
U.P.B. Sci. Bull., Series A, Vol. 80, Iss. 3, 2018 ISSN 1223-7027

ON A HYBRID PROXIMAL POINT ALGORITHM IN BANACH

SPACES

Vahid Dadashi1

In this paper, we introduce a hybrid projection algorithm for a countable family

of mappings of type (P) in Banach spaces, this class of mappings containing the classes of

resolvents of maximal monotone operators in Banach spaces and the firmly nonexpansive

mappings in Hilbert spaces. We prove that the generated sequence by the new algorithm

converges strongly to the common fixed point of the mappings. Furthermore, we apply

the result for the resolvent of a maximal monotone operator for finding a zero of it. The

results obtained extend some results in this context.
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1. Introduction

One method for approximation the zeros of maximal monotone operators is the prox-

imal point algorithm. A well-known study for this purpose is made by Rockafellar in Hilbert

spaces [1]. He proved the weak convergence of the algorithm to a zero of a maximal monotone

operator; also, see [2]. Since then, several authors have studied this method and introduced

modified versions: Boikanyo and Morosanu [3], Khatibzadeh et al. [4, 5], Rouhani and

Khatibzadeh [6], Solodov and Svaiter [7, 8], Xu [9], Yao and Postolache [10] and others.

Recently, some authors introduced modified algorithms of proximal type and studied

their convergence in Banach spaces: Li and Song [11], Matsushita and Xu [12, 13], Nakajo

et al. [14], Dadashi and Khatibzadeh [15]. Very recently, Dadashi and Postolache have

introduced a hybrid proximal point algorithm for special mappings in Banach spaces [16].

They proved that the generated sequence by the algorithm converges strongly to the common

fixed point of the countable family of mappings and used the result to the problem of finding

a zero of a maximal monotone operator in Banach space. The mappings in the main theorem

have to satisfy the so called Condition (Z).

The aim of this paper is to remove Condition (Z) and prove a strong convergence

theorem for the existence of the limit of mappings at an arbitrary point. The results could

be applied for finding a solution of an equilibrium problem and a minimizer of a convex

function. The paper is organized as follows. In Section 2, we recall some definitions on the

geometry of Banach spaces and monotone operators, which will be used in what follows. In

Section 3, we prove strong convergence theorems for a countable family of mappings. In
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particular, a result for firmly nonexpansive mappings has been obtained in Hilbert spaces.

In Section 4, we consider the resolvent of a maximal monotone operator in Banach spaces.

Using Section 3, we get strong convergence of the sequence to the zero of a maximal monotone

operator.

2. Preliminaries

Throughout the present paper, let X be a real Banach space. We write xn ⇀ x to

indicate that the sequence {xn} weakly converges to x; as usual xn → x will symbolize

strong convergence. The normalized duality mapping J from X into the family of nonempty

w∗-compact subsets of its dual X∗ is defined by

J(x) = {x∗ ∈ X∗ : ⟨x∗, x⟩ = ∥x∥2 = ∥x∗∥2},

for each x ∈ X [17].

Lemma 2.1 ([18]). Let X be a real Banach space and J be the duality mapping. Then, for

each x, y ∈ X, one has

∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, J(x+ y)⟩.

The norm of X is said to be Gâteaux differentiable (and X is said to be smooth) if

lim
t→0

∥x+ ty∥ − ∥x∥
t

(1)

exists for each x, y ∈ U := {z ∈ X : ∥z∥ = 1}. It is known that if X has a Gâteaux

differentiable norm, J is single-valued. The norm is said to be uniformly Gâteaux differen-

tiable if for y ∈ U , the limit is attained uniformly for x ∈ U . The space X is said to have

a Fréchet differentiable norm if for each x ∈ X the limit in (1) is attained uniformly for

y ∈ U . The space X is said to have a uniformly Fréchet differentiable norm (and X is said

to be uniformly smooth) if the limit in (1) is attained uniformly for (x, y) ∈ U × U . It is

known that X is smooth if and only if each duality mapping J is single-valued. It is also

well known that if X has a uniformly Gâteaux differentiable norm, J is a uniformly norm

to weak∗ continuous on each bounded subset of X.

If the norm of X is Fréchet differentiable, then J is norm to norm continuous and

if X is uniformly smooth, then J is uniformly norm to norm continuous on each bounded

subset of X.

