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TWO SOLUTIONS FOR A PROBLEM OF MATHEMATICAL 
PHYSICS EQUATIONS 

Irina MEGHEA1 

În această lucrare sunt prezentate două metode de rezolvare şi caracterizare 
a soluţiilor, subsoluţiilor si supersoluţiilor pentru o problemă a ecuaţiilor fizicii 
matematice. Prima metodă foloseşte principiul variaţional Ekeland şi o condiţie de 
tip Palais-Smale pentru a obţine un rezultat pentru p-laplacian. A doua metodă se 
bazează pe câteva teoreme de surjectivitate aparţinând autoarei care sunt 
demonstrate şi aplicate in găsirea unor rezultate noi pentru p-laplacian. 

In this paper two approach methods to obtain and characterize weak 
solutions or subsolutions and supersolutions for a problem of mathematical phisics 
equations are presented. In the first, Ekeland variational principle and a condition 
of Palais Smale type are both involved in order to obtain some results for the p-
Laplacian. In the second approach method, some original surjectivity theorems are 
established to state two original results which describe new properties of the p-
Laplacian.  

Keywords: Ekeland varitional principle, Palais-Smale condition, critical point,  
                   weak solution, Nemytskii operator, weak subsolution, weak  
                  supersolution, Carathéodory function, Sobolev space, p - Laplacian 

1. Introduction 

This paper is mainly based on the organization of the concepts from [1] 
corroborated with the results obtained by the author in [2] and [3]. The general 
theory is developed towards two distinct trends as in [3] and [4]. In the first, 
beginning with the Ekeland principle ([5], [6], [1]), and following a work of 
Ghoussoub [7], a variational method to discuss some problems of partial 
differential equations has been presented in the manner of [1]. In the second 
direction, a series of propositions from [8], [9], [10] and others are generalized or 
used in order to obtain a sequence of original results. 

The aim of this work is to compare these two approaches, and particularly 
to highlight new results in weak solutions for some types of partial differential 
equations. 
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2. Critical points and weak solutions for elliptic type equation 

2.1. Preliminaries 
Ekeland principle ([5], [6], [1]). Let (X, d) be a complete metric space 

and ϕ : X →  (− ∞, + ∞] bounded  from below, lower semicontinuous and proper. 
For any ε > 0 and u of  X with 

ϕ(u) ≤  inf ϕ(X) + ε 
and for any λ > 0, there exists vε  in X such that 

ϕ(vε) < ϕ(w) +
λ
ε d(vε , w) ∀ w ∈ X \ {vε} 

and 
ϕ(vε) ≤ ϕ(u),         d(vε, u) ≤ λ. 

  Let X be a real normed space, β a bornology2 on X and ϕ: X → R. 
   Definition. Let c be in R and F a nonempty subset of X. ϕ verifies the 
Palais - Smale condition on the level c around F (or relative to F), (PS)c,F, with 
respect to β, when ∀ (un)n≥1 a sequence of points in X  for which 
   0)(lim,)(lim nβnnn

=ϕ∇=ϕ
∞→∞→

ucu  and
∞→n

lim dist(un, F) = 0,                (1) 

this sequence has a convergent subsequence. 
   We will see that through the minimization on F of a functional 
(minimization with constraints) it can obtain global critical points of this. 
   As a preliminary – 
   Proposition 1. Let H be a Hilbert space, let ϕ: H → R be of  C1- Fréchet 
class and let F be a closed subset of  H such that: 
 for every u from F with ϕ′ (u) ≠ 0, there is, for sufficiently small r > 0, 

fu : Sr(0) →R Fréchet differentiable such that, denoting gu (δ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ϕ
ϕ

=
(u)'
(u)'δfu , δ ∈ 

[0, r], we have 

        gu (0) = 1 and gu (δ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ϕ
ϕ

−
(u)'
(u)'δu ∈ F.         (2) 

   Then, if ϕ  is lower bounded on F, for every (vn)n≥1 a minimizing sequence 
for ϕ on F there exists a sequence (un)n≥1 in F such that 

                                                            
2 Let X be a real normed space. A nonempty set β of bounded parts of X, with the properties: 

1o∪
β∈A

A = X, 2o A ∈ β ⇒ − A ∈ β and λ A ∈ β (λ > 0), 3o for every A, B in β there exists C in β 

such that A ⊂ C and B ⊂ C, is named bornology on X. 
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       [ ] (0)g(0)gu1ε)(u
nn uunnn ′+′+≤ϕ′ |ϕ′(un)(un)|,         (3) 

            n)(v)(u nn ∀ϕ≤ϕ ,               (4) 
              ,0vulim nnn

=−
∞→

           (5) 

where 0n >ε  and 0n →ε ([7]). 

