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TWO SOLUTIONS FOR A PROBLEM OF MATHEMATICAL
PHYSICS EQUATIONS

Irina MEGHEA

In aceastd lucrare sunt prezentate doud metode de rezolvare §i caracterizare
a solutiilor, subsolutiilor si supersolutiilor pentru o problema a ecuatiilor fizicii
matematice. Prima metodd foloseste principiul variational Ekeland si o conditie de
tip Palais-Smale pentru a obtine un rezultat pentru p-laplacian. A doua metoda se
bazeazd pe cdteva teoreme de surjectivitate apartindnd autoarei care sunt
demonstrate §i aplicate in gdsirea unor rezultate noi pentru p-laplacian.

In this paper two approach methods to obtain and characterize weak
solutions or subsolutions and supersolutions for a problem of mathematical phisics
equations are presented. In the first, Ekeland variational principle and a condition
of Palais Smale type are both involved in order to obtain some results for the p-
Laplacian. In the second approach method, some original surjectivity theorems are
established to state two original results which describe new properties of the p-
Laplacian.

Keywords: Ekeland varitional principle, Palais-Smale condition, critical point,
weak solution, Nemytskii operator, weak subsolution, weak
supersolution, Carathéodory function, Sobolev space, p - Laplacian

1. Introduction

This paper is mainly based on the organization of the concepts from [1]
corroborated with the results obtained by the author in [2] and [3]. The general
theory is developed towards two distinct trends as in [3] and [4]. In the first,
beginning with the Ekeland principle ([5], [6], [1]), and following a work of
Ghoussoub [7], a variational method to discuss some problems of partial
differential equations has been presented in the manner of [1]. In the second
direction, a series of propositions from [8], [9], [10] and others are generalized or
used in order to obtain a sequence of original results.

The aim of this work is to compare these two approaches, and particularly
to highlight new results in weak solutions for some types of partial differential
equations.
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2. Critical points and weak solutions for elliptic type equation

2.1. Preliminaries

Ekeland principle ([5], [6], [1]). Let (X, d) be a complete metric space
and ¢ : X = (— oo, + o] bounded from below, lower semicontinuous and proper.
For any € > 0 and u of X with

o) < infeX)+e
and for any A > 0, there exists v in X such that

0(vs) < (W) +%d(vg, W)V we X\ {vg)

and
P(ve) < 0(w), d(ve, u) <A
Let X be a real normed space, B a bornology” on X and ¢: X — R.
Definition. Let ¢ be in R and F a nonempty subset of X. ¢ verifies the
Palais - Smale condition on the level ¢ around F (or relative to F), (PS).r, with
respect to B, when V (un)n>1 @ sequence of points in X for which

lim () =c, lim [Vgo(u,)| =0 and lim dist(un, F) =0, (1)
n—»oo n—oo n—oo

this sequence has a convergent subsequence.
We will see that through the minimization on F of a functional
(minimization with constraints) it can obtain global critical points of this.
As a preliminary —
Proposition 1. Let H be a Hilbert space, let ¢: H — R be of C'- Fréchet
class and let F be a closed subset of H such that:
for every u from F with ¢ (u) # 0, there is, for sufficiently small r > 0,

fu: Si(0) >R Fréchet differentiable such that, denoting g, (d) = fu[ﬁ ﬁj ,0 €
u

[0, r], we have

£.(0)= 1 and g, (S)Ku—S&] e F. )
o' )|

Then, if ¢ is lower bounded on F, for every (vp)n>1 @ minimizing sequence

for @ on F there exists a sequence (Up)n>1 in F such that

2 Let X be a real normed space. A nonempty set B of bounded parts of X, with the properties:

1°UA:X, 2°4eB=>-AecPandr4 € B (A>0),3° for every 4, B in B there exists C in
AeB

such that 4 ¢ C and B < C, is named bornology on X.
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') < Ve [+ un g, O} [, O 0/ ()0 3)
o(uy) < o(vy) Vn, 4)
lim ||un - Vn” = (5)

where €, >0 and g, — 0([7]).
Proof. Denote ¢ : = inf ¢(F) and let n be from N. Fore, := ¢(v,) —c + % ,

hence g, > 0, we have @(v,) < ¢ + €,. Apply Ekeland principle with A = \/; , 3 up

in F with known properties. Thus we get the sequence (u,)n>1 satisfying (4), (5)
(||un - vn” <./€y > & —> 0) and

o) = o(u,) — \/g"v - un” VveF. (6)

Verify (3). It is sufficient to work under the assumption ”(p’(un)” >0V n.

