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ON A HYBRID PROXIMAL POINT ALGORITHM IN BANACH
SPACES

Vahid Dadashi!

In this paper, we introduce a hybrid projection algorithm for a countable family
of mappings of type (P) in Banach spaces, this class of mappings containing the classes of
resolvents of mazimal monotone operators in Banach spaces and the firmly nonexpansive
mappings in Hilbert spaces. We prove that the generated sequence by the new algorithm
converges strongly to the common fized point of the mappings. Furthermore, we apply
the result for the resolvent of a mazimal monotone operator for finding a zero of it. The

results obtained extend some results in this context.
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1. Introduction

One method for approximation the zeros of maximal monotone operators is the prox-
imal point algorithm. A well-known study for this purpose is made by Rockafellar in Hilbert
spaces [1]. He proved the weak convergence of the algorithm to a zero of a maximal monotone
operator; also, see [2]. Since then, several authors have studied this method and introduced
modified versions: Boikanyo and Morosanu [3], Khatibzadeh et al. [4, 5], Rouhani and
Khatibzadeh [6], Solodov and Svaiter [7, 8], Xu [9], Yao and Postolache [10] and others.

Recently, some authors introduced modified algorithms of proximal type and studied
their convergence in Banach spaces: Li and Song [11], Matsushita and Xu [12, 13], Nakajo
et al. [14], Dadashi and Khatibzadeh [15]. Very recently, Dadashi and Postolache have
introduced a hybrid proximal point algorithm for special mappings in Banach spaces [16].
They proved that the generated sequence by the algorithm converges strongly to the common
fixed point of the countable family of mappings and used the result to the problem of finding
a zero of a maximal monotone operator in Banach space. The mappings in the main theorem
have to satisfy the so called Condition (Z).

The aim of this paper is to remove Condition (Z) and prove a strong convergence
theorem for the existence of the limit of mappings at an arbitrary point. The results could
be applied for finding a solution of an equilibrium problem and a minimizer of a convex
function. The paper is organized as follows. In Section 2, we recall some definitions on the
geometry of Banach spaces and monotone operators, which will be used in what follows. In

Section 3, we prove strong convergence theorems for a countable family of mappings. In
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particular, a result for firmly nonexpansive mappings has been obtained in Hilbert spaces.
In Section 4, we consider the resolvent of a maximal monotone operator in Banach spaces.
Using Section 3, we get strong convergence of the sequence to the zero of a maximal monotone
operator.

2. Preliminaries

Throughout the present paper, let X be a real Banach space. We write z,, — x to
indicate that the sequence {z,} weakly converges to z; as usual z,, — x will symbolize
strong convergence. The normalized duality mapping J from X into the family of nonempty
w*-compact subsets of its dual X* is defined by

J(@) ={z" € X"+ (2", 2) = |Jz|* = |="|*},
for each x € X [17].

Lemma 2.1 ([18]). Let X be a real Banach space and J be the duality mapping. Then, for
each x,y € X, one has
lz +ylI* < [l2l* + 2(y, J (= + y)).
The norm of X is said to be Gateaux differentiable (and X is said to be smooth) if

lim B +tyt|| ] (1)
exists for each z, y € U := {z € X : |z|| = 1}. It is known that if X has a Gateaux
differentiable norm, J is single-valued. The norm is said to be uniformly Gateaux differen-
tiable if for y € U, the limit is attained uniformly for x € U. The space X is said to have
a Fréchet differentiable norm if for each € X the limit in (1) is attained uniformly for
y € U. The space X is said to have a uniformly Fréchet differentiable norm (and X is said
to be uniformly smooth) if the limit in (1) is attained uniformly for (z,y) € U x U. It is
known that X is smooth if and only if each duality mapping J is single-valued. It is also
well known that if X has a uniformly Gateaux differentiable norm, J is a uniformly norm
to weak™ continuous on each bounded subset of X.

If the norm of X is Fréchet differentiable, then J is norm to norm continuous and
if X is uniformly smooth, then J is uniformly norm to norm continuous on each bounded
subset of X.

The normed space X is called uniformly convex if for any ¢ € (0,2] there exists
a d = 0(¢) > 0 such that if z,y € X with ||z|| = 1, |ly]| = 1 and [z — y|| > &, then
|2(z+y)|| <1—46. A normed space X is called strictly convex if for all z,y € X, z # y,
llz]| = |lyll = 1, we have ||Az + (1 — A)y|| < 1, VA € (0,1). It is known that if X is uniformly
convex, then X is strictly convex, reflexive and has the Kadec-Klee property, that is, a
sequence {x,} in X converges strongly to x whenever x,, — z and ||z,| — ||z||. If X is
uniformly convex, then X is a strictly convex and reflexive Banach space, which has the
Kadec-Klee property.