The normed space X is called uniformly convex if for any ε ∈ (0, 2] there exists

a δ = δ(ε) > 0 such that if x, y ∈ X with ∥x∥ = 1, ∥y∥ = 1 and ∥x − y∥ ≥ ε, then

∥ 1
2 (x + y)∥ ≤ 1 − δ. A normed space X is called strictly convex if for all x, y ∈ X, x ̸= y,

∥x∥ = ∥y∥ = 1, we have ∥λx+ (1− λ)y∥ < 1, ∀λ ∈ (0, 1). It is known that if X is uniformly

convex, then X is strictly convex, reflexive and has the Kadec-Klee property, that is, a

sequence {xn} in X converges strongly to x whenever xn ⇀ x and ∥xn∥ → ∥x∥. If X is

uniformly convex, then X is a strictly convex and reflexive Banach space, which has the

Kadec-Klee property.

Lemma 2.2 ([19]). Let X be a smooth, strictly convex and reflexive Banach space, {xn}
a sequence in X, and x ∈ X. If ⟨xn − x, Jxn − Jx⟩ → 0, then xn ⇀ x, Jxn ⇀ Jx, and

∥xn∥ → ∥x∥.
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Definition 2.1. The multifunction A : X ⇒ 2X
∗
is called a monotone operator if for every

x, y ∈ X,

⟨x∗ − y∗, x− y⟩ ≥ 0, ∀x∗ ∈ A(x), ∀y∗ ∈ A(y).

A monotone operator A : X ⇒ 2X
∗
is said to be maximal monotone, when its graph is not

properly included in the graph of any other monotone operator on the same space and the

effective domain is defined by D(A) = {x ∈ X : A(x) ̸= ∅}.

Let C be a convex closed subset of X. The operator PC is called a metric projection

operator if it assigns to each x ∈ X its nearest point y ∈ C, such that

∥x− y∥ = min{∥x− z∥ : z ∈ C}.

It is known that the metric projection operator PC is continuous in a uniformly convex

Banach space X and uniformly continuous on each bounded set of X if, in addition, X is

uniformly smooth. An element y is called the metric projection of X onto C and denoted

by PCx. It exists and is unique at any point of the reflexive strictly convex spaces.

Lemma 2.3 ([18]). Let X is a reflexive and strictly convex Banach space and C is a

nonempty, closed and convex subset of X. Then, for all x ∈ X, the element z = PCx if and

only if

⟨J(x− z), z − y⟩ ≥ 0, ∀y ∈ C.

For a sequence {Cn} of nonempty, closed and convex subsets of a Banach space X,

define s-LinCn and w-LsnCn as follows: x ∈ s-LinCn if and only if there exists {xn} ⊂ X

such that {xn} converges strongly to x and xn ∈ Cn for all n ∈ N. Similarly, y ∈ w-LsnCn if

and only if there exist a subsequence {Cni} of {Cn} and a sequence {yi} ⊂ X such that {yi}
converges weakly to y and yi ∈ Cni for all i ∈ N. If C0 satisfies in C0 =s-LinCn =w-LsnCn, it

is said that {Cn} converges to C0 in the sense of Mosco [20] and we write C0 = M- lim
n→∞

Cn. It

is easy to show that if {Cn} is nonincreasing with respect to inclusion, then {Cn} converges

to ∩∞
n=1Cn in the sense of Mosco. For more details, see [20].

The following lemma was proved by Tsukada [21].

Lemma 2.4 ([21]). Let X be a uniformly convex Banach space. Let {Cn} be a sequence

of nonempty, closed and convex subsets of X. If C0 = M- lim
n→∞

Cn exists and nonempty,

then for each x ∈ X, PCnx converges strongly to PC0x, where PCn and PC0 are the metric

projections of X onto Cn and C0, respectively.