Thus apply the hypothesis made in the statement with respect to F' with u =u,

and denoting, for 6 € (0,7], v5:= 8u, (E‘))(un 8"(P (un;”J (e F), replace vs in (6)
1’1

and find, taking into account the Fréchet derivative definition,
Veals =] = 0(aty) = 9(v5) = @' () ety = v5) +0(3) ,
o(d)

where lim ——= =0, hence
550 O
Veén ”VS - ”n” 2 [1 —8u, (6)](P' (ve)(uy) + ogy (8)¢' (VS)($ EZn;j"' o(8)- (7)
n
=gy ) gy, (0)—gy (B) , : .1
But i —5— = Jim =5 =g, O, imvs =, im i~

— o 0 _ (P'(“n)
gun( )i "(P'(un)"

and takes the limit for & — 0 one obtains

< 1+|g'un (O)|||un , consequently if in (7) it divides by &

ealt+[gi, Of )2 2, <0>q>(un>(un)+q>(un>[||(piun;||J

¢ (uy)
ty)|

and it remains only to remark that (p(un)[” } "(p'(un)” in order to get a

fortiori (3).m
Notation. ¢: X —> R B -differentiable, c € R =
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K.(p):= {x eX:p(x)=c, Vﬁ(p(x) = 0}.
Proposition 2. Let H be a Hilbert space, ¢: H — R be of C'-Fréchet class

and F be a nonempty convex closed subset such that (1 — ¢')(F) c F, 1 the identity
map. If ¢ is lower bounded on F, then for every (vy)n>1 @ minimizing sequence for

¢ on F, there is a sequence (Un)ns1 in F such that
¢o(un) <@(vp) V n, lim ||un - Vn” =0, lim ||(p' (un)" =0.
n—oo n—o

Moreover, if ¢ satisfies (PS).r where ¢ = inf @(F), then
FNK (@)= d.

Proof. Apply Proposition 1 with g, = 1. (2) is indeed satisfied: if ueF
and ¢'(u) # 0, then, F being convex,

_wau):(l_ SJ S (1-ghwer.
v el G e § (g vom LALICE

Let (un)n>1 be the sequence given by the statement., ¢ < @(uy) < ¢(vy) V 1, hence
3
@' ()| < \/€n - hence |g'(uy| — 0, clearly dist (un,

¢(un) — c. Since g'un 0)=0,

F) = 0, consequently (un)n>1 has a convergent subsequence (uy )In=1 ,

ug  — ug € F'. This implies |

o' (ukn )” - ||(p' (”0)" =0, u; is a global critical point

of ¢ contained in F. m

2.2. Weak solutions
Open set of C! class in R". We use the notations (the norm is the
Euclidean norm from RN™):
RY= {x=(x, xx): xx > 0},

0= 1{x =, ) : ] < 1 | < 1}

0, =0n R—I;I
O = {x =(x", xN): ||x'|| <lLxy= O}.

Let Q be an open nonempty set of RY, Q = RY and 8Q its boundary. By
definition, Q is of C' class if V x from 6 Q 3 U a neighborhood of x in RN and f:
Q — U one-to-one such that f'e Cl(é),f’l € Cl(ﬁ),f(Qg =UNQ, f(Qo)=
U oS

Weak solution. Let Q be an open bounded nonempty set in R, N > 1,

f:Qx RN > R and ug € H(l)(Q)(: Wol’z(Q)). Consider the problem
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—Au = f(x,u) in Q,
{ u=f(x,u) in *)

u = u on 0Q.

Actually u = up means u | 0 = ug, where y: u — u | 6Q is the trace operator, a
continuous linear mapping from W'"(Q) in LP(6Q), p € [1, + ). We have y ' (0)

—— Q) _
= WP Q)| =Cl@ and ue W'(Q) N C(Q) = y(uw) = u|oQ.

u from H(l)(Q) is by definition a weak solution for (*) if u= ugon 0Q and
[ Vi - Vvdx — [re u(x)vdx =0 Vv e C2(Q) (8)
Q Q

(Vw, the weak gradient, is equal to %,...,ﬂ , % the weak derivatives).
ox; U oxy ) Ox;

Nemytskii operator. Let be RN, N > 1, p the Lebesgue measure in R,
Q open non-empty Lebesgue measurable (L.m.) and o# (Q) : = {u: Q > R| u
Lebesgue measurable (L.m.)}.