   Proof. Denote c : = inf ϕ(F) and let n be from N. For ncv 1)(: nn +−ϕ=ε , 

hence εn > 0, we have ϕ(vn) < c + εn . Apply Ekeland principle with nε=λ , ∃ un 
in F with known properties. Thus we get the sequence (un)n≥1 satisfying (4), (5) 
( nn vu − ≤ nε , εn → 0) and 

      .)()( nnn Fvuvuv ∈∀−ε−ϕ≥ϕ          (6) 

   Verify (3). It is sufficient to work under the assumption 0)( n >ϕ′ u ∀ n. 

Thus apply the hypothesis made in the statement with respect to F with nuu =  

and denoting, for ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ϕ
ϕ

δ−δ=∈δ
)('
)(')(:],,0(

n
n

nuδ n u
uugvr (∈ F), replace vδ in (6) 

and find, taking into account the Fréchet derivative definition, 
)())((')()( δnδδnnδn δ+−ϕ=ϕ−ϕ≥−ε ovuvvuuv , 

where 0)(lim
0δ

=
δ
δ

→

o , hence 

   [ ] +ϕδ−≥−ε ))((')(1 nδunδn n
uvguv )(

)('
)(')(')(

n
n

δun
δ+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ϕ
ϕ

ϕδδ o
u
uvg .              (7) 

But )0('
)()0(

lim
)(1

lim
n

nnn
u

uu
0

u
0

g
ggg

−=
δ

δ−
=

δ
δ−

→δ→δ
, n0

lim uv =δ→δ
, n0

1lim uv −
δ δ→δ

≤
ϕ
ϕ

−′=
)('
)(')0(

n
n

nun u
uug nu )0('1

n
ug+ , consequently if in (7) it divides by δ 

and takes the limit for δ → 0 one obtains 

( )
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

ϕ′
ϕ′

ϕ+ϕ′−≥′+ε
)(
)()('))(()0(')0(1

n

n
nnnunun nn u

uuuugug  

and it remains only to remark that 
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

ϕ′
ϕ′

ϕ′
)(
)()(

n

n
n u

uu = )( nuϕ′  in order to get a 

fortiori (3).■ 
   Notation.  ϕ: X → R β -differentiable, c ∈ R ⇒ 
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{ }0)(,)(::)(c =ϕ∇=ϕ∈=ϕ β xcxXxK . 

   Proposition 2. Let H be a Hilbert space, ϕ: H → R be of C1-Fréchet class 
and F be a nonempty convex closed subset such that (I − ϕ′)(F) ⊂ F, I the identity 
map. If ϕ  is lower bounded on F, then for every (vn)n≥1 a minimizing sequence for 
ϕ on F, there is a sequence (un)n≥1 in F such that  

ϕ(un) ≤ ϕ(vn) ∀ n, 0)(u'lim0,vulim nnnnn
=ϕ=−

∞→∞→
. 

   Moreover, if ϕ  satisfies (PS)c,F where c = inf ϕ(F), then 
Φ≠ϕ∩ )(KF c . 

   Proof. Apply Proposition 1 with gu = 1. (2) is indeed satisfied: if  Fu ∈  
and 0)(' ≠ϕ u , then, F being convex, 

( ) FuI
u

u
uu

uu ∈ϕ′−
ϕ′

δ
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ϕ

δ
−=

ϕ′
ϕ′

δ− )(
)()('

1
)(
)( . 

Let (un)n≥1 be the sequence given by the statement., c ≤ ϕ(un) ≤ ϕ(vn) ∀ n, hence 

ϕ(un) → c. Since n

)3(

nu )(',0)0('
n

ε≤ϕ= ug , hence 0(' n →ug , clearly dist (un , 

F) = 0, consequently (un)n≥1 has a convergent subsequence (
nku )n≥1 , 

Fuu ∈→ 0kn
. This implies 00k ,0)(')('

n
uuu =ϕ→ϕ  is a global critical point 

of ϕ contained in F.  ■ 
  

2.2. Weak solutions 
   Open set of C1 class in RN. We use the notations (the norm is the 
Euclidean norm from RN−1): 

R N
+ = {x = (x′, xN): xN > 0}, 

{ },1,1':),'( NN <<== xxxxxQ  

QQ =+ ∩ N
+R  

{ }.0,1':),'( NN0 =<== xxxxxQ  
   Let Ω be an open nonempty set of RN, Ω ≠ RN and ∂Ω its boundary. By 
definition, Ω  is of C1 class if ∀ x from ∂ Ω ∃ U a neighborhood of x in RN and  f : 
Q → U one-to-one such that  f ∈ C1( Q ), f −1 ∈ C1(U ), f (Q+) = U ∩ Ω,   f (Q0) = 
U ∩ ∂Ω. 
   Weak solution. Let Ω be an open bounded nonempty set in RN, N > 1, 
f : Ω × RN → R and ( ))()( 2,1

