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INSTRUMENTING PYTHON CODE TO IMPROVE THE
DEVELOPMENT PROCESS

Mihnea Dobrescu-Balaur1 and Lorina Negreanu2

Python is one of the most popular programming languages to-
day. This is mainly thanks to its dynamic character, allowing fast devel-
opment times and short feedback loops while building prototypes. However,
the dynamic nature of Python becomes a disadvantage when deploying it in
production, making it hard to catch errors ahead of time. Thankfully, the
Python developers have implemented various tools to help with this. We
will examine the state of the art in Python tooling, as well as propose a new
debugging library that developers could use to examine the state within any
Python function.
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1. Introduction

Python is one of the most popular dynamic programming languages. It is
used in production at companies such as Google, Dropbox and Yahoo. Its main
advantages are the clean, straightforward syntax and vast standard library.
Thanks to this, developing in Python is fast and productive [1]. Despite being
a dynamic language, its strong typing gives programmers more trust when it
comes to their programs behavior. To give an example, while you can add
a number and a string in PHP and JavaScript, you cannot do so in Python.
Another component of the Python ecosystem that makes it really easy for
developers is the Python interpreter. One can fire up a Python shell just as
they would open a terminal and start experimenting right away. Even more,
a breakpoint can be set from within the code and at runtime the programmer
gets a fully enabled Python shell within the execution of the program. This,
together with the powerful introspection tools that come included with the
language, makes Python a very developer-friendly language. This is important
because when we think about successful projects, more time will be spent
maintaining them and trying to find and fix bugs rather than the amount of
time spent implementing them in the first place, so good debugging capabilities
are crucial.
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This leads to the core of this article - tooling. Developer tools are distinct
programs that help developers in their work. The main categories are debug-
gers, static checkers, profilers and tracers. Debuggers help with executing code
step by step in order to find a bug as it happens. They require plenty man-
ual intervention, since the programmer controls the process entirely. Static
checkers are tools that scan the codebase of a project and detect errors based
on the type system (if the programming language is typed) or on user-defined
rules (a function shouldn’t have more than 5 arguments); in the latter case,
the checkers are also called linters. Profilers are useful when performance is in
question. The programmer might want to find out which function is spending
the most CPU cycles, or how much memory is the program using over time.
Finally, tracers are useful in following the flow of execution through a program.
Especially in dynamic languages such as Python where one can build function
names dynamically, based on user input, and then call them, understanding
the exact path that a program’s execution followed is not always trivial.

We will dive into more details as follows. First, we will examine the
current state of the art for developer tools in the Python ecosystem. Then,
we will compare these tools with the latest advances in developer tools from
other programming communities. Finally, we will introduce execution-trace
[2], a new developer tool for Python based on what we’ve learned from other
languages, and draw some conclusions.

2. Related Work

2.1. Python Tooling

We will distinguish between two types of analysis that developer tools
perform: static and dynamic. Naturally, we only discuss about what is avail-
able within the Python ecosystem.

2.1.1. Static Analysis. Static checkers [3] are called so because they do not
execute the target code. This is a great advantage, because any side effects that
might be performed by executing arbitrary code from a project are avoided.

Implementations range from simple tools such as linters that can check
for style errors to more complex ones such as type checkers that can use the
code in order to determine the type correctness of a program. In the Python
ecosystem, Pylit [4] is the most common linter, while Mypy [5] is the leading
static checker. Mypy relies on optional type annotations [6].

2.1.2. Dynamic Analysis. Opposed to static analysis we have dynamic anal-
ysis [7]. This implies running the target program and capturing the relevant
information at runtime. These tools instrument the target code; that is, they
modify the code before running it such that internal functions needed for data
acquisition are called at relevant points in a program’s execution. Such tools
are used in static validation research [8] in order to better understand ex-
isting programs. Similar approaches have been used even in statically typed
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languages such as Java in order to improve the context around runtime excep-
tions when debugging [9][10].