By definition f:QxR — R is a Carathéodory function if

1° f(-,s)isL.m. Vs e R,

2° f(x,-)1is continuous V x € Q\ 4, u(4)=0.
In this case, for every u from o#/(€2) it can consider the function

Ni:otl (Q) — ol (Q),
Neu: Nru(x) = f(x, u(x)),

Nemytskii operator.

u il
Suppose p(€2) <+ oo. Then u,(x) = uo(x) = Nruy(x) = Neug(x).
xeQ) xeQ

Suppose that f satisfies the growth condition :
|f(x,s)| < c|s|p_1 +B(x), VxeQ \ A4 with u(4) =0, Vs € R, where ¢ >0, p>1 and

BelLlQ),qell,+x] )]
Then

Ne(LPP9(Q)) = LY(Q); (10)

Ny is continuous (g < +o0) and bounded on L Y(Q); (11)

(12) If Q is bounded and %+é =1, then N; (L’(Q)) < LYQ) with N¢

continuous; moreover, Ny (L°(Q)) < L'(Q) with Ny continuous, where
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S
F(x,s) = j f(x,t)dt, and @: LP(Q) —> R, O(u) = j F(x,u(x))dx is of C'-Frechét
0 Q
class and @' = Nr.
Theorem 1. Let Q be an open bounded nonempty set in R~ and f: Q x R

— R a Carathéodory function with the growth condition
[f(x, )] < efs””" + b(), (13)

5 when N >3 and 2 <p <+ o when N =1, 2, and where

where ¢ >0,2<p< 2N
N —
1 1
be LYQ),—+—=1.
P q

Then the energy functional ¢ : H%)(Q) —->R,
1 2
0(u) = 5 [[Vuef dx ~[ F(x,u(x)dx, (14)
Q Q

S
where F(X,s) = J f(x,t)dt, is of C' - Fréchet class and
0

P (u)(v)= IVu -Vvdx — Jf(x, u(x))vdxVu,v e H%)(Q) .
Q Q

N
Explanation. |Vu|2 = Z
i=l1

28u

, — the weak derivatives.
Gxi

ou
Gxi

Corollary 1. Let Q) and { be as in Theorem 1. Then the weak solutions of
(*) are precisely the critical points of the functional ¢ : H%)(Q) ->R,

o(u) = % .”Vu(x)|2dx - IF (x,u(x))dx, F(x,s) := jf(x, t)dt.
Q Q 0

Proof. Indeed, if u is a weak solution of (*), then (p'(L_l)(V) =0 ((1),

Theorem 1)Vve C(Q), hence (p'(;)zo, because ¢’ is continuous and

CI(Q) = H(l)(Q). The converse is obviously. m

Weak subsolutions and weak supersolutions of (*). Let Q be an open
bounded set of C' class in RN, N >3, /: Q x R — R a Carathéodory function and

ue H)Q).

Definition. u is aweak subsolution respectively weak supersolution of (*) if
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u< ugp on 0Q respectively u> ug on 0Q2 (15)
and
j Vi - Vvdx < j Fxu(x))vdx Vv e CP(Q), v=0
Q Q
resp. (16)

jv& Vx> [ f(x, u(x))vdx Vve CF(Q), v < 0.
Q Q

Proposition 3. Let Q be an open bounded of C' class set in RN, N > 3,
f: Q x R > R a Carathéodory function and u, , u, from H%)(Q) bounded weak

subsolution resp. weak supersolution of (*) with u; (x) <u, (X) a. e. on Q.
Suppose that f verifies (16) and there is p > 0 such that the function g:
g(x, s) = 1(x, s) + ps is strictly increasing in s on [inf u;(€), sup w(Q)]. Then a

weak solution u of (*) exists in H%)(Q) with the property
uy(x) < E(x) <uy(x) a. e on 2
Proof. One can suppose uy = 0. Take the equivalent norm on H(l)(Q)
2 2 2
el = Pl + Vel
and let <-,-> the corresponding scalar product. Consider the functional