Lemma 2.2 ([19]). Let X be a smooth, strictly convex and reflexive Banach space, {xy}
a sequence in X, and x € X. If (x, — x,Jx, — Jx) — 0, then z, — z, Jx, — Jzx, and
[znll = [l]-
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Definition 2.1. The multifunction A: X = 2% is called a monotone operator if for every
T,y € X,

(" —y",x—y) >0, Vo* e A(z), Yy e A(y).

A monotone operator A: X = 2% is said to be mazimal monotone, when its graph is not
properly included in the graph of any other monotone operator on the same space and the
effective domain is defined by D(A) = {z € X : A(x) # 0}.

Let C be a convex closed subset of X. The operator P¢ is called a metric projection
operator if it assigns to each = € X its nearest point y € C, such that

e — yll = min[le — 2| : 2 € O},

It is known that the metric projection operator P¢ is continuous in a uniformly convex
Banach space X and uniformly continuous on each bounded set of X if, in addition, X is
uniformly smooth. An element y is called the metric projection of X onto C and denoted
by Pcx. It exists and is unique at any point of the reflexive strictly convex spaces.

Lemma 2.3 ([18]). Let X is a reflexive and strictly convexr Banach space and C is a

nonempty, closed and convex subset of X. Then, for all x € X, the element z = Pox if and
only if
(J(x—2),z—y) >0, VyeC.

For a sequence {C,} of nonempty, closed and convex subsets of a Banach space X,
define s-Li,C, and w-Ls,C,, as follows: z € s-Li,C, if and only if there exists {z,} C X
such that {x,,} converges strongly to « and x,, € C,, for all n € N. Similarly, y € w-Ls,C,, if
and only if there exist a subsequence {C),, } of {C,,} and a sequence {y;} C X such that {y;}
converges weakly to y and y; € C,, for all i € N. If Cj satisfies in Cy =s-Li,,C, =w-Ls,Cy,, it
is said that {C,, } converges to Cy in the sense of Mosco [20] and we write Cy = M—nlgrréo Cp. Tt
is easy to show that if {C,,} is nonincreasing with respect to inclusion, then {C,,} converges
to N2, C,, in the sense of Mosco. For more details, see [20].

The following lemma was proved by Tsukada [21].

Lemma 2.4 ([21]). Let X be a uniformly convexr Banach space. Let {Cy} be a sequence

of nonempty, closed and convex subsets of X. If Cy = M-1lim C,, exists and nonempty,
n—oo

then for each x € X, Po,x converges strongly to Pco,x, where Pc, and Pc, are the metric
projections of X onto C,, and Cy, respectively.
3. Main results

Let X be a smooth Banach space and C' a nonempty subset of X. A mapping
T:C — X is said to be of type (P) if

(Tx—Ty,J(x —Tz)— J(y —Ty)) >0,
for all z,y € C (see [19]). A mapping S: C' — X is said to be of type (R) if

(@ — Sz — (y — Sy), J(Sz) — J(Sy)) = 0.
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It is easy to see that T is of type (P) if and only if S =T — T is of type (R). If S is
of type (R), then for each z,y € C' we have the following inequality,
(ISzl = lISyl)* < (Sx— Sy, J(Sx) — J(Sy))
(z —y, J(Sz) = J(Sy))
[l = yll (1S (| + 1Syl)- (2)

IN

IN

Theorem 3.1. Let X be a smooth, strictly convex, and reflexive Banach space, C' a nonempty
subset of X and S, : C — X a family of mappings of type (R). Then the following hold:

(1) If {zn} is a bounded sequence in C' and {S,z} is bounded for some xz € X or
NS, 8,7 1(0) # 0, then {Syx,} is bounded;

(2) Let the norm of X is Fréchet differentiable. If {x,} be a sequence in C' such that
z, — x € C and S,z — y, then Spx, =y, J(Spzn) = J(y) and ||Spxn|| — |lyll;

(3) If X has the Kadec-Klee property, then Sy, — y.