3. Main results

Let X be a smooth Banach space and C a nonempty subset of X. A mapping

T : C → X is said to be of type (P) if

⟨Tx− Ty, J(x− Tx)− J(y − Ty)⟩ ≥ 0,

for all x, y ∈ C (see [19]). A mapping S : C → X is said to be of type (R) if

⟨x− Sx− (y − Sy), J(Sx)− J(Sy)⟩ ≥ 0.
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It is easy to see that T is of type (P) if and only if S = I − T is of type (R). If S is

of type (R), then for each x, y ∈ C we have the following inequality,

(∥Sx∥ − ∥Sy∥)2 ≤ ⟨Sx− Sy, J(Sx)− J(Sy)⟩

≤ ⟨x− y, J(Sx)− J(Sy)⟩

≤ ∥x− y∥(∥Sx∥+ ∥Sy∥). (2)

Theorem 3.1. Let X be a smooth, strictly convex, and reflexive Banach space, C a nonempty

subset of X and Sn : C → X a family of mappings of type (R). Then the following hold:

(1) If {xn} is a bounded sequence in C and {Snx} is bounded for some x ∈ X or

∩∞
n=1S

−1
n (0) ̸= ∅, then {Snxn} is bounded;

(2) Let the norm of X is Fréchet differentiable. If {xn} be a sequence in C such that

xn → x ∈ C and Snx → y, then Snxn ⇀ y, J(Snxn) ⇀ J(y) and ∥Snxn∥ → ∥y∥;
(3) If X has the Kadec-Klee property, then Snxn → y.

Proof. (1) Suppose that {xn} and {Snx} are bounded sequences in C for some x ∈ X but

{Snxn} is not. Then, there exist M,N > 0 such that ∥Snx∥ ≤ M and ∥Snxn∥ > M for all

n ≥ N . Since Sn is of type (R) for each n ∈ N, it follows from (2) that

∥xn − x∥ ≥ (∥Snxn∥ − ∥Snx∥)2

∥Snxn∥+ ∥Snx∥
>

(∥Snxn∥ −M)2

∥Snxn∥+M
,

for each n ∈ N, and hence we get ∥xn∥ → ∞, which is a contradiction. Suppose that {xn}
is a bounded sequence and z ∈ ∩∞

n=1S
−1
n (0). So, we have Snz = 0 for each n ∈ N. From the

definition of the mapping of type (R), we obtain

0 ≤ ⟨xn − Snxn − (z − Snz), J(Snxn)− J(Snz)⟩

= ⟨xn − Snxn − z, J(Snxn)⟩

= ⟨xn − z, J(Snxn)⟩ − ∥Snxn∥2,

and hence ∥Snxn∥2 ≤ ⟨xn − z, J(Snxn)⟩ ≤ ∥xn − z∥∥Snxn∥ for each n ∈ N, which shows

that the sequence {Snxn} is bounded.

(2) Let {xn} be a sequence in C such that xn → x ∈ C and Snx → y. Since the norm

of X is Frechet differentiable, then J is norm to norm continuous and hence J(Snx) → J(y).

It follows from (2) and part (1) that

0 ≤ ⟨Snxn − y, J(Snxn)− J(y)⟩

= ⟨Snxn − Snx, J(Snxn)− J(Snx)⟩+ ⟨Snxn − Snx, J(Snx)− J(y)⟩

+⟨Snx− y, J(Snxn)− J(Snx)⟩+ ⟨Snx− y, J(Snx)− J(y)⟩

≤ ∥xn − x∥(∥Snxn∥+ ∥Snx∥) + (∥Snxn∥+ ∥Snx∥)∥J(Snx)− J(y)∥

+∥Snx− y∥(∥Snxn∥+ ∥Snx∥) + ⟨Snx− y, J(Snx)− J(y)⟩ → 0,

as n → ∞. Then Lemma 2.2 implies that Snxn ⇀ y, J(Snxn) ⇀ J(y) and ∥Snxn∥ → ∥y∥.
(3) follows directly from (1). �

Theorem 3.2. Let X be a smooth, strictly convex, and reflexive Banach space, C a nonempty

subset of X and Tn : C → X a family of mappings of type (P). Then the following hold:
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(1) If {xn} is a bounded sequence in C and {Tnx} is bounded for some x ∈ X or

∩∞
n=1F (Tn) ̸= ∅, then {Tnxn} is bounded;

(2) Suppose that the norm of X is Fréchet differentiable. If {xn} is a sequence in C

such that xn → x ∈ C and Tnx → Tx, then Tnxn ⇀ Tx, J(xn − Tnxn) ⇀ J(x − Tx) and

∥xn − Tnxn∥ → ∥x− Tx∥;
(3) If X has the Kadec-Klee property, then Tnxn → Tx.