0
1
00 Ω=Ω∈ WHu . Consider the problem 
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⎩
⎨
⎧

Ω∂=
Ω=Δ−

.on
,in),(

0uu
uxfu

                  (*) 

Actually u = u0 means u | ∂Ω = u0 , where γ: u → u | ∂Ω is the trace operator, a 
continuous linear mapping from )(p,1 ΩW  in Lp(∂Ω), p ∈ [1, + ∞). We have γ−1 (0) 

= p,1
0W (Ω) ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
Ω=

Ω)(
1
c

p1,

(
W

C and u∈W1,p(Ω) ∩ C( Ω ) ⇒ γ(u) =  Ω∂u . 

   u  from )(1
0 ΩH  is by definition a weak solution for (*) if 0uu = on ∂Ω and 

     ∫ ∫
Ω Ω

=−∇⋅∇ 0))(,( vdxxuxfvdxu )(Ω∈∀ ∞
cCv         (8) 

(∇w, the weak gradient, is equal to 
iN x

w
x
w

x
w

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂ ,,...,

1
 the weak derivatives). 

   Nemytskii operator. Let be RN, N ≥ 1, μ the Lebesgue measure in R, 
Ω open non-empty Lebesgue measurable (L.m.) and M (Ω) : = {u: Ω → R| u 
Lebesgue measurable (L.m.)}. 
   By definition RR →×Ω:f  is a Carathéodory  function if 
   1o   f ( ⋅ , s) is L.m. s∀  ∈ R , 
   2o   f (x, ⋅ ) is continuous ∀ x ∈ Ω \ A, μ(A) = 0. 
In this case, for every u from M (Ω) it can consider the function 

Nf :M (Ω) → M (Ω), 
Nf u : Nf u(x) =  f (x, u(x)), 

Nemytskii operator. 

   Suppose μ(Ω) < + ∞. Then 
μ

xn )(
Ω∈

→xu  u0 (x) ⇒ )()( 0f

μ

Ωxnf xuNxuN
∈
→ . 

   Suppose that  f  satisfies the growth condition : 
Ω∈∀β+≤ − xxscsxf ),(),( 1p  \ A with μ(A) = 0, ∀ s ∈ R, where 1,0 >≥ pc  and 

β ∈ Lq(Ω), q ∈ [1, + ∞].                     (9) 
Then 
            Nf (L(p−1) q (Ω)) ⊂ Lq (Ω);        (10) 
     Nf is continuous (q < +∞) and bounded on L(p−1)q(Ω);      (11) 

   (12) If Ω is bounded and 111
=+ qp , then Nf (Lp(Ω)) ⊂ Lq(Ω) with Nf 

continuous; moreover, NF (Lp(Ω)) ⊂ L1(Ω) with NF continuous, where 
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∫=
s

0
),(),( dttxfsxF , and Φ: Lp(Ω) → R, Φ(u) = ∫

Ω
dxxuxF ))(,(  is of C1-Frechét 

class and Φ ′ = Nf . 
   Theorem 1.  Let Ω be an open bounded nonempty set in RN and f : Ω × R 
→ R a Carathéodory function with the growth condition 
         |f(x, s)| ≤ c|s|p−1 + b(x),        (13) 

where 2N
2Np20,c
−

≤≤>  when N ≥ 3 and 2 ≤ p < + ∞ when N = 1, 2, and where 

b ∈ Lq(Ω), 1.q
1

p
1

=+  

 Then the energy functional )(H: 1
0 Ωϕ → R, 

        ∫∫ −∇=ϕ
ΩΩ

2 u(x))dx,F(x,dxu(x)2
1(u)        (14) 

where ∫=
s

0
t)dtf(x,s)F(x, , is of C1 - Fréchet class and 

∫ ∫ Ω∈∀−∇⋅∇=ϕ′
Ω Ω

1
0 )(Hvu,u(x))vdxf(x,dxvu(u)(v) . 

   Explanation. ∑
= ∂

∂
∂
∂

=∇
N

1i i

2

i

2 , x
u

x
uu  the weak derivatives. 

 
   Corollary 1. Let Ω and f be as in Theorem 1. Then the weak solutions of 
(∗) are precisely the critical points of the functional )(H: 1

0 Ωϕ → R , 

∫ ∫−∇=ϕ
Ω Ω

2 u(x))dx,F(x,dxu(x)2
1u)( ∫=

s

0
t)dtf(x,:s)F(x, . 

   Proof. Indeed, if u  is a weak solution of (∗), then 0))((' =ϕ vu  ((1), 

Theorem 1) )(c Ω∈∀ ∞Cv , hence ,0)( =ϕ′ u  because ϕ′ is continuous and 

)()( 1
0c Ω=Ω∞ HC . The converse is obviously.  ■ 

   Weak subsolutions and weak supersolutions of (∗). Let Ω be an open 
bounded set of C1 class in RN, 3≥N , f : Ω × R → R a Carathéodory function and 

)(1
0 Ω∈ Hu . 