The main types of dynamic analysis tools one can find, particularly for
Python, are profilers and tracers. To name a few: cProfile, line profiler, mem-
ory profiler, trace.

2.1.3. Interactive Development. Building on dynamic analysis tools, others
have implemented entire interactive development environments. One such ex-
ample is Light Table [11], an integrated development environment (IDE) where
the user can interact with their code in ways that were previously only possible
in an interpreter. The developer can evaluate any line of code from the file and
see the result right next to it, as a comment. This all happens within a sand-
boxed interpreter, invisible to the developer. Using this concept, Light Table’s
developers have implemented other plugins, allowing for even more interesting
interactions, such as changing the parameters of a WebGL animation while it
was rendered.

3. Problem Description

3.1. Tracking State in Python Functions

Bugs and errors are expected when it comes to live, production systems.
Developers try their best to guard against errors by using catch blocks and
putting logging in place so that they know as much as possible about the state
of the program when an exception was raised. However, this is not perfect
all the time - one cannot correctly guess ahead of time all the information
that would be needed for investigating an exception. When bugs occur, it is
worse, because there is no code in place to guard against them. We found
that in high-volume systems, such a situation usually happens multiple times,
in a deterministic manner. Thus, it would be useful to have a way in which
a developer could get access to the complete execution flow of a function,
including the state of all accessible variables.

Usually, to achieve something similar, a developer would either start a
debugger or insert multiple logging statements. These approaches are not
ideal. First of all, it might be impossible to reach the live process in order to
start a debugger. Then, even if it were possible, the developer would have to
go through a lot of steps by hand until the error is reproduced. As for logging
statements, it involves writing multiple lines of code that could still miss some
relevant state.

To solve this problem we took inspiration from interactive IDEs such as
LightTable - while they show the value of every evaluated expression, this only
happens during the development process. We suggest taking this idea and
extending it to be applicable within a live deployment of the target program.

We are aiming towards a solution through which a developer is able to
inspect the complete state of a function, after each execution step, within
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1 def add_if_positive(a, b):

2 if a >= 0 and b >= 0:

3 s = a + b

4 else:

5 s = 0

6 return s

7

8 print add_if_positive(2, 3) # 5

9 print add_if_positive(-1, 2) # 0

Listing 1. Our hello.py file.

a production system. A possible user interface would allow the developer to
scroll through separate function executions. Within each execution they would
be able to follow the actual code path that was taken during runtime, while
inspecting the values of all the local variables of the given function.

3.2. Python Internals

Our solution heavily relies on the inner workings of the Python interpreter
and its execution flow. Thus, before being able to explain our implementation,
we should first introduce the concepts and behaviors we are relying on.

3.2.1. Execution Model. Python is an interpreted language, making use of a
simple, stack-based virtual machine. We will now look at the events that take
place when a developer executes a Python program.

Let us assume we have a file named hello.py, as shown in the code listing
below. Running python hello.py will produce the following two outcomes:

• 5 and 0 will be printed to the screen
• A new file, hello.pyc will be present in the current working directory

Here are the steps that have happened in order to produce the two out-
comes mentioned above:
(1) The hello.py file was loaded.
(2) The code was parsed and checked for syntactic errors.
(3) An abstract syntax tree (AST) representation was built.
(4) The AST was converted into interpreter bytecode.
(5) The bytecode was saved as hello.pyc.
(6) The bytecode was executed by the Python interpreter.

There are a few aspects that are worth detailing from the steps above.
First of all, the abstract syntax tree representation (AST). ASTs are useful for
applying generic transformations and optimizations to code, without having to
take into account coding style conventions or even syntax. In Python’s case,
no optimizations are performed, but the AST representation is still extremely
important because it is used to generate the needed bytecode. Python allows
the developers to interact with AST representations using the ast module.
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1 Module(body=[

2 FunctionDef(name='add_if_positive', args=arguments(...),

3 Print(dest=None, values=[Call(func=Name(id='add_if_positive', ..),

4 Print(dest=None, values=[Call(func=Name(id='add_if_positive', ..)

5 ])

Listing 2. AST representation of hello.py.