¢: Hy(Q)—>R,
o) = % <uu>-— j G(x,u(x))dx, (17)
Q

S

G(x,5):= [ g(xb)dt .
0

¢ is of C' class and its critical points are the weak solutions of (*). Use
Proposition 2. Let be
F.={ue H(l) (Q): u1(x) L u(x) < ux(x) a. e. on Q}.
#1s closed convex. We also get
(I-@)F c 7. (18)
Indeed, let u be in o7 and v:= (I —@')(u). For every w in C°(Q) , w > 0 we have

a7
<Vv,w> = <u,w>—<u,w> +Jg(x,u(x))wdx,
Q
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6)
<vV—up,w> 2 “g(x,u(x)) — g(x,ul(x))| wdx 20,
Q
apply the maximum principle, we get u;(x) < v(x) a.e. on Q. In the same way, we
get v(x) < uax(x) a. e. on Q and hence (18). ¢ is lower bounded on &7 ¥V u in o7
a7
1

we have o(u) > > <u,u>- c; , c;€ R and moreover (PS).r is verified, ¢ : =

inf @(F) ([7], Theorem 1.16, proof). Finish the proof applying Proposition 2. =
Example. Consider the problem (Q open bounded of C' class in RY,

N2=>3)

p-2

{—Auza(x)u|u (19)

u=uy on 0Q,
2N . . . 1A
where p SN_g oS continuous with 1 <a(x)<a<+owon Qandu € C(Q),
up (x)=1 on 0Q. Then u, : = 1 is a weak subsolution, u, : = M, M > 1 sufficiently
big, is a weak supersolution, |f (x, s)| < als| P (condition (13)) and s —
o(x)s |s|p_2 +s is increasing in s on [1, M], consequently, according to Propositi-

on 3, (19) has a weak solution u with 1 < ;(x) <Ma.e.on Q.

3. Surjectivity of the operators AJ, — S. Applications to partial differ-
rential equations

3.1. Surjectivity of the operators AT — S

An extension of the Theorem 1.1 from [8] is proved with weakened
assumption: normed space instead of Banach space, bijection with continuous
inverse instead of homeomorphism. Two corollaries of the author are also
presented.

Firstly, to have a short expression,

Definition. T: X— Y, X and Y normed spaces, is (K, L, a), where K > 0,
L>0,a>0,if

K |x||* <||Tx|| < L ||x||*, V x from X.

Proposition 4. Let X, Y be a real normed spaces, let T: X > Y (K, L, a)
be an odd bijection with continuous inverse and S: X — Y an odd compact
operator. For any L # 0, if

lim [[ATx — Sx|| =+ oo,
[ —>+e0



Two solutions for a problem of mathematical physics equations 49

Then AT — S is surjective.
Proof. Let zy be from Y, we state that

Jx0 in Xe.g. ATxo— Sxo=2z. (20)
Take R > 0 with the property (see the hypothesis)
[l = R = [[ATx — Sx{| > [|zol| (2]

and the open ball from Y Q :=S(0,r), r:=|ALR". If y € 0 Q and y = ATx, then
21
IIX|l = R and hence (22) [|[ATx — Sx|| > ||zol|-

Let be the operator 4: Y — 7,
e
Ay=ST |\ )

A is compact, odd and Ay # y when y € 0o (par absurdum, put y in the
form ATx and takes into account (22), i.e. 0 ¢ (I — A)(0c). Applying the Borsuk
theorem, it follows that the Leray-Schauder degree, d(/ — 4, o, 0), is odd. But

H:[0,1]x o> Y,H(t,y)=Ay + tzo
being a homotopy of compact transforms on 5, we have
d(/-H(,-),o,0)=d(/-H(1,-), o, 0),
ie.
d/-4,0,0)=d(/-A4 -2z, 0),
consequently, d(/ — 4, o, 0) is an odd number, particularly different from zero,

therefore 3 ¢ in & so that (/ — 4 — zp)(y9) = 0 and we have only to take xo in X with
vo = ATxp, to obtain (20). m

Corollary 2. Let X, Y be real normed spaces, T: X > Y odd (K, L, a)
bijection with continuous inverse, S: X — Y odd compact operator and o. : =

lim M<+oo.If

o> |

M> < heR,

then AT — S is surjective.
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Explanations. ([11], vol. I, V, 8 5, 11.9y). f: X — Y, X and Y normed
spaces,

def
llm @I = infsup I/ (x)f = Tim sup. [WACIIE

H H P>V xex pP—>+®0 xe X
HXH>P =

Ifoa= lim | f(x)],thenx, € X V nfrom N and || x, || &> + oo implies
=0

lim || f(x)] <o
n—>+o0

Ifa= 1im || £ (xn)|| for any (x,) with x, from X and ||x,|| & + o, then o
—+00

gt Hhm ||f(X)||

It remains to state

lim  ||ATx — Sx|| =+ oo. (23)
X|[—> =00

Assuming, par absurdum, the contrary, one obtains p > 0 and a sequence
(Xn)nz0, Xn € X, ||xn|]| > + 0 e.g.