   Definition. u is a weak subsolution respectively weak supersolution of (∗) if 
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     0uu ≤  on Ω∂  respectively 0uu ≥  on Ω∂        (15) 
and 

    

⎪
⎪

⎩

⎪
⎪

⎨

⎧

≤Ω∈∀≥∇⋅∇

≥Ω∈∀≤∇⋅∇

∫ ∫

∫ ∫

Ω Ω

∞

Ω Ω

∞

.0),(v))(,(
resp.

0),(v))(,(

c

c

vCvdxxuxfvdxu

vCvdxxuxfvdxu

       (16) 

   Proposition 3. Let Ω be an open bounded of C1 class set in RN, N ≥ 3, 
f : Ω × R → R a Carathéodory function and u1 , u2 from )(H1

0 Ω  bounded weak 
subsolution resp. weak supersolution of  (∗) with u1 (x) ≤ u2 (x) a. e. on Ω. 
   Suppose that f verifies (16) and there is ρ > 0 such that the function g: 
g(x, s) = f(x, s) + ρs is strictly increasing in s on [inf u1(Ω), sup u2(Ω)]. Then a 
weak solution u  of (∗) exists in )(H1

0 Ω with the property 

(x)u(x)u(x)u 21 ≤≤  a. e. on Ω 

   Proof. One can suppose u0 = 0. Take the equivalent norm on )(1
0 ΩH  

2
2

2
2

2 uuu ∇+ρ=  
and let >⋅⋅< ,  the corresponding scalar product. Consider the functional 

)(: 1
0 Ωϕ H → R , 

          ∫
Ω

−><=ϕ dxxuxGuuu ))(,(,2
1)( ,                 (17) 

∫=
s

0
),(:),( dttxgsxG . 

ϕ is of C1 class and its critical points are the weak solutions of (∗). Use 
Proposition 2. Let be 

F : = {u ∈ 1
0H (Ω): u1(x) ≤ u(x) ≤ u2(x) a. e. on Ω}. 

F is closed convex. We also get 
              (I − ϕ′)F  ⊂ F .                            (18) 

Indeed, let u be in F  and ))('(: uIv ϕ−= . For every w in )(c Ω∞C , w ≥ 0 we have 

,))(,(,,,
)17(

∫
Ω

+><−><=>< wdxxuxgwuwuwv  
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∫
Ω

≥−≥>−< 0))(,())(,(, 1

)16(

1 wdxxuxgxuxgwuv , 

apply the maximum principle, we get u1(x) ≤ v(x) a.e. on Ω. In the same way, we 
get v(x) ≤ u2(x) a. e. on Ω and hence (18). ϕ is lower bounded on F : ∀ u in F  

we have ><≥ϕ uuu ,2
1)(

)17(
− c1 , c1∈ R and moreover (PS)c,F is verified, c : = 

inf ϕ(F) ([7], Theorem 1.16, proof). Finish the proof applying Proposition 2.  ■ 
   Example. Consider the problem (Ω open bounded of C1 class in RN, 
N ≥ 3) 

      
⎪⎩

⎪
⎨
⎧

Ω∂=
α=Δ− −

,on  
)(

0

2p

uu
uuxu                    (19)  

where p = 2
2

−N
N , α is continuous with 1 ≤ α(x) ≤ a < + ∞ on Ω and u0 ∈ C1( Ω ), 

u0 (x) = 1 on ∂Ω. Then u1 : = 1 is a weak subsolution, u2 : = M, M > 1 sufficiently 
big, is a weak supersolution, |f (x, s)| ≤ a|s| p−1 (condition (13)) and s → 

sssx +α −2p)(  is increasing in s on [1, M], consequently, according to Propositi-

on 3, (19) has a weak solution u  with 1 ≤ )(xu  ≤ M a. e. on Ω. 

3. Surjectivity of the operators λJϕ  – S. Applications to partial differ-
rential equations 

 3.1. Surjectivity of the operators λT – S 
 An extension of the Theorem 1.1 from [8] is proved with weakened 
assumption: normed space instead of Banach space, bijection with continuous 
inverse instead of homeomorphism. Two corollaries of the author are also 
presented. 

Firstly, to have a short expression, 

Definition. T: X→ Y, X and Y normed spaces, is (K, L, a), where K > 0, 
L > 0, a > 0, if 

K ||x||a ≤ ||Tx|| ≤ L ||x||a , ∀ x from X. 