Being an interpreted programming language, Python makes use of a small
virtual machine which executes custom instructions, namely the bytecode.
Python allows developers to view the bytecode corresponding to a function
through the dis module.

It is important to mention that all the steps outlined above are performed
at runtime. This means that if one is able to change the bytecode of an already
loaded function, they can make the Python interpreter execute something else
than what was originally intended. It turns out that this is possible, and we
will examine just how this can be achieved in the following section.

3.3. Executing Arbitrary Code

We have previously shown what happens whenever a Python script is
being executed. Now, we will outline how a developer can access all the internal
representation data at runtime, as well as how they can change this data in
order to alter the execution of a program.

Let us say we want the hello module to print the value of add if positive(-1,

2) twice. To achieve this, here is what we need to do:
(1) Get the source code of hello.
(2) Parse it into the AST representation.
(3) Modify the body of the module such that it has one more print statement

with the value of add if positive(-1, 2).
(4) Compile the modified AST into a new code object (the type of objects

that store bytecode), using the exec mode. This is the equivalent of
executing the code within the object in the root of the module. That
means that if the object defines a function, that function will be defined
in the environment as soon as the compiled code is executed.

(5) Get a handle to the global environment of the program.
(6) Execute the code object in the global environment, essentially redefining

the imported module.
Now, the globally available hello module is not the one we have defined

in hello.py, but a changed version which has one more print statement at the
end.

Having the ability to execute arbitrary code besides any imported module
or function allows us to implement the solution described in Section 3.1.
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3.4. Changing Functions to Track State

The problem we are trying to solve is the following: given a Python
function object (which we receive thanks to the decorator syntactic sugar),
how can we track the state of all its local variables over time?

We know from Section 3.3 that we can change a function’s body as we
wish and then inject it back into the environment. Based on this, if we had a
way that takes a snapshot of the local variables within a function at a given
time, we could do this after every statement that is in the function.

Python’s built-in locals() function does exactly this - it returns a dictio-
nary with all the local variables and their values at evaluation time. However,
calling locals() is not enough, because that information is bound within the
stack frame of the function. We need to store this information outside the
function, such that we can later dump it to a file.

To achieve this, we define a helper function that takes a state snapshot
and a line number (we need this for populating the data in the user interface)
and stores the relevant information.

Having the helper function, what we have to do is insert calls to it after
each statement of the recorded function. In addition to this, there is one
more thing to do. The helper function that we have defined is available in the
environment of our library, but not in the environment of the recorded function.
Thus, we need to inject one more reference in the target environment.

3.4.1. Nested Blocks. Statements such as if and while introduce nested blocks
of code that are represented as a subtree in the AST. To properly handle this,
we need a recursive algorithm that knows how to walk tree-like structures and
recurse on nested bodies. Furthermore, due to the internal representation of
such blocks, we also need to prepend a record state call in order to observe
the local state when evaluating an if or while statement’s predicate.

Try blocks represent a special case of this, having multiple exception
handlers (e.g. every except block) that need to be annotated. The same
pattern occurs with elif, Python’s version of the switch statement.

3.4.2. Return Statements. We cannot inject a record state call after a return
statement, because it would never be evaluated. Thus, we need to detect return
statements and handle them separately by introducing an auxiliary variable
where we capture the last value before it is returned. Of course, we have to be
careful not to evaluate the returned expression twice, because it might have
side effects.

3.4.3. Storing the Traced Data. Recording the trace is only one part of the
problem at hand. As a function is finished executing, we still need to expose
the valuable data somehow. The approach we have chosen is to dump it into
a file on the user’s filesystem. This way, the data is persisted and it can be
visualized later by the programmer.
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Although writing to a file is trivial, calling a procedure that does this
from someone else’s code is not. The first approach that we took was to
augment the return statement behavior by also inserting a call to the dump
function, and this worked for functions with explicit return statements.