Proof. Let Sn : C → X be a mapping defined by Sn = I − Tn. It clear that Sn is of type

(R). Then, Theorem 3.1 implies the conclusions. �

Let X be a smooth Banach space and C a nonempty closed convex subset of X.

Suppose that Tn : C → C be a family of mappings of type (P) with F :=
∩∞

n=0 F (Tn) ̸= ∅,
then

⟨Tnx− z, J(x− Tnx)⟩ ≥ 0, ∀n ∈ N, ∀z ∈ F, ∀x ∈ C, (3)

which is equivalent to

∥x− Tnx∥2 ≤ ⟨x− z, J(x− Tnx)⟩, ∀n ∈ N, ∀z ∈ F, ∀x ∈ C. (4)

Algorithm 3.1. We consider the sequence {xn} generated by the following formulas:
xn = PCn

(x),

yn = Tn(xn),

Cn+1 = {z ∈ Cn : ⟨yn − z, J(xn − yn)⟩ ≥ 0} ,

where C1 = C and x ∈ X.

We first prove that the sequence {xn} generated by Algorithm 3.1 is well-defined.

Then, we prove that {xn} converges strongly to PF (x), where PF (x) is the metric projection

from X onto F .

Lemma 3.1. Let X be a smooth, strictly convex and reflexive Banach space, C a nonempty,

closed and convex subset of X and Tn : C → X a family of mappings of type (P) such that

F :=
∩∞

n=0 F (Tn) ̸= ∅. Then, the sequence {xn} generated by Algorithm 3.1 is well-defined.

Proof. It is easy to check that Cn is closed and convex for each n ∈ N. Clearly, we have

F ⊂ C = C1. Assume that F ⊂ Cn for some n ∈ N. Since X is strictly convex and reflexive,

there exists a unique element xn ∈ Cn such that xn = PCn
(x). Let p ∈ F . Since Tn is

a mapping of type (P), we have ⟨Tnxn − p, J(xn − Tnxn)⟩ ≥ 0 by (3), which implies that

p ∈ Cn+1. Then F ⊂ Cn+1. By induction on n, we see that F ⊂ Cn for every n ∈ N.
Therefore, {xn} is well-defined. �

Theorem 3.3. Let assumptions in Lemma 3.1 are satisfied. Suppose that the norm of X

is Frechet differentiable and T is a mapping of C into X defined by Tz = lim
n→∞

Tnz for all

z ∈ C such that F (T ) = F . Then the sequence {xn} generated by Algorithm 3.1 converges

strongly to the element PF (x) of F , where PF (x) is the metric projection from X onto F .

Proof. Suppose that w = PF (x). Since xn = PCn(x) and F ⊂ Cn, we have

∥xn − x∥ ≤ ∥w − x∥, (5)
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hence the sequence {xn} is bounded. From (4), we get

∥xn − yn∥ = ∥xn − Tnxn∥ ≤ ∥xn − w∥,

which implies that the sequence {yn} is bounded too.

Let D = ∩∞
n=1Cn. Since ∅ ̸= F ⊂ D, we observe that D ̸= ∅. By Lemma 2.4, we

get xn = PCnx → PDx = w0. By assumptions and Theorem 3.2 (part (2)), it follows that

yn ⇀ Tw0, J(xn − yn) ⇀ J(w0 − Tw0) and

∥xn − yn∥ → ∥w0 − Tw0∥. (6)

Taking into account that w0 ∈ Cn+1, we have

0 ≤ ⟨yn − w0, J(xn − yn)⟩ = −∥xn − yn∥2 + ⟨xn − w0, J(xn − yn)⟩,

therefore,

∥xn − yn∥2 ≤ ⟨xn − w0, J(xn − yn)⟩ → ⟨w0 − w0, J(w0 − Tw0)⟩ = 0. (7)

From the uniqueness of the limit, (6) and (7), we get Tw0 = w0, hence the sequence {xn}
converges strongly to w0 ∈ F .

Now, we show that w0 = PF (x). From (5), we get lim
n→∞

∥xn−x∥ ≤ ∥w−x∥. Therefore,
from w = PF (x), w0 ∈ F we obtain

∥w − x∥ ≤ ∥w0 − x∥ = lim
n→∞

∥xn − x∥ ≤ ∥w − x∥.