Proof. (1) Suppose that {z,,} and {S,x} are bounded sequences in C for some z € X but
{Snx,} is not. Then, there exist M, N > 0 such that ||S,z| < M and ||Spz,| > M for all
n > N. Since S, is of type (R) for each n € N, it follows from (2) that

(UISnaall = 15wz l)? _ ([Snzall — M)

zn — [l > ;
| Snanll + || S| | Snanll + M

for each n € N, and hence we get ||, || — oo, which is a contradiction. Suppose that {z,}

is a bounded sequence and z € N2, S,71(0). So, we have S,z = 0 for each n € N. From the

definition of the mapping of type (R), we obtain
0 < (xp—Spnzn—(2—5Sn2), J(Snzn) — J(Snz))
= (Tp — SpZn — 2, J(Snxy))
= (&0 — 2,J(Spxn)) = [1Snznll?,

and hence ||S,z,]? < (zn — 2, J(Snwn)) < ||z — 2||||Snzn]| for each n € N, which shows

that the sequence {S,z,} is bounded.

(2) Let {z,,} be a sequence in C such that z,, = « € C and S, — y. Since the norm
of X is Frechet differentiable, then J is norm to norm continuous and hence J(S,x) — J(y).
It follows from (2) and part (1) that

= (Spxp — Spx, J(Spxyn) — J(Snx)) + (Snxn — Snz, J(Spz) — J(y))

+(Snx —y, J(Spn) — J(Snx)) + (Snx —y, J(Spz) — J(y))
[2n = 2|[([[Snnll + 1Snz]]) + ([Snznll + |1Saz D] (Snz) — J(Y)]
FlSne = yll(ISnznll + [1Snell) + (Snz =y, J(Snz) = J(y)) = 0,

IN

as n — co. Then Lemma 2.2 implies that S,z, = y, J(Spx,) — J(y) and ||Spz,| — [yl
(3) follows directly from (1). O

Theorem 3.2. Let X be a smooth, strictly convez, and reflexive Banach space, C' a nonempty
subset of X and T,,: C — X a family of mappings of type (P). Then the following hold:
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(1) If {zn} is a bounded sequence in C' and {T,xz} is bounded for some z € X or
N2 F(Ty) # 0, then {T,x,} is bounded;

(2) Suppose that the norm of X is Fréchet differentiable. If {x,} is a sequence in C
such that x, — x € C and T,x — Tz, then Tz, — Tx, J(x, — Thay,) = J(xz — Tx) and
[2n = Thzn| = |z — Tll;

(3) If X has the Kadec-Klee property, then Tpx, — Tzx.

Proof. Let S,: C — X be a mapping defined by S, = I — T,,. It clear that S, is of type
(R). Then, Theorem 3.1 implies the conclusions. |

Let X be a smooth Banach space and C' a nonempty closed convex subset of X.
Suppose that T,,: C' — C be a family of mappings of type (P) with F := (', F(T,,) # 0,
then

(Thxr —z,J(x —Thx)) >0, YneN, VzelF, Vxel, (3)

which is equivalent to
|z — Toz||* < (x — 2, J(x — Tpx)), YneN, VzeF, VrxeC. (4)
Algorithm 3.1. We consider the sequence {x,} generated by the following formulas:

z, = Pc, (),

Yn = Tn(zn),

Cni1={2€Cn: (yn — 2z, J(xn —yn)) > 0},
where C7 = C and x € X.

We first prove that the sequence {x,} generated by Algorithm 3.1 is well-defined.
Then, we prove that {z,,} converges strongly to Pr(z), where Pp(x) is the metric projection
from X onto F.

Lemma 3.1. Let X be a smooth, strictly convex and reflexive Banach space, C' a nonempty,
closed and convex subset of X and T,,: C — X a family of mappings of type (P) such that
F:=,_oF(T,) # 0. Then, the sequence {x,} generated by Algorithm 3.1 is well-defined.

Proof. 1t is easy to check that C,, is closed and convex for each n € N. Clearly, we have
F C C = (1. Assume that F' C C,, for some n € N. Since X is strictly convex and reflexive,
there exists a unique element x,, € C,, such that z, = Pc, (x). Let p € F. Since T, is
a mapping of type (P), we have (T,z, — p, J(zn, — Thx,)) > 0 by (3), which implies that
p € Cpy1. Then F C Cp41. By induction on n, we see that F' C C,, for every n € N.
Therefore, {z,} is well-defined. O

Theorem 3.3. Let assumptions in Lemma 3.1 are satisfied. Suppose that the norm of X

is Frechet differentiable and T is a mapping of C into X defined by Tz = lim T,z for all
n—oo

z € C such that F(T) = F. Then the sequence {x,} generated by Algorithm 3.1 converges

strongly to the element Pr(x) of F, where Pr(x) is the metric projection from X onto F.
Proof. Suppose that w = Pg(x). Since x,, = P¢, (z) and F C C,,, we have

[an — 2| < [Jw -], ()
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hence the sequence {x,} is bounded. From (4), we get
[0 = yull = |20 — Than|| < llon — wl],

which implies that the sequence {y,} is bounded too.