IATx — Sxol| < p V> 1. (24)
From (24),
ATx,  Sx, | _

a a
Feal™  [rea]

hence Ilim PX”Txnm - "S(x”)q =0andas lim M < a, it results

b

n—>+00

el ol 124 [
i Ml _ 25)
n—>+oo "x ”
But the condition (K, L, a) imposes
K< EM. (26)
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From (25) and (26) results K < |k| If o # 0, then |A| S%, which contradicts the
hypothesis, and if o = 0, then K = 0, also in contradiction with the hypothesis, and
consequently (23). m

Corollary 3. In the condition of the Corollary 2, if o =0, then AT — S is
surjective for any A from R\ {0}.

3.2. Surjectivity of the operators of the form AJ, - S, J, the duality map
Proposition 6. Let X be a real Banach space, reflexive and with the pro-
perty (H), Jo the duality map on X with ¢ a (K, L, a) function, S: X — X" an odd
compact operator and
o IS

"o H

Then

1° 0> 0= AJ, — S surjective ¥ L with |\ >% ;

2° 0= 0= AJ, — S surjective ¥V L 0.
Explanation. A Banach space has the (H) property if it is strictly convex
and satisfies: x, —— x and ||| = |[x]| = xn — x.

Proof. J, 1s odd and bijective with continuous inverse (X being reflexive,
smooth and with (H) property, any duality map J, on X is b1] ective with its inverse
continuous by rapport to the strong topologies on X and X~ [2]). Moreover, since

K <o(@t)<Lt" V>0,
we have
K[l < @(|lxl)) = o xl| < LIx|[* V x from X,
i.e. Jois (K, L, a). Apply Corollaries 2 and 3. m

Proposition 7. Let X be a real reflexive Banach space, smooth with the
property (H), and J, the duality map on X with ¢(t) =t"~ ' p e (1, + ©). Suppose
that X is compact embedded by the linear injection i in a Banach space Z,

[[i(w)|| £ colu|| V ufrom X. 27)
and N: Z — 7 is odd hemi-continuous operator with the property
INX|| < ci|x|| ¢ "+ ¢2 V x from Z, ¢1, 22 0, q € (1, p). (28)
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Then N\, — N is surjective for any h # 0.

Explanation. N is the short notation for the operator, which acts from X to
X ,i' o Noi,i the adjoint of i.

Proof: 1t follows to state that

V hfromX JuinXe.g Mou—(i'o No iyu=h. (29)

Apply Proposition 6 with 7 = J, (correctly as ¢ is (K, L, a) with K =L =1, a =
p—1),5=10Noi Obviously, §Sis odd, and also compact: let (xp)nen, Xn € X be
bounded sequence, (i(x,))n.>1 has a convergent subset, let be i( xkn) Y,y € Z,
then N(i( Xk, ))L>N(y) and consequently '(N(i( Xk, )))— #'(N(y)) because i' is
also compact (Schauder theorem). So, to obtain the conclusion it remains to proof
i L0eN oD

30
=40 P! G0

(27),(28) .
[FNG@))I| < 18] ING@) < coler @) 9"+ e2) < co(cd ™ er [Jull ' + ),

from which results (30) (was used ||7']| < ||i|| £ ¢o). m

In the following one searches the surjectivity of the operator AJ, — N,
when N verifies the growth condition (28) where g = p, i.e.

INx|| < e |Ix]|P '+ ¢z ¥ x from Z, ¢1, ¢2> 0. (31)
For this reason, one presents the statement

Proposition 8. Let X be a real reflexive Banach space compactly embed-
ded by the linear injection 1 in the Banach space Z,

[[i(w)]| £ co|ul| ¥ u from X. (32)
If
oo [l
Acr=inf{—:u e X\ {0}},p € (1, + o),
Jie)”
then

1° 0\, is attained and nonzero;
_1 1
2° A, P is optimal for (32) (i.e. &, ¥ < co, for any cy);



Two solutions for a problem of mathematical physics equations 53

30 If X and Z. are smooth and Jxx+: X — X, e 227" duality maps
relative to the same weight @: () ="', then A, is the smallest eigenvalue of the
couple (Jxx*, Jyy+) ([9]).