Proposition 4. Let X, Y be a real normed spaces, let T: X → Y (K, L, a) 
be an odd bijection with continuous inverse and S: X → Y an odd compact 
operator. For any λ ≠ 0, if 

+∞→x
lim ||λTx – Sx|| = + ∞, 
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Then λT – S is surjective. 

Proof. Let z0 be from Y, we state that 

            ∃ x0  in X e.g. λTx0 – Sx0 = z0 .             (20) 

  Take R > 0 with the property (see the hypothesis) 

              ||x|| ≥ R ⇒ ||λTx – Sx|| > ||z0||             (21) 

and the open ball from Y  Ω : = S (0, r), r : = |λ|LR a. If y ∈ ∂ Ω and y = λTx, then 

||x|| ≥ R and hence (22) ||λTx – Sx|| 
)21(

> ||z0||. 

Let be the operator A: Y → Y,  

Ay = ST – 1 ⎟
⎠
⎞

⎜
⎝
⎛

λ
y

. 

A is compact, odd and Ay ≠ y when y ∈ ∂σ (par absurdum, put y in the 
form λTx and takes into account (22), i.e. 0 ∉ (I – A)(∂σ). Applying the Borsuk 
theorem, it follows that the Leray-Schauder degree, d(I – A, σ, 0), is odd. But 

H : [0, 1] × σ → Y , H(t, y) = Ay + tz0 

being a homotopy of compact transforms on σ , we have 

d(I – H(0, ⋅ ), σ, 0) = d(I – H(1, ⋅ ), σ, 0), 

i.e. 

d(I – A, σ, 0) = d(I – A – z0 , 0), 

consequently, d(I – A, σ, 0) is an odd number, particularly different from zero, 
therefore ∃ y0 in σ so that (I – A – z0)(y0) = 0 and we have only to take x0 in X with 
y0 = λTx0 , to obtain (20). ■ 

Corollary 2. Let X, Y be real normed spaces, T : X → Y odd (K, L, a) 
bijection with continuous inverse, S: X → Y odd compact operator and α : = 

+∞→x
lim ax

Sx
 < + ∞. If  

|λ| > K
α , λ ∈ R, 

then λT – S is surjective. 
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Explanations. ([11], vol. II, V, § 5, 11.91).  f : X → Y, X and Y normed 
spaces, 

+∞→x
lim || f (x)||

def
=

0
inf

>ρ
ρ≥

∈
x

Xx
sup || f (x)|| = 

+∞→ρ
lim

ρ≥
∈

x
Xx

sup || f (x)||. 

If α =
+∞→x

lim || f (x)||, then xn ∈ X  ∀ n from N and || xn || → + ∞ implies 

+∞→n
lim || f (xn)|| ≤ α. 

If α =
+∞→n

lim || f (xn)|| for any (xn) with xn from X and ||xn|| → + ∞, then α 

=
+∞→x

lim || f (x)||. 

It remains to state 

                  
+∞→x

lim ||λTx – Sx|| = + ∞.         (23) 

Assuming, par absurdum, the contrary, one obtains ρ > 0 and a sequence 
(xn)n≥0 , xn ∈ X, ||xn|| → + ∞ e.g. 

                   ||λTxn – Sxn|| ≤ ρ  ∀n ≥ 1.        (24) 

From (24), 

+∞→n
lim a

n

n
a

n

n

x
Sx

x
Tx

−
λ = 0, 

hence 
+∞→n

lim
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

λ
a

n

n
a

n

n

x

xS

x

Tx )(
= 0 and as 

+∞→n
lim a

n

n

x

xS )(
 ≤ α, it results 

       
+∞→n

lim a
n

n

x

Txλ
≤ α.         (25) 

But the condition (K, L, a) imposes 

          K a
n

n
n x

Tx
∞→

≤ lim .        (26) 
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From (25) and (26) results K ≤
λ
α . If α ≠ 0, then |λ| ≤ K

α , which contradicts the 

hypothesis, and if α = 0, then K = 0, also in contradiction with the hypothesis, and 
consequently (23). ■ 

Corollary 3. In the condition of the Corollary 2, if  α = 0, then λT – S is 
surjective for any λ from R \ {0}. 

 
3.2. Surjectivity of the operators of the form λJϕ – S, Jϕ the duality map 
Proposition 6. Let X be a real Banach space, reflexive and with the pro-

perty (H), Jϕ the duality map on X with ϕ a (K, L, a) function, S: X → X* an odd 
compact operator and 

α : =
+∞→x

lim ax

Sx
< + ∞. 

Then  

10 α > 0 ⇒ λJϕ − S surjective  ∀ λ with |λ| > K
α  ; 

20 α = 0 ⇒ λJϕ − S surjective  ∀ λ ≠ 0. 

Explanation. A Banach space has the (H) property if it is strictly convex 
and satisfies: xn ⎯→⎯w x and ||xn|| → ||x|| ⇒ xn → x. 

