1+1,0,...,0, ∀i1 ∈ {0, 1, . . . , n− 1}. (12)

Using Hamilton-Cayley Theorem as in the proof of Proposition 2.2, one obtains

S̃n,0,...,0 = S̃n−1,0,...,0, hence by (11), Sn,0,...,0 = Sn−1,0,...,0, i.e. i0 from (6) verifies 1 ≤
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i0 ≤ n− 1. Let us consider the chain of subspaces

Kn ⊇ S0,0,...,0,0 ⊇ S1,0,...,0,0 ⊇ . . . ⊇ Si1,0,...,0,0 ⊇ . . . ⊇ Sn−1,0,...,0,0 = Sn,0,...,0,0.

Since S0,0,...,0,0 = C is a proper subspace of Kn, dimS0,0,...,0,0 ≤ n− 1.

If i0 = n− 1 is the first index which verifies (6), it follows that

n− 1 ≥ dimS0,0,...,0,0 > dimS1,0,...,0,0 > . . . > dimSn−1,0,...,0,0 ≥ 0,

hence dimSn−1,0,...,0,0 = 0 and we have

{0} = Sn−1,0,...,0,0 = S̃n−1,0,...,0,0 ⊇ maxI(A1, . . . , Ar;C) ⊇ {0}.

Therefore maxI(A1, . . . , Ar;C) = {0}, which proves the instruction in Stage 2.

If i01 < n− 1, one obtains by (5) and (6)

Si01+2,0,...,0,0 = C ∩A−1
1 Si01+1,0,...,0,0 = C ∩A−1

1 Si01,0,...,0,0
= Si01+1,0,...,0,0 = Si01,0,...,0,0

.

Let us assume that Si1,0,...,0,0 = Si01,0,...,0,0
for some i1 ∈ {i01 + 2, . . . , n}. Then,

applying again (5) and (6), we get

Si1+1,0,...,0,0 = C ∩A−1
1 Si1,0,...,0,0 = C ∩A−1

1 Si01,0,...,0,0
= Si01+1,0,...,0,0 = Si01,0,...,0,0

,

hence we proved by induction that Si1,0,...,0,0 = Si01,0,...,0,0
, ∀i1 ∈ {i01 + 1, . . . , n}.

Now, let us assume that S̃i01,...,i
0
j−1,ij−1,0,...,0 = Si01,...,i

0
j−1,ij−1,0,...,0 for some j ∈

{2, . . . , r} and ij ∈ {1, . . . , n}.
Consider some subspaces Vk ∈ Kn, k = 0, 1, . . . , i, i ∈ N∗. We have

i∩
k=0

Vk = V0 ∩ (

i−1∩
k=1

Vk) ∩ Vi = [V0 ∩ (

i−1∩
k=1

Vk)] ∩ [(

i−1∩
k=1

Vk) ∩ Vi] = (

i−1∩
k=0

Vk) ∩ (

i∩
k=1

Vk).

Therefore, by replacing Vk by A
−kj

j C, we have

ij∩
kj=0

A
−kj

j C = (

ij−1∩
kj=0

A
−kj

j C) ∩ (

ij∩
kj=1

A
−kj

j C).

Using this equality and (6), we get

S̃i01,...,i
0
j−1,ij ,0...,0

=

i01∩
k1=0

· · ·
i0j−1∩

kj−1=0

A−k1
1 · · ·A−kj−1

j−1

ij∩
kj=0

A
−kj

j C =

(

i01∩
k1=0

· · ·
i0j−1∩

kj−1=0

A−k1
1 · · ·A−kj−1

j−1

ij−1∩
kj=0

A
−kj

j C) ∩ (

i01∩
k1=0

· · ·
i0j−1∩

kj−1=0

A−k1
1 · · ·A−kj−1

j−1

ij∩
kj=1

A
−kj

j C),

which becomes by the backward movement of A−1
j and the change of the index kj−1 =