Proof. The set from the statement is correctly defined: u # 0 = i(u) # 0.
1° We have

M=inf {|V[P:v e X, [li(v)|| =1}

(the two sets coincide, as

1(%)”2 1), let (Va)n=1 , vo €X be with ||i(vy)]| = 1 and
1

[vall > A7 .

Since X is reflexive, then (v,),>; admits a subsequence, similarly denoted,

which is weekly convergent in X, v,——> v (Kakutani theorem). Then

[Vl < Tim [lva],
n—»0

VP <A, (33)

On the other hand, because i is compact, we have i(v,) — i(v), this implies
(33)

liv)|l = [liW)]], [li)|| = 1 and hence [[v|[> = A1, [MP = A1, Ay is attained and a
fortiori nonzero.

2° Take into account the definition of M and 1°,

30 Firstly show that A is eigenvalue for the couple (Jzz+, Jxx+), i.e. I up
#0in Xe.g.

7\,1 (i' (6] Jzz* (6] i)uo = Jxx* Uop . (34)
Take the functional ®: X - R,

1 A
D) = — ||ullP ==L |[i(w)| .
(u) p|||| p||()||

1° p
O(u) 20 V u from X (see the definition of A) and, for up # 0 e.g. A = £||J|(L:;O||)||j ,
0

®(up) = 0, which imposes (one takes into account that X is a smooth space iff its
norm is Gateaux differentiable on X'\ {0})

D'(up) = 0 (Gateaux derivative). (35)
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Then we use the formulae: “X smooth = J, x = @(||x||)|[x]|', x # 0” and “if

X, Y real normed spaces and f: X — Y Gateaux differentiable, /' : ¥ — R of

Gateaux C' class, then g : = F o f is Géteaux differentiable ([9]) and g' (x) =
(3%) '

F'(f(x)) of'(x)” to obtain: V u from X, 0 = ®'(uo)(u) = <||u0||p_1|| | o), u> -~

M <||i(uo)||”‘1|| [ ). i(u)>= xxs uo)(w) = M(zz(i(uo)) (W) = (Jxxrup -
7\.1(1"0‘]22* o l)(uo),u> , ie. (34)

Let now be A eigenvalue for the couple (Jzz+ , Jxx+) and u a corresponding
eigenvector. Then

P = Uxxs u)() = (T zz(w)), i) = Mliw)]",

hence

.
Jice]”
We can now state

Proposition 9. Let X be a real reflexive Banach space and smooth with
the (H) property, J, the duality map on X with ¢(t) = t? ' p e (1, + o). Suppose
that X is compactly embedded with the linear injection 1 in the Banach space 7.
and let N: Z — Z" be an odd hemi-continuous operator with:

INX|| < ci1||x]|P '+ ¢ VX firom Z, ¢, ¢, 0.

Then, for any A, if

A > lim —”(fON i) ” , a fortiori if |\| > ¢k 1, where
f f 1M
e —>+0 ||u||‘ !

p
M :=inf{%: ueX\{0}},
i)

Mo — N is surjective (N means 1' o N o 1).

Proof. Due to Proposition 8, 1° it follows that A; # 0, hence 7»]1 exists. We
apply, as for Proposition 7, Proposition 6 with 7'=J,, S =1i'o N o i. We prove
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lim J@oN o i) <epgts (36)

= !

By using Proposition 8, which is sufficient to establish the conclusion. ||(i' 0 N o
1 1-p 1
T T -1 . . T

il < 17 INGa)] <A @A ful”+ e (i < i <27 and G6)

becomes obviously. m

3.3. Existence of the solution for the problem
: -2
—Adiv(Vel" V) = (- u())+h x eQ pe(ltm)
u| o

The operator - Ap, p € (1, + ) (the p-Laplacian)
Q) is a open set, with finite measure Lebesgue, from RN, N> 2. The norm

on WP () will be u — |ju] L=V ||L,,(Q). The dual of (WP (Q). | - [l ) is

designates by W~ p’(Q) , p’ the conjugate with the exponent p.
Consider the operator — A, : Wol’p Q) ->w Lp (Q),
Apu = div([Vul®* Vu). (37)