Proof. Jϕ is odd and bijective with continuous inverse (X being reflexive, 
smooth and with (H) property, any duality map Jϕ on X is bijective with its inverse 
continuous by rapport to the strong topologies on X and X 

* [2]). Moreover, since 

Kta ≤ ϕ(t) ≤ Lta  ∀ t ≥ 0, 

we have 

K||x||a ≤ ϕ(||x||) = ||Jϕ x|| ≤ L||x||a  ∀ x from X, 

i.e. Jϕ is (K, L, a). Apply Corollaries 2 and 3. ■ 

Proposition 7. Let X be a real reflexive Banach space, smooth with the 
property (H), and Jϕ  the duality map on X with ϕ(t) = t p – 1, p ∈ (1, + ∞). Suppose 
that X is compact embedded by the linear injection i in a Banach space Z, 

                 ||i(u)|| ≤ c0 ||u||  ∀ u from X.        (27) 

and N: Z → Z* is odd hemi-continuous operator with the property 

   ||Nx|| ≤ c1||x|| q – 1 + c2 ∀ x from Z, c1, c2 ≥ 0, q ∈ (1, p).      (28) 
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Then λJϕ  − N is surjective for any λ ≠ 0. 

Explanation. N is the short notation for the operator, which acts from X to 
X*, i' o N o i, i' the adjoint of i. 

Proof. It follows to state that  

   ∀ h from X* ∃ u in X e.g. λJϕ u – (i' o N o i)u = h.      (29) 

Apply Proposition 6 with T = Jϕ (correctly as ϕ is (K, L, a) with K = L = 1, a = 
p – 1), S = i' o N o i. Obviously, S is odd, and also compact: let (xn)n∈N , xn ∈ X be 
bounded sequence, (i(xn))n≥1 has a convergent subset, let be i(

nkx ) → γ, γ ∈ Z, 

then N(i(
nkx )) ⎯→⎯w N(γ) and consequently i'(N(i(

nkx )))→ i'(N(γ)) because i' is 
also compact (Schauder theorem). So, to obtain the conclusion it remains to proof 

 
+∞→u

lim  1
)'(

−pu

uiNi DD
= 0.        (30) 

||i'(N(i(u)))|| ≤ ||i'|| ||N(i(u))||
)28(),27(

≤ c0(c1 ||i(u)|| q – 1 + c2) ≤ c0( 1
0

−qc c1 ||u|| q – 1 + c2), 
from which results (30) (was used ||i'|| ≤ ||i|| ≤ c0). ■ 

In the following one searches the surjectivity of the operator λJϕ − N, 
when N verifies the growth condition (28) where q = p, i.e. 

              ||Nx|| ≤ c1 ||x|| p – 1 + c2  ∀ x from Z, c1 , c2 ≥ 0.       (31) 

For this reason, one presents the statement 

Proposition 8. Let X be a real reflexive Banach space compactly embed-
ded by the linear injection i in the Banach space Z, 

               ||i(u)|| ≤ c0 ||u||  ∀ u from X.        (32) 

If 

λ1 : = inf{ p

p

ui

u

)(
: u ∈ X  \ {0}}, p ∈ (1, + ∞), 

then 

10 λ1 is attained and nonzero; 

20 p
1

1
−

λ is optimal for (32) (i.e. p
1

1
−

λ ≤ c0 , for any c0); 
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30 If  X and Z are smooth and JXX* :  X → X*, JZZ* : Z → Z* duality maps 
relative to the same weight ϕ: ϕ(t) = t p – 1 , then λ1 is the smallest eigenvalue of the 
couple (JXX* , JYY* ) ([9]). 

Proof. The set from the statement is correctly defined: u ≠ 0 ⇒ i(u) ≠ 0. 

10 We have 

λ1 = inf {||v||p : v ∈ X, ||i(v)|| = 1} 

(the two sets coincide, as ⎟
⎠
⎞

⎜
⎝
⎛

)(ui
ui = 1), let (vn)n≥1 , vn ∈X be with ||i(vn)|| = 1 and 

||vn|| → p
1

1λ . 

Since X is reflexive, then (vn)n≥1 admits a subsequence, similarly denoted, 

which is weekly convergent in X, vn ⎯→⎯w v (Kakutani theorem). Then 

||v|| ≤
∞→n

lim ||vn||, 

                      ||v||p ≤ λ1 ,         (33) 

On the other hand, because i is compact, we have i(vn) → i(v), this implies  

||i(vn)|| → ||i(v)||, ||i(v)|| = 1 and hence ||v||p ≥ λ1 , ||v||p 

)33(
= λ1 , λ1 is attained and a 

fortiori nonzero. 