This together with the uniqueness of PF (x), implies that w0 = w = PF (x). Hence {xn}
converges strongly to PF (x), and this completes the proof. �

Corollary 3.1. Let X be a smooth, strictly convex, and reflexive Banach space such that

the norm of X is Fréchet differentiable. Suppose that C is a nonempty closed convex subset

of X and T : C → X be a mapping of type (P) such that F (T ) ̸= ∅. Let the sequence {xn}
generated by 

xn = PCn(x),

yn = T (xn),

Cn+1 = {z ∈ Cn : ⟨yn − z, J(xn − yn)⟩ ≥ 0} ,

where C1 = C and x ∈ X. Then the sequence {xn} converges strongly to the element

PF (T )(x).

A mapping T : C → H is said to be firmly nonexpansive if

∥Tx− Ty∥2 ≤ ⟨x− y, Tx− Ty⟩, for all x, y ∈ C.

Obviously, if a mapping T : C → H is firmly nonexpansive, then

⟨Tx− Ty, (x− Tx)− (y − Ty)⟩ ≥ 0,

holds for all x, y ∈ C, hence T is of type (P).

From Theorem 3.3, we have the following results in Hilbert spaces.
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Theorem 3.4. Let H be a Hilbert space, C a nonempty closed convex subset of H, {Tn}
a sequence of firmly nonexpansive mappings of C into H such that F :=

∩∞
n=1 F (Tn) ̸= ∅.

Consider T be a mapping of C into X defined by Tz = lim
n→∞

Tnz for all z ∈ C such that

F (T ) = F . Let x ∈ H, {xn} be a sequence in C and {Cn} a sequence of closed convex

subsets of H defined by C1 = C and
xn = PCn(x),

yn = Tnxn,

Cn+1 = {z ∈ Cn : ⟨yn − z, xn − yn⟩ ≥ 0} ,

for n ∈ N. Then {xn} converges strongly to PF (x).

Corollary 3.2. Let H be a Hilbert space, C a nonempty closed convex subset of H, and T a

firmly nonexpansive mapping of C into H such that F (T ) ̸= ∅. Let x ∈ H, {xn} a sequence

in C and {Cn} a sequence of closed and convex subsets of H defined by C1 = C and
xn = PCn(x),

yn = Txn,

Cn+1 = {z ∈ Cn : ⟨yn − z, xn − yn⟩ ≥ 0} ,

for n ∈ N. Then {xn} converges strongly to PF (T )(x).

4. Proximal Point Method

A well-known method for solving the equation problem 0 ∈ A(p), in a Hilbert space

H, is the proximal-point algorithm (please see [1]) in which x1 = x ∈ H is arbitrary and

xn+1 = Jrnxn + en, n = 1, 2, 3, · · · , (8)

where en is an error vector, {rn} ⊂ (0,∞) and Jr = (I + rA)−1 for all r > 0 is the resolvent

operator for A.

Definition 4.1. Let X be a smooth, strictly convex and reflexive Banach space. Suppose

that A : X ⇒ 2X
∗
is a maximal monotone operator. The operator JA

λ : X → D(A) given by

JA
λ (x) = xλ is called the resolvent of A, which xλ satisfies 1

λJ(x− xλ) ∈ A(xλ).

In the following, we denote the resolvent operator JA
λ by Jλ.

Algorithm 4.1. Let A : X → 2X
∗
be maximal monotone and Jβn is the resolvent of A for

βn > 0. Suppose that the sequence {xn} generated by:{
yn = Jβn(x0),

xn = αnu+ (1− αn)yn + en, n = 1, 2, 3, · · · .

Theorem 4.1. Let X is uniformly convex A : X ⇒ 2X
∗
is maximal monotone, F :=

A−1(0) ̸= ∅ and the sequence {xn} generated by Algorithm 4.1. If αn → 0, βn → ∞
and en → 0, then xn → q = PF (x0).