k in the last term

(

i01∩
k1=0

· · ·
i0j−1∩

kj−1=0

A−k1
1 · · ·A−kj−1

j−1

ij−1∩
kj=0

A
−kj

j C) ∩A−1
j (

i01∩
k1=0

· · ·
i0j−1∩

kj−1=0

A−k1
1 · · ·A−kj−1

j−1

ij∩
kj=1

A
−(kj−1)
j C) =
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=(

i01∩
k1=0

· · ·
i0j−1∩

kj−1=0

A−k1
1 · · ·A−kj−1

j−1

ij−1∩
kj=0

A
−kj

j C) ∩A−1
j (

i01∩
k1=0

· · ·
i0j−1∩

kj−1=0

A−k1
1 · · ·A−kj−1

j−1

ij−1∩
k=0

A−k
j C),

which is equal by (9), by the induction assumption and by (7) to

S̃i01,...,i
0
j−1,ij−1,0...,0 ∩A−1

j S̃i1v,...,i0j−1,ij−1,0...,0 =

= Si01,...,i
0
j−1,ij−1,0...,0 ∩A−1

j Si01,...,ij−1,ij−10,0...,0 = Si01,...,i
0
j−1,ij ,0...,0

,

hence we proved by induction that

S̃i01,...,i
0
j−1,ij ,0,...,0

= Si01,...,i
0
j−1,ij ,0,...,0

, ∀j ∈ {1, . . . , r}, ∀ij ∈ {1, . . . , n}, (13)

therefore

S̃i01,...,i
0
j ,...,i

0
r
= Si01,...,i

0
j ,...,i

0
r
. (14)

By (9),(13) and (12),we obtain, for i01, . . . , i
0
j−1 determined in Stage 4 and ij ∈

{1, . . . , n}

Si01,...,i
0
j−1,ij ,0,...,0

=

i01∩
k1=0

· · ·
i0j−1∩

kj−1=0

ij−1∩
kj=0

A−k1
1 · · ·A−kj−1

j−1 A
−kj

j C (15)

and

Si01,...,i
0
j−1,ij ,0,...,0

⊃ Si01,...,i
0
j−1,ij+1,0,...,0.

By (15) and by applying Hamilton-Cayley Theorem to the matrix Aj , one obtains

Si01,...,i
0
j−1,n,0,...,0

= Si01,...,i
0
j−1,n−1,0,...,0.

Let us consider the chain of subspaces

Kn ⊇ S0,0,...,0,0 ⊇ Si01,...,i
0
j−1,0,0,...,0

⊇ . . . ⊇ Si01,...,i
0
j−1,1,0,...,0

⊇ . . . ⊇ Si01,...,i
0
j−1,n−1,0,...,0

= Si01,...,i
0
j−1,n,0,...,0

.

If i0j = n−1 is the first index which verifies (8), since dimS0,0,...,0,0 ≤ n−1, it follows

that

n− 1 ≥ dimSi01,...,i
0
j−1,0,0,...,0

> dimSi01,...,i
0
j−1,1,0,...,0

> . . . > dimSi01,...,i
0
j−1,n−1,0,...,0 ≥ 0,

which implies dimSi01,...,i
0
j−1,n−1,0,...,0 = 0, hence Si01,...,i

0
j−1,n−1,0,...,0 = {0}. By Proposition

2.2 and (15), maxI(A1,. . .,Ar;C)⊆Si01,...,i
0
j−1,n−1,0,...,0, hence maxI(A1,. . .,Ar;C)= {0}, which

proves the instruction from Stage 4.

Consider the case i0j < n−1 (condition which includes i0k < n−1, ∀k ∈ {1, . . . , j−1}).
We have by (8) Si01,...,i

0
j−1,i

0
j+1,0,...,0 = Si01,...,i

0
j−1,i

0
j ,0,...,0

.

Let us assume that Si01,...,i
0
j−1,ij ,0,...,0

= Si01,...,i
0
j−1,i

0
j ,0,...,0

for some ij ≥ i0j . Then

Si01,...,i
0
j−1,ij+1,0,...,0 = Si01,...,i

0
j−1,ij ,0,...,0

∩A−1
j Si01,...,i

0
j−1,ij ,0,...,0

= Si01,...,i
0
j−1,i

0
j ,0,...,0

∩A−1
j Si01,...,i

0
j−1,i

0
j ,0,...,0

=

Si01,...,i
0
j−1,i

0
j+1,0,...,0 = Si01,...,i

0
j−1,i

0
j ,0,...,0

. We proved by induction

Si01,...,i
0
j−1,ij ,0,...,0

= Si01,...,i
0
j−1,i

0
j ,0,...,0

, ∀ij ∈ {i0j + 1, . . . , n− 1}. (16)
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By (13) and (16) we obtain

S̃i01,...,i
0
j−1,ij ,0,...,0

= S̃i01,...,i
0
j−1,i

0
j ,0,...,0

, ∀ij ∈ {i0j + 1, . . . , n− 1}. (17)

For j = 1 we proved that if i01 < n−1, then Si1,0,...,0 = Si01,0,...,0
, ∀i1 ∈ {i01+1, . . . , n−

1}. Using (11), we get S̃i1,0,...,0 = S̃i01,0,...,0
, ∀i1 ∈ {i01 + 1, . . . , n}.