However, not all Python functions use explicit return statements, which
made the mentioned approach insufficient. To solve this problem, we returned
to the decorator pattern[12]. Instead of simply replacing the user’s function
with our annotated one, we wrap it into a function that calls the dump data
handler after calling the original. This way, we cover both functions that use
return statements and the ones that do not.

3.4.4. Recursion. Recursive functions are a special category that needs our
attention. Our first implementation had no issues with regard to them. How-
ever, after we have added the function wrapper described in Subsection 3.4.3,
our tests uncovered that recursive functions would trigger infinite loops.

The reason for this is subtle and has to do with the way we called the
annotated function in our wrapper. To get a reference to the called function, we
would look into the user’s environment and get the function object by its name.
This worked fine for non-recursive functions. However, when a function ended
up calling itself, the Python interpreter would do the same thing. Because of
the way decorators work, this time the function object behind that name was
our wrapper. The actual function could no longer be reached, and this led to
infinite recursion.

To address this issue, we experimented with a few unsuccessful approaches.
First, we tried storing the annotated function under a different name, but that
would not work for the original recursive calls that used the old name. Then,
we attempted altering the AST nodes by changing the function name, and
even a simpler approach of just performing text replacement on the source
code. However, this approach still did not cover the dynamic calls that Python
allows at runtime.

Finally, we found the proper approach. By leveraging the fact that
Python decorators replace the original function with the wrapped one, we
are certain that any call will point to our wrapper. Then, to avoid the infi-
nite recursion, we store a reference to the annotated original function under a
different name in the user’s environment. This way, our wrapper never calls
itself anymore.

3.4.5. Complete Syntax Support. Our current implementation supports all of
Python’s syntax. In a following section, on testing, we discuss how we make
sure that every syntax feature is supported and maintained as development
advances.

3.4.6. Multiple Executions Suport. Because most functions are executed more
than once, and some of them are even run multiple times per second, our li-
brary needs to be able to only record a certain number of executions. This
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is necessary both from a user friendliness perspective, since the user does not
want to be overwhelmed by the quantity of data, but also from a performance
perspective, as memory usage increases both in RAM and on disk as more
executions are recorded. Therefore, the user can specify a maximum num-
ber of executions that should be recorded. After that number is reached, no
additional data is stored.

3.4.7. Reverting to the Original Function. While considering the performance
overhead of our library, we came to realize that there is no need to keep
calling the instrumented version of the function after the required number of
executions was recorded.

Thanks to Python’s decorators, we still have a reference to the original
function within our wrapper. This, combined with the number of executions
that were recorded logic allows us to conditionally call either the instrumented
version of the function or the original one. Doing this, we are avoiding the
overhead introduced by the record calls, as we will show in the Evaluation
chapter.

3.5. Visualizing the Traced Data

Recording large amounts of data is useless if there is no convenient way
of examining it. Therefore, we also provide an interactive, Web-based visu-
alization tool. This allows the user to explore the recorded traces. On one
hand, the user can select a particular trace from the recorded set. On the
other hand, they can go through the function’s execution using a scroll axis,
replaying the way in which the code ran. For every step, all the variables’
values are displayed.

Fig. 1. Visualization of recorded data.
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1 from execution_trace.record import record

2

3 @record()

4 def repeat(x, count):

5 r = []

6 for i in range(count):

7 r.append(x)

8 return r

Listing 3. Using @record.

3.6. Packaging and Release

Both the decorator and the visualizer are packaged as a standard Python
package - execution-trace [2] - available through Pypi, the central Python pack-
ages index. This makes our tool easily available to all developers.

The install script also places an executable in the user’s PATH, making the
viewer available with a simple command: view trace. Running view trace

/path/to/dump/file will start the Web server, making the visualization avail-
able at http://localhost:5000.