Proof. Let p ∈ A−1(0) and the sequence {xn} generated by Algorithm 4.1. Then 0 ∈ Ap,
1
βn

J(x0 − yn) ∈ A(yn) and, from the monotonicity of A, we get:

0 ≤ ⟨J(x0 − yn), yn − p⟩ = −∥x0 − yn∥2 + ∥x0 − yn∥∥x0 − p∥.
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Therefore, ∥yn − x0∥ ≤ ∥x0 − p∥, and hence the sequence {yn} is bounded. Since

∥xn − x0∥ ≤ αn∥u− x0∥+ (1− αn)∥yn − x0∥+ ∥en∥, (9)

and {yn} and {en} are bounded, we know that {xn} is bounded. Then there exists a

subsequence {xnk
} of {xn} which converges weakly to some point p ∈ X. By Algorithm 4.1,

and replacing n by nk we obtain

ynk
=

1

1− αnk

(xnk
− αnk

u− enk
),

and hence {ynk
} converges weakly to p. From boundedness of {yn} and βn → ∞, we get

A(ynk
) ∋ 1

βnk

J(x0 − ynk
) → 0.

Since A is demiclosed, we have p ∈ A−1(0).

Finally, we show that {xn} converges strongly to q = PF (x0).

By (9) and ∥yn − x0∥ ≤ ∥x0 − p∥

∥xn − x0∥ ≤ αn∥u− x0∥+ (1− αn)∥x0 − p∥+ ∥en∥,

and then, lim sup
n→∞

∥xn − x0∥ ≤ ∥x0 − p∥. From the weakly lower semicontinuity of the norm

and the assumptions, we obtain

∥x0 − q∥ ≤ ∥x0 − p∥

≤ lim inf ∥x0 − xnk
∥

≤ lim sup ∥x0 − xnk
∥

≤ ∥x0 − q∥.

This together with the uniqueness of PF (x0), implies q = p, and hence {xnk
} converges

weakly to q. Therefore, we obtain that {xn} converges weakly to q. Furthermore, we have

that

lim
n→∞

∥x0 − xn∥ = ∥x0 − q∥.

Since X is uniformly convex, we have that x0 − xn → x0 − q. It follows that xn → q, and

this completes the proof. �

Corollary 4.1. Let X be uniformly convex, A : X ⇒ 2X
∗
be maximal monotone, F :=

A−1(0) ̸= ∅ and the sequence {xn} generated by xn = Jβn(x0)+ en. If βn → ∞ and en → 0,

then xn → q = PF (x0).

Corollary 4.2. Let X be uniformly convex, A : X ⇒ 2X
∗
be maximal monotone, F :=

A−1(0) ̸= ∅ and the sequence {xn} generated by xn = Jβn(x0). If βn → ∞, then xn → q =

PF (x0).

From Theorem 3.3 and Corollary 4.2, we have the following result.

Theorem 4.2. Let X is a smooth, strictly convex, and reflexive Banach space such that

the norm of X is Fréchet differentiable. Suppose that A : X ⇒ 2X
∗
is a maximal monotone
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operator such that F := A−1(0) ̸= ∅. Let {xn} be a sequence in X and {Cn} a sequence of

closed and convex subset of X defined by C1 = X and
xn = PCn(x),

yn = Jβn(xn),

Cn+1 = {z ∈ Cn : ⟨yn − z, J(xn − yn)⟩ ≥ 0} ,

where x ∈ X, {βn} ⊂ (0,+∞) with βn → ∞ and Jβn be the resolvent of A. Then {xn}
converges strongly to the element PF (x) of F .

Proof. Put Tn = Jβn for n ∈ N. Then F =
∩∞

n=0 F (Tn) = A−1(0) ̸= ∅. For each x, y ∈ X,

we have 1
βn

J(x − Tnx) ∈ A(Tnx) and
1
βn

J(y − Tny) ∈ A(Tny). By the monotonicity of A,

it follows that

0 ≤ ⟨Tnx− Tny, J(x− Tnx)− J(y − Tny)⟩,

and then Tn is of type (P) for all n ∈ N. By Corollary 4.2, it follows that Tn(z) = Jβn(z)

implies PF (z) = T (z), for all z ∈ C. Therefore, all conditions of Theorem 3.3 are satisfied,

and we obtain the conclusion. �

Corollary 4.3. Let H be a Hilbert space, A ⊂ H ×H a maximal monotone operator such

that F := A−1(0) ̸= ∅, {βn} a sequence of positive real numbers such that βn → ∞, and

x ∈ H. Let {xn} be a sequence in H and {Cn} a sequence of closed and convex subsets of

H, defined by C1 = H and
xn = PCn(x),

yn = Tnxn,

Cn+1 = {z ∈ Cn : ⟨yn − z, xn − yn⟩ ≥ 0} ,

for n ∈ N. Then {xn} converges strongly to PF (x).
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