20 Take into account the definition of λ1 and 10. 

30 Firstly show that λ1 is eigenvalue for the couple (JZZ* , JXX*), i.e. ∃ u0 
≠ 0 in X e.g.  

                    λ1 (i' o JZZ* o i)u0 = JXX* u0 .        (34) 

Take the functional Φ: X → R,  

Φ(u) = p
1

||u||p − p
1λ

||i(u)||p. 

Φ(u) ≥ 0  ∀ u from X (see the definition of λ1) and, for u0 ≠ 0 e.g. λ1

01
=

p

ui
u

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
)( 0

0 , 

Φ(u0) = 0, which imposes (one takes into account that X is a smooth space iff its 
norm is Gâteaux differentiable on X \ {0}) 

                 Φ'(u0) = 0 (Gâteaux derivative).        (35) 
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Then we use the formulae: “X smooth ⇒ Jϕ x = ϕ(||x||)||x||', x ≠ 0” and “if 
X, Y real normed spaces and  f : X → Y Gâteaux differentiable, F : Y → R of 
Gâteaux C1 class, then g : = F o f is Gâteaux differentiable ([9]) and g' (x) = 

F ' ( f (x)) o f '(x)” to obtain: ∀ u from X, 0
)35(

= Φ'(u0)(u) = uuu p ),( 0
1

0
′−  − 

λ1 )()),(()( 0
1

0 uiuiui p ′− = (JXX* u0)(u) − λ1(JZZ*(i(u0))(i(u))) = 0* uJ XX  − 

uuiJi ZZ ),)('( 0*1 DDλ , i.e. (34). 

Let now be λ eigenvalue for the couple (JZZ* , JXX*) and u a corresponding 
eigenvector. Then 

||u||p  = (JXX* u)(u) = λ )()),((* uiuiJZZ = λ||i(u)||p, 

hence 

λ = p

p

ui

u

)(
≥ λ1 . ■ 

We can now state 

Proposition 9. Let X be a real reflexive Banach space and smooth with 
the (H) property, Jϕ  the duality map on X with ϕ(t) = t p – 1 , p ∈ (1, + ∞). Suppose 
that X is compactly embedded with the linear injection i in the Banach space Z 
and let N: Z → Z* be an odd hemi-continuous operator with: 

||Nx|| ≤ c1 ||x|| p – 1 + c2  ∀ x from Z, c1 , c2 ≥ 0. 

Then, for any λ, if 

1
)'(

lim −+∞→
>λ pu u

uiNi DD
, a fortiori if 1

11
−λ>λ c , where 

p

p

ui

u

)(
inf{:1 =λ : u ∈ X \ {0}}, 

λJϕ − N is surjective (N means i' o N o i). 

Proof. Due to Proposition 8, 1o it follows that λ1 ≠ 0, hence 1
1
−λ  exists. We 

apply, as for Proposition 7, Proposition 6 with T = Jϕ , S = i' o N o i. We prove  
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            1
)'(

lim −+∞→ pu u

uiNi DD 1
11
−λ≤ c ,        (36) 

By using Proposition 8, which is sufficient to establish the conclusion. ||(i' o N o 

i)u|| ≤ ||i'|| ||N(i(u))|| ≤ p
1

1

−
λ (c1

p
p−

λ
1

1
1−pu + c2) ( 'i ≤≤ i p

1

1

−
λ ) and (36) 

becomes obviously. ■ 
 
 3.3. Existence of the solution for the problem 

⎩
⎨
⎧

Ω∂
Ω∈+⋅⋅=∇∇λ−

|
,))(,()div( 2

u
xhufuu p-

 , p ∈ (1, + ∞) 

The operator - Δp , p ∈ (1, + ∞) (the p-Laplacian) 
Ω is a open set, with finite measure Lebesgue, from RN, N ≥ 2. The norm 

on pW ,1
0 (Ω) will be u → ||u|| 1, p = )(Ω∇ pLu . The dual of ( pW ,1

0 (Ω). || ⋅ ||1, p) is 

designates by W – 1, p’(Ω) , p’ the conjugate with the exponent p. 
Consider the operator − Δp : pW ,1

0 (Ω) → pW ′− ,1 (Ω), 

              Δp u = div(|∇u| p – 2 ∇u).                    (37) 

This acts according to ([10]) 

〈−Δp u, v〉 = ∫
Ω

− ∇⋅∇∇ vuu p 2 dx ∀ u, v from pW ,1
0 (Ω).      (38) 

The problem 

(*)
⎩
⎨
⎧

Ω∂
∈λΩ∈+⋅⋅=Δλ−

|
,,))(,()

u
xhufup R

 

Proposition 10. Let Ω be an open bounded of C1 class set from RN, 
N ≥ 2, p ∈ (1, + ∞), h from W – 1, p’ (Ω) and f : Ω × R → R Carathéodory function 
with the properties 

10 f (x, − s) = − f (x, s)  ∀s from R, ∀ x from Ω, 

20 | f (x, s)| ≤ c1 |s| q – 1 + β(x)  ∀ s from R, ∀ x from Ω \ A, μ(A) = 0, 
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where c1 ≥ 0, q ∈ (1, p), β ∈ L q’ (Ω), 1'
11

=+ qq . 