Let D = N22,C,. Since § # F C D, we observe that D # (). By Lemma 2.4, we
get x, = Po,x — Ppx = wy. By assumptions and Theorem 3.2 (part (2)), it follows that
Yn — Two, J(xn — yn) — J(wo — T'wp) and

[0 = ynll = llwo — Twoll. (6)
Taking into account that wy € C),41, we have
0 < (yn — w0, J(@n = yn)) = —llzn = ynll® + (2 — w0, I (20 — yn)),
therefore,
[2n — ynll? < (2 — wo, J(Tn — yn)) — (wo — wo, J(wo — Twp)) = 0. (7)

From the uniqueness of the limit, (6) and (7), we get Twy = wo, hence the sequence {z,}
converges strongly to wg € F.
Now, we show that wg = Pp(z). From (5), we get lim ||z, —z| < ||w—z|. Therefore,
n—oo

from w = Pp(z), wo € F we obtain
lw = zf| < flwo = f| = lim_[lz, — 2| < [Jw — 2.
n—oo

This together with the uniqueness of Pp(x), implies that wy = w = Pp(z). Hence {z,}
converges strongly to Pr(z), and this completes the proof. O

Corollary 3.1. Let X be a smooth, strictly convex, and reflexive Banach space such that
the norm of X is Fréchet differentiable. Suppose that C' is a nonempty closed convex subset
of X and T: C — X be a mapping of type (P) such that F(T) # 0. Let the sequence {x,}
generated by

T = Pcn (Jf),

Yn = T(xn)7

Crp1={2€Cn: (Yn — 2, J(xn —yn)) > 0},
where C1 = C and © € X. Then the sequence {x,} converges strongly to the element
Pr(7)(z).

A mapping T: C' — H is said to be firmly nonexpansive if
|Tx — Ty|? < (x —y, Tz —Ty), forallz,yeC.
Obviously, if a mapping T: C — H is firmly nonexpansive, then
(Tz =Ty, (x —Tz) — (y — Ty)) = 0,

holds for all 2,y € C, hence T is of type (P).

From Theorem 3.3, we have the following results in Hilbert spaces.
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Theorem 3.4. Let H be a Hilbert space, C a nonempty closed convex subset of H, {T,}
a sequence of firmly nonexpansive mappings of C into H such that F = (\,_, F(T,) # 0.
Consider T be a mapping of C into X defined by Tz = lim T,z for all z € C' such that
F(T)=F. Letx € H, {z,} be a sequence in C and {nC_';O}o a sequence of closed convex

subsets of H defined by C1 = C and
Tp = PCn (J;)a
Yn = Tnxna
Cn+1 = {Z €Cy: <yn — 2, Tn _yn> > 0}7

forn € N. Then {z,} converges strongly to Pr(z).

Corollary 3.2. Let H be a Hilbert space, C' a nonempty closed convex subset of H, and T a
firmly nonezpansive mapping of C' into H such that F(T) # 0. Let x € H, {x,} a sequence
in C and {Cy} a sequence of closed and convex subsets of H defined by C1 = C' and

x, = Po, (),
Yn = Tfn,
Cn+1:{Z€OnS <ynfzaxn7yn>20}7

forn € N. Then {x,} converges strongly to Ppr(x).

4. Proximal Point Method

A well-known method for solving the equation problem 0 € A(p), in a Hilbert space
H, is the proximal-point algorithm (please see [1]) in which 2y = « € H is arbitrary and

xn+1:JrnIn+en7 n:1a2537"' ’ (8)

where e,, is an error vector, {r,} C (0,00) and J, = (I +7rA)~! for all r > 0 is the resolvent
operator for A.

Definition 4.1. Let X be a smooth, strictly convex and reflexive Banach space. Suppose
that A: X = 2% is a maximal monotone operator. The operator J{*: X — D(A) given by
Ji}(x) =z is called the resolvent of A, which z satisfies +J(z — x)) € A(x»).

In the following, we denote the resolvent operator J ;\4 by J.

Algorithm 4.1. Let A: X — 2%X" be maximal monotone and Jg, is the resolvent of A for
Br > 0. Suppose that the sequence {z,} generated by:

{ Yn = J3, (1}0),

Ty = antu+ (1 — ap)yn + en, n=123--.