Let us now assume that

S̃i1,...,ij−1,0,0,...,0 = S̃i01,...,i
0
j−1,0,0,...,0

, ∀ik ∈ {i0k + 1, . . . , n− 1}, k ∈ {1, 2, . . . , j − 1},

i.e. (see (9))

i1∩
k1=0

· · ·
ij−1∩

kj−1=0

A−k1
1 · · ·A−kj−1

j−1 C =

i01∩
k1=0

· · ·
i0j−1∩

kj−1=0

A−k1
1 · · ·A−kj−1

j−1 C.

Then

ij∩
kj=0

A
−kj

j

i1∩
k1=0

· · ·
ij−1∩

kj−1=0

A−k1
1 · · ·A−kj−1

j−1 C=

ij∩
kj=0

A
−kj

j

i01∩
k1=0

· · ·
i0j−1∩

kj−1=0

A−k1
1 · · ·A−kj−1

j−1 C

and using the commutativity of the matrices Aj we have

i1∩
k1=0

· · ·
ij−1∩

kj−1=0

ij∩
kj=0

A−k1
1 · · ·A−kj−1

j−1 A
−kj

j C=

i01∩
k1=0

· · ·
i0j−1∩

kj−1=0

ij∩
kj=0

A−k1
1 · · ·A−kj−1

j−1 A
−kj

j C

i.e. again by (9)

S̃i1,...,ij−1,ij ,0,...,0 = S̃i01,...,i
0
j−1,ij ,0,...,0

,

and using (17) we obtain by induction, for any j ∈ {1, 2, . . . , r}

S̃i1,...,ij−1,ij ,0,...,0 = S̃i01,...,i
0
j−1,i

0
j ,0,...,0

, ∀ik ∈ {i0k + 1, . . . , n− 1}, k ∈ {1, 2, . . . , j}, (18)

particularly

S̃i1,...,ij ,...,ir = S̃i01,...,i
0
j ,,...,i

0
r
, ∀ik ∈ {i0k + 1, . . . , n− 1}, k ∈ {1, 2, . . . , r}. (19)

It follows by Proposition 2.2 and (14) that

maxI(A1, . . . , Ar;C) = S̃n−1,...,n−1,...,n−1 = Si01,...,i
0
j ,,...,i

0
r
, (20)

which proves the final statement from Stage 5.

�

By (9) and (20) we obtain

Proposition 2.3. The maximal (A1, . . . , Ar)-invariant subspace included in C is

maxI(A1, . . . , Ar;C) =

i01∩
k1=0

· · ·
i0r∩

kr=0

A−k1
1 · · ·A−kr

r C,

where i01, . . . , i
0
r are the numbers determined in stages 2 and 4.



20 Valeriu Prepeliţă, Tiberiu Vasilache

3. Matlab program

The Matlab program presented below and based upon the algorithm above calculates

the dimension and an orthonormal basis of the maximal invariant subspace. The instructions

make use of the m-functions ints, invt and ima included in the Geometric Approach toolbox

published by G. Marro and G. Basile at

http://www3.deis.unibo.it/Staff/FullProf/GiovanniMarro/geometric.htm;

this GA toolbox works with Matlab and Control System Toolbox.

More precisely, given the matrices A1, A2 .... Ar that commute and the matrix C,

the next commands will compute and display the dimension of a basis and an orthonormal

one in the subspace S = maxI(A1, A2, . . . Ar;C), where C = ImC. The matrices are loaded

from the m-File GetAC.m, where A1, A2 .... Ar are stored in an 1 × r− dimensional cell

array A as A{1}, ....A{r} .