This acts according to ([10])

Dy, v)= [[Vuf’ 72V Vv de ¥ u, v from Wy P (). (38)
Q

The problem

w )~ M) =f(u(-)+h xeQ heR
© u|oQ

Proposition 10. Let Q be an open bounded of C' class set from R,
N>2,pe(l,+o0),hfiom W P (Q)and f: Q x R — R Carathéodory function
with the properties

1°f(x, —s)=—f(x,5) Vsfiom R,V x from Q,

20|f(x, )| <cils|9 '+ B(x) Vs from R,V x from Q\ A, p(A) =0,
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wherec; >0,q € (1,p), p € LY (Q), é+%=1.

Then, for any A # 0, the problem (*) has solution in Wol’p (Q) in the sense’

of W P (Q).
Explanations. The relationship u | 6Q from (*) is in the sense of the trace®.
f(-,u) =Nru, Ny Nemyskii operator, and so the equation from (*) can be written as
—AAyu=Nru+h. 39)

Let be i': LY — W~ P the transposed of i (as (L%) = L%).

ug from Wol’p is solution for (*) in the sense of W -Lp , if

— % Apto = (i' 0 Ny 0 d)ug + h. (40)

Proof. — Ay = Jy ([9]), J duality map with @(¢) = ¢~ !, the Banach space
(Wol’p , ||+ |l1, p ) being uniform convex ([9]), and consequently with (H) property
and is reflexive (uniform convex = reflexive). It is also smooth (its norm being
Gateaux differentiable on Wol’p \ {0} ([2])). So, apply Proposition 7 (with X =

W(}’p , Z=L% N = Nt - odd continuous operator, ([2]), Z " =LY, take into account
-1

|[Nrullo, ¢ < ci ||u||g’q +ec,c:=|Bllo, g, VufromL?),the operator A (-A,) — S:

Wé’p — W '? where S=1i" 0 N; o i is surjective, a fortiori the operator — AA, =S

— h is surjective (commuting group) and hence 3 uy in Wbl’p which satisfies (40). m

Replacing g with p in 2° from Proposition 10 and applying Proposition 9,
one obtains

~1p'
3 Al the terms from the first relationship from (*) are considered as elements of /' b Q).

1

P’
* The trace is the unique linear continuous operator y: W“P(Q) — W ? (6Q) such that it is

surjective and u € W P (Q) N C(Q) = y (1) = u | Q. So we use here the notation u | 8Q for y(u).
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Proposition 11. Let Q bean open bounded of C' class set from RN, N > 2,
pe(l,+w),h from W " and f: QxR — R a Carathéodory function with the
properties

1°f(x, —s)=—f(x,s5) VX fromQ, Vs fromR,
2°1f(x, 8)|<cils|P '+ B(x) Vs from R, Vx from Q\A, w(A) =0,
: 1 1
wherec;>0,B e LP (Q),—+—=1.
P p

Finally, let be i: Wol’p — LY(Q) linear compact embedding. Then, for any
A, if

i,

> eixy' A =inf | .
i,

1
u eWO’p \{0} ¢,

the problem (*) has solution in W(}’p (Q) in the sense of W~ LP(Q).
Proof. The statement is correct because (Wol’p , Il - I, p) 1s compact
embedded in L? (Rellich-Kondrashev theorem). Apply Proposition 9. m

Remark. The condition from Proposition 11 can be replaced (see
Proposition 9) by:

T Go/au |
=0 P!

1
Attention to Ay @ A\ P is optimal for the inequality from the enunciation, it
is attained, nonzero, and the smallest eigenvalue of the couple (J 14 qu,JWLprl,pv )
0
(see Proposition 8).

6. Conclusions

An original version of some minimization results (minimization with
regular constraints giving global critical points) due to the author, which involved
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Ekeland principle and a condition of Palais-Smale type is presented in the first
part of this work. These are involved in characterization of weak subsolutions and
weak supersolutions for a partial differential equation involving also Nemytski
operator.

The novel results of this paper are developed in the second section. An
extension of a theorem from [8] is proved with weakened and two corollaries have
been proved for it. Propositions 6, 7 and 9 are due to the author.

The Propositions 10 and 11, concerning the p-Laplacian, are also obtained
by the author.
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