Theorem 4.1. Let X is uniformly conver A: X = 2X° is mazimal monotone, F :=
A7L(0) # 0 and the sequence {x,} generated by Algorithm 4.1. If o, — 0, B, — 00
and e, — 0, then x, — q = Pr(xo).

Proof. Let p € A=(0) and the sequence {x,} generated by Algorithm 4.1. Then 0 € Ap,
BLJ(;L"O — yn) € A(y,) and, from the monotonicity of A, we get:

I?

0< <J(IO - yn)ayn *p> = 7”1'0 —Ynl|” + ||I0 - yn”HIO 7p||'
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Therefore, |y, — zo|| < ||zo — p||, and hence the sequence {y,} is bounded. Since
[2n = ol < amflu =m0l + (1 = an)llyn — oll + llenll; (9)

and {y,} and {e,} are bounded, we know that {x,} is bounded. Then there exists a
subsequence {xz,, } of {x,} which converges weakly to some point p € X. By Algorithm 4.1,
and replacing n by nj, we obtain

1

m(mnk — O, U — €,),

Yny, =
and hence {yy, } converges weakly to p. From boundedness of {y,} and 8, — oo, we get
1
—J(xo — Yn,,) — 0.
Br

Since A is demiclosed, we have p € A71(0).

A(Yn,,) 2

Finally, we show that {z,} converges strongly to ¢ = Pr(zg).
By (9) and [lyn — o]l < [|lz0 — pl|

[ = 2ol| < anllu = ol + (1 = an)l[zo — p[| + [lenll;

and then, limsup ||z, — zo|| < ||xo — p||. From the weakly lower semicontinuity of the norm
—o0

n
and the assumptions, we obtain

lzo = qll < llzo = pl|

IA

liminf ||zg — 2y, ||

IA

limsup ||zg — Zn, ||

IN

lzo — qll-

This together with the uniqueness of Pr(zg), implies ¢ = p, and hence {z,,} converges
weakly to ¢. Therefore, we obtain that {x, } converges weakly to g. Furthermore, we have
that

lim HSCO - «In” = ||I0 - q”
n— 00

Since X is uniformly convex, we have that zy — z,, = x¢ — ¢. It follows that z,, — ¢, and
this completes the proof. O

Corollary 4.1. Let X be uniformly conver, A: X = 2% be mazimal monotone, F :=
A7Y0) # 0 and the sequence {x,,} generated by x,, = Jg, (x0) + €. If B — 00 and e, — 0,
then x, — q¢ = Pp(xg).

Corollary 4.2. Let X be uniformly conver, A: X = 2% be mazimal monotone, F :=
A7Y0) # 0 and the sequence {x,,} generated by x, = Jg, (x0). If B — oo, then x, — q =
Pp(xo).

From Theorem 3.3 and Corollary 4.2, we have the following result.

Theorem 4.2. Let X is a smooth, strictly convex, and reflexive Banach space such that

the norm of X is Fréchet differentiable. Suppose that A: X = 2% is a mazimal monotone
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operator such that F := A=1(0) # 0. Let {x,} be a sequence in X and {C,} a sequence of
closed and convex subset of X defined by C1 = X and

z, = Po, (),

Yn = J3, (Tn),

Cni1={2€Ch: (yn — 2z, J(xn —yn)) > 0},
where x € X, {B,} C (0,+00) with B, — oo and Ja, be the resolvent of A. Then {z,}
converges strongly to the element Pr(x) of F.

Proof. Put T,, = Jg, for n € N. Then F = (o, F(T},) = A~'(0) # 0. For each z,y € X,
we have ﬂ%J(x —Thx) € A(T,x) and ﬁ%J(y —T,y) € A(T,y). By the monotonicity of A,
it follows that

0< <Tnx —Thy, J(I - Tnx) - J(y - Tny)>7

and then 7, is of type (P) for all n € N. By Corollary 4.2, it follows that T,,(z) = Jga, (2)
implies Pp(z) = T(z), for all z € C. Therefore, all conditions of Theorem 3.3 are satisfied,
and we obtain the conclusion. O

Corollary 4.3. Let H be a Hilbert space, A C H x H a maximal monotone operator such
that F := A7Y(0) # 0, {Bn} a sequence of positive real numbers such that B, — oo, and
x € H. Let {x,} be a sequence in H and {Cy} a sequence of closed and convex subsets of
H, defined by C1 = H and

zn, = Pc, (x)’
Yn = Tnxna
Cn+1 = {Z €Cy: <yn_27xn _yn> > 0}7

forn € N. Then {z,} converges strongly to Pr(z).
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