% begin m-file

% ints(X,Y)=an orthonormal basis for Im(X) intersected with ImYB)

% invt(X,Y)=an orthonormal basis for the inverse image of Y through X

% ima(Z) = an othhonormal basis in the subspace generated by Z

Get_A_C;

% A is a 1 x n cell array, containing A{1},... A{r}

[ ~, r] = size(A);

S = ima(C);

[n, dimMax] = size(S); % will be the dimension of the maximal invariant subspace

index = zeros(1, r); % the index of the calculated subspace

for j = 1:r % loop for index position

for i= 1:n-1 % loop for index value

S = ints(S, invt(A{j},S));

[~, m1] = size(S);

index(j) = i;

if (m1 == dimMax) break;

else dimMax = m1;

end

end

if ((dimMax == 1) && (norm(S, 2) == 0))

dimMax = 0; break;

end

end disp([’The dimension of the maximal invariant subspace is ’])

disp([ num2str(dimMax)]) disp(’and an orthonormal basis of this

subspace is:’) disp(S)

% end m-file
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For example, given the commuting matrices

A1 =


1 2 1 3

−2 −2 2 −2

1 2 1 1

2 0 −2 0

 , A2 =


1 2 −1 5

−6 −4 6 −6

−1 2 1 −1

6 0 −6 2

 ,

A3 =


1 3 3 2

2 −2 −2 0

3 3 1 4

−2 0 2 −2

 and C =


1 0 0

0 1 0

0 0 1

0 0 0

 ,

the m-File GetAC could be

A = cell(1, 3);

A{1} = [1,2,1,3;-2,-2,2,-2;1,2,1,1;2,0,-2,0];

A{2} = [1,2,-1,5;-6,-4,6,-6;-1,2,1,-1;6,0,-6,2];

A{3} = [1,3,3,2;2,-2,-2,0;3,3,1,4;-2,0,2,-2];

C = [ 1 0 0 ;0 1 0 ;0 0 1 ; 0 0 0 ];

and the above Matlab program will give the answers:

The dimension of the maximal invariant subspace is 2 and an

orthonormal basis of this subspace is:

-0.7071 0

0 1.0000

-0.7071 0

0 0 .

4. Application to the observability of a class of discrete-time rD systems

In this section we will show how Algorithm 2.1 can be applied to problems concerning

the concept of observability of a class of multidimensional systems.

We shall use the following notations: r := {1, 2, . . . , r} where r ∈ N∗. A function

x(t1, . . . , tr) is denoted by x(t), where t = (t1, . . . , tr), and ti ∈ Z+ are the discrete-time

variables.

For a subset δ = {i1, . . . , il} of r , we consider the notations |δ| := l, δ̃ := r \ δ and

|∅| := 0; for i ∈ r, ĩ := r{i}. The notation δ ⊂ r means that δ is ∅ or δ is a subset of r

and δ ̸= r. For δ = {i1, . . . , il}, the shift operator σδ is defined by σδx(t) = x(t+ eδ) where

eδ = ei1 + · · · + eil , ej = (0, . . . , 0︸ ︷︷ ︸
j−1

, 1, 0, . . . , 0) ∈ Zr; when δ = r we denote σδ = σ, hence

σx(t1, t2, . . . , tr) = x(t1 + 1, t2 + 1, . . . , tr + 1).

Definition 4.1. An rD discrete-time linear system is an ensemble Σ = (A1, . . . , Ar; B;C;D)

where Ai, i ∈ r are commuting n× n matrices over a field K and B, C, D are respectively
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n × m, p × n and p × m matrices over K. The K-spaces X = Kn, U = Km, Y = Kp

are called respectively the state space, input space and output space and the time set is

T = Nr. The following equations are called respectively the state equation and the output

equation:

σx(t) =
∑
δ⊂r

(−1)r−|δ|−1

∏
i∈δ̃

Ai

σδx(t) +Bu(t), (21)

y(t) = Cx(t) +Du(t), (22)

where x(t) = x(t1, . . . , tr) ∈ X is the state, u(t) ∈ U is the input and y(t) ∈ Y is the output

of the system Σ at the moment t ∈ T .

For any set δ = {i1, . . . , il} ⊂ r and for ti ∈ Z+, i ∈ δ, we use the notation

x(tδ, 0δ̃) := x(0, . . . , 0, ti1 , 0, . . . , 0, til , 0, . . . , 0).

Definition 4.2. The vector x0 ∈ Kn is called an initial state of the system Σ if

x(tδ, t
0
δ̃
) =

(∏
i∈δ

Ai

)
x0 (23)

for any δ ⊂ r; equalities (23) are called initial conditions of Σ.