Then, for any λ ≠ 0, the problem (*) has solution in pW ,1
0 (Ω) in the sense3 

of ',1 pW − (Ω). 

Explanations. The relationship u | ∂Ω from (*) is in the sense of the trace4. 
f ( ⋅ , u) = Nf u, Nf Nemyskii operator, and so the equation from (*) can be written as  

      − λ Δp u = Nf u + h.                   (39) 

Let be i': Lq′ → W – 1, p′ the transposed of i (as (Lq)* = Lq′). 

u0 from pW ,1
0 is solution for (*) in the sense of ',1 pW − , if  

             − λ Δp u0 = (i' o Nf o i)u0 + h.                    (40) 

Proof. − Δp = Jϕ ([9]), Jϕ duality map with ϕ(t) = t p – 1 , the Banach space 
( pW ,1

0 , || ⋅ ||1, p ) being uniform convex ([9]), and consequently with (H) property 
and is reflexive (uniform convex ⇒ reflexive). It is also smooth (its norm being 
Gâteaux differentiable on pW ,1

0 \ {0} ([2])). So, apply Proposition 7 (with X = 
pW ,1

0 , Z = Lq, N = Nf − odd continuous operator, ([2]), Z * = L q′, take into account 

||Nf u||0, q′ ≤ c1
1

,0
−q
qu  + c2 , c2 : = ||β|| 0, q′ ,  ∀ u from Lq), the operator  λ (−Δp) − S: 

pW ,1
0 → W – 1, p′, where S = i′ o Nf o i is surjective, a fortiori the operator − λΔp − S 

− h is surjective (commuting group) and hence ∃ u0 in pW ,1
0 which satisfies (40). ■ 

Replacing q with p in 20 from Proposition 10 and applying Proposition 9, 
one obtains 

                                                            
3 Al the terms from the first relationship from (*) are considered as elements of 

',1 pW −
(Ω). 

4 The trace is the unique linear continuous operator γ: W1, p(Ω) → 
',11 ppW

−
(∂Ω) such that it is 

surjective and u ∈ W1, p (Ω) ∩ C( Ω ) ⇒ γ (u) = u | ∂Ω. So we use here the notation u | ∂Ω for γ(u). 
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Proposition 11. Let Ω bean  open bounded of C1 class set from RN, N ≥ 2, 
p ∈ (1, + ∞), h  from W – 1, p′ and f : Ω × R → R a Carathéodory function with the 
properties 

10 f (x, −s) = − f (x, s)  ∀ x  from Ω, ∀ s from R, 

20 | f (x, s)| ≤ c1 |s| p – 1 + β(x) ∀ s from R, ∀ x  from Ω \ A, μ(A) = 0, 

where c1 ≥ 0, β ∈ Lp′ (Ω), '
11
pp + = 1. 

Finally, let be i: pW ,1
0 → Lp(Ω) linear compact embedding. Then, for any 

λ, if  

|λ| > c1
1

1
−λ , λ1 : = inf 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈ }0{\:
)(

,1
0

,0

,1 p
p

p

p
p Wu

ui

u
 , 

the problem (*) has solution in pW ,1
0 (Ω) in the sense of W – 1, p’ (Ω). 

Proof. The statement is correct because ( pW ,1
0 , || ⋅ ||1, p) is compact 

embedded in Lp (Rellich-Kondrashev theorem). Apply Proposition 9. ■ 

Remark. The condition from Proposition 11 can be replaced (see 
Proposition 9) by: 

|λ| > 1
)'(

lim −+∞→ p
f

u u

uiNi DD
. 

Attention to λ1 : p
1

1
−

λ is optimal for the inequality from the enunciation, it 
is attained, nonzero, and the smallest eigenvalue of the couple ( ',1,1

0
', ppqq WWLL JJ − ) 

(see Proposition 8). 

6. Conclusions 

An original version of some minimization results (minimization with 
regular constraints giving global critical points) due to the author, which involved 
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Ekeland principle and a condition of Palais-Smale type is presented in the first 
part of this work. These are involved in characterization of weak subsolutions and 
weak supersolutions for a partial differential equation involving also Nemytski 
operator. 

The novel results of this paper are developed in the second section. An 
extension of a theorem from [8] is proved with weakened and two corollaries have 
been proved for it. Propositions 6, 7 and 9 are due to the author. 

The Propositions 10 and 11, concerning the p-Laplacian, are also obtained 
by the author. 
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