4. Evaluation

Putting it all together, we get the @record decorator, which we can use
to obtain a step-by-step evolution of the state of all the variables within any
function, with minimal setup. Listing 4 shows an example.

As we can see, the only setup needed is to install the record library,
which can easily be done using Python’s package manager, and then decorate
the target function.

Thanks to the way we record the state, by using injected calls after every
relevant statement, we get to see the program’s evolution, just as we would
using a debugger. In the example presented in Listing 13, we can see how r

grows with every step through the loop.
Then, using the built-in graphical viewer, the programmer can step

through the execution of the program in a user friendly way, going through
time back and forward as he needs.

4.1. Testing

Our library aims to support all possible Python functions. Even with
Python’s simple syntax, this still amounts to a large number of possibilities.
Thus, to avoid bugs as much as possible, we have created a test suite that covers
every case of syntax that we know we support. Furthermore, development on
the record module happens in a test-driven manner. This makes it easier
because first we outline a test case in which we specify what kind of function
we are targeting and what calls we are expecting to see, and only after this we
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start developing the necessary support in the library, having a clear picture
about what is needed.

Our tests only check the first argument of the recording function (i.e. the
line number) and not also the state snapshot because the value of lineno is
controlled by our implementation, while locals() is a built-in Python function
that we safely assume that it works correctly.

In addition to testing the recorded calls, we have also developed a set of
schemas for validating the dump file’s contents, and we check those as well in
every test.

4.2. Performance

While our solution gathers plenty of data in order to provide value to
the programmer, we cannot be oblivious to any effects it might have when run
in production. High traffic solutions are usually tuned and stretched to the
limit in order to provide as much performance as possible, and while useful, our
library would not be embeddable in a production system if it meant decreasing
the performance of the system being instrumented.

To measure the performance impact of our library, we have set up a
naive implementation of finding the prime numbers up to a number N, having
a helper function that checks (innefficiently, as well) if a number is prime. We
chose the innefficient approach because we wanted a CPU-intensive function
that is called multiple times, and that is exactly the case with our is prime

helper.
We have set up an experiment where we run find first primes for

increasing values of N and we measure the time the function calls take.
First, we measure the baseline version, with no instrumentation whatso-

ever, to establish the expected performance. Then, we run the instrumented
version which records 100 executions but does not have the revert to origi-
nal function optimization (Subsection 3.4.7). Fig. 2 shows that as soon as
the instrumented function gets called more often and with larger iterations,
performance decreases considerably.

Including the aforementioned optimization, we can observe the overhead
diminishing. As Fig. 3 shows, performance is no longer an issue.

4.3. Using the Tool

These are the steps of using execution-trace:
(1) install the library: pip install execution-trace

(2) annotate the function that should be traced
(3) run the program
(4) execute the logged command: view trace /path/to/file.json
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Fig. 2. Always running the instrumented function decreases
performance.

Fig. 3. Reverting to the original function avoids the overhead.

5. Conclusions

We have examined the available developer tools for Python. As we have
shown, most needs are already covered, be it memory profiling or even static
checking. However, recent developments in other programming languages’
communities have produced development experiences with a higher level of
interactivity. These interactive IDEs have led us to propose a new approach
in debugging - recording a function’s execution in production deployments.
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Our implementation provides the developer with a simple way to trace
the state of any given function, as well as an intuitive graphical interface to
explore the traced data. When compared to the usual methods developers
have when inspecting unexpected behavior in live deployments, our approach
has several advantages:

• All the variables’ state is captured, so the programmer does not have to
worry about what should be logged and what should not.

• There is no need to reach the live process in order to attach a debugger -
the regular deploy flow (no matter how complicated) can be reused.

• Ease of use - the developer only has to add an extra library and annotate
a function.

• Visual way of stepping through the execution, being able to both observe
the code path taken, as well as the state of the program.

• Performance is not affected - the library can safely be run in production.
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