By [8, Proposition 2.2], we have

Theorem 4.1. The output of the system Σ at the moment t, determined by the initial state

x0 and the output u : T → U is (with l = (l1, . . . , lr)):

y(t) = C

 r∏
j=1

A
tj
j

x0 +

t1−1∑
l1=0

. . .

tr−1∑
lr=0

C

 r∏
j=1

A
tj−lj−1
j

Bu(l) +Du(t). (24)

Definition 4.3. A state x ∈ Kn is said to be unobservable if, for any input u(t), the initial

states x0 = x and x0 = 0 produce the same output y(t), ∀t ∈ T .

Proposition 4.1. The state x ∈ Kn is unobservable if and only if

C

 r∏
j=1

A
tj
j

x = 0, ∀tj ∈ N, ∀j ∈ r. (25)

Proof. We denote by yx(t) and y0(t) the outputs produced by the initial state x0 = x and

x0 = 0 respectively, for an arbitrary input u(t). We obtain by (24) from yx(t) = y0(t) that

the state x is unobservable if and only if yx(t) − y0(t) = 0 ∀t ∈ T which is equivalent to

(25). �
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In the sequel we will consider the system Σ reduced to the ensemble Σ = (A1, . . . , Ar;C)

which is involved in formulas concerning observability.

Using Hamilton-Cayley Theorem as in the proof of Proposition 2.2, we deduce from

(25) the following result.

Proposition 4.2. The state x ∈ Kn is unobservable if and only if

C

 r∏
j=1

A
tj
j

x = 0, ∀tj ∈ N, tj ≤ n− 1, ∀j ∈ r. (26)

Let us denote by Xuo the set of the unobservable states of Σ and by C the subspace

C = KerC. The next theorem gives the geometric characterization of the set of unobservable

states of Σ.

Theorem 4.2. Xuo is the maximal (A1, . . . , Ar;C)-invariant subspace of Kn.

Proof. Let x be an unobservable state of Σ. Obviously, one obtains from (25), for tj =

0, ∀j ∈ r, that Cx = 0, hence Xuo ⊂ KerC.

For arbitrary i ∈r and tj ∈N, j ∈ r one obtains from (25): 0=C(
r∏

j=1

j ̸=i

A
tj
j )Ati+1

i x=

C(

r∏
j=1

A
tj
j )Aix, hence Aix ∈ Xuo, ∀i ∈ r, i.e. Xuo is (A1, . . . , Ar;C)-invariant.

Now, consider an arbitrary (A1, . . . , Ar;C)-invariant subspace V of Kn and let v be

an element of V. Since V is (A1, . . . , Ar)-invariant and it is included in KerC one obtains

(
r∏

j=1

A
tj
j )v ∈ V and C(

r∏
j=1

A
tj
j )v = 0, ∀tj ≥ 0, ∀j ∈ r. By (25), v ∈ Xuo, hence V ⊂ Xuo, i.e.

Xuo is the maximal such space. �

Definition 4.4. The system Σ is said to be completely observable if there is no unobservable

state x ̸= 0.

Therefore, the system Σ is completely observable if and only if Xuo = {0}. From
Theorem 4.2 we obtain

Theorem 4.3. The system Σ is completely observable if and only if {0} is the maximal

(A1, . . . , Ar;C)-invariant subspace of Kn.

By Theorem 4.2 we can use Algorithm 2.1 to determine the subspace Xuo of the

unobservable states of a multidimensional system Σ.

If one gets in Stage 2 the value i01 = n − 1 or in Stage 4 i0j = n − 1, it follows that

Xuo = {0}, hence, by Theorem 4.3, Algorithm 2.1 can be used to check if the system Σ is

completely observable.
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To this aim we modify Algorithm 2.1 by replacing C by KerC in Stage 1 (see (4) and

(5)) and in Stages 2 and 4. We also replace maxI(A1, . . . , Ar;C) by Xuo in Stages 2,4 and

5. We write ”The system is completely observable” in Stages 2 and 4 and ”The system is

not completely observable” in Stage 5.

5. Conclusions

An algorithm is proposed and its proof is given, in the lines of the Geometric Ap-

proach. This algorithm determines the maximal invariant subspace with respect to a finite

number of commuting matrices and which is included in a given subspace. This algorithm

can be used in the study of the observability of multidimensional (nD) linear systems, es-

pecially to find the canonical form of the unobservable systems and (combined with the

dual algorithm for the controllable subspace), the Kalman canonical decomposition of a

multidimensional system.
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