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SFP: A METRIC FOR ASSESSING CIRCUIT FAILURE
PROBABILITY DURING PRE-SI VERIFICATION
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The verification phase represents an essential step during the
development of new analog integrated circuits. Depending on the circuit
complexity and on the verification tools used, this process can take a con-
siderable amount of time. In this work, we propose a novel metric which
indicates the probability of circuit failure during Pre-Silicon (Pre-Si) ver-
ification. The proposed metric, denoted Specification Failure Probability
(SFP), can be used in conjunction with any existing circuit verification al-
gorithm that employs Gaussian Processes (GP) to model the circuit. Since
GPs are Bayesian models, apart from their estimates, they also provide an
uncertainty, which can be used to assess circuit failure probability. Thus, the
verification engineer can make a decision to either stop the algorithm or to
continue to perform simulations. The SFP metric has potential of saving a
significant amount of time during the most time-consuming phase of circuit
development (i.e., circuit verification). In order to evaluate the proposed
metric, we conduct experiments on both synthetic and real circuits. The
results show that the proposed metric correlates well with the verification
outcome and demonstrate the importance of having an intuitive metric in
order to better manage the verification process by balancing between failure
risk and time spent performing simulations.

Keywords: Pre-Si Verification, Gaussian Process, Machine Learning,
Specification Failure Probability.

1. Introduction

As analog circuit designs constantly increase in complexity, the task of
circuit verification has become a topic of great interest. A full circuit verifi-
cation comprises usually two processes: Pre-Silicon (Pre-Si) and Post-Silicon
verification. While the former deals with ensuring that a surrogate model of
a circuit design works as intended, the latter consists in testing the physical,
integrated circuit [1]. An important advantage of Pre-Si verification is that de-
tecting a problem in early development stages will save a considerable amount
of time in an already highly time-consuming task [2]. Pre-Si verification may
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be split into 3 categories: equivalence checking, model checking and specifi-
cation testing [3]. While computationally expensive, particularly for analog
circuits, specification testing can be approached in a more efficient manner
with Machine Learning (ML) techniques [4]. Even though data collected dur-
ing Pre-Si stages can be used for debugging and diagnosing [5], there are a few
methods which indicate the reliability of the final pass/fail verdict.

Considering the current stage in the circuit development field, we pro-
pose a metric that indicates the probability of circuit failure during the Pre-Si
verification process. This metric has been tailored for our method [6], which
is a ML approach designed to sample the input Operating Conditions (OCs)
hyperspace in order to identify possible circuit failures. To this end, Gauss-
ian Process (GP) surrogate models are employed to create estimates of the
circuit’s response functions. Based on these estimates, further candidates are
proposed for simulation, which could lead to specification violation. An impor-
tant note on GP is that, besides the estimate of the function, it also provides
a measure of uncertainty. This uncertainty can be then used to compute the
probability of circuit failure for each response. Benefiting from the inherent
GP uncertainty, we can calculate the Specification Failure Probability (SFP).

The remainder of the paper is structured as follows. Section 2 presents an
overview of our verification method and highlights the proposed SFP metric.
The experimental setup and results are described in Sections 3 and 4 respec-
tively. Finally, Section 5 provides a few discussion items based on the results,
while Section 6 is reserved for drawing some concluding remarks.

2. Proposed Method

2.1. Problem definition

The main task of the circuit verification algorithm consists in identifying
possible circuit failures in the Pre-Si verification stage. This ensures that the
circuit’s response values stay within an imposed range, regardless of the in-
put Operating Condition Configuration (OCC). Through operating conditions
(OCs) we denote the circuit’s inputs, while an OCC represents a set of OCs
values. The circuit’s outputs are denoted as responses.

For example, in the case of a circuit with 3 inputs and 2 outputs, we
denote the 3 inputs (or OCs) as cond1, cond2, and cond3. An OCC, which
is a particular set of these OCs, can look like: cond1=1, cond2=4, cond3=1.
The responses represent different functions with respect to the input OCs:
R1 = f(cond1, cond2, cond3), R2 = g(cond1, cond2, cond3). An example of a
response function for the synthetic circuit can be defined as: R1 = 2.5(6−cond1)+
2.5cond2 + 15cond3.

Standard verification usually consists in a virtually exhaustive exploita-
tion of the input hyperspace. For example, for a 6 OCs circuit, if we set to
explore all minimum, nominal, and maximum points on each dimension, a
standard full factorial (FF) verification consists in 36=729 simulations. This
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usually is very time-consuming and thus, our aim was to develop an algorithm
which reduces the verification time by employing a ML based approach.

2.2. Candidate verification algorithm

The steps of our current verification algorithm [6] are presented in Fig.
1. An initial OC evaluation set is created using Orthogonal Arrays (OAs)
combined with Latin Hypercube Sampling (LHS). The size of this evaluation
set depends on the complexity of the circuit, more specifically, the number of
inputs (OCs). A full factorial 3L standard verification, where L is the number
of input OCs, is usually feasible up to 5 OCs. For a higher input space, we
use various OA designs and complete the remainder budget with LHS sam-
ples. This budget usually varies between 100 and 300 simulations. Moving
further, all OCCs in the evaluation set are simulated and the response values
are extracted. This process represents the Fixed Planning (FP) step, which
initiates a preliminary search in the OC hyperspace. In the FP step, we cover
predominantly corner cases through the OA designs (minimum, nominal and
maximum values are assigned to the OCs), but we explore intermediate values
through LHS as well. This offers a good initial coverage of the input OC hyper-
space. The FP evaluation set is also used in the second step of the algorithm,
namely, the Adaptive Planning (AP). The FP phase is done once, while the
AP step is done iteratively according to a preset number of iterations. During
AP, we propose additional candidates, or OCCs, that could lead to possible
circuit failures. To propose relevant candidates, we use simulations obtained
during FP to train GP surrogate models (one GP per response). After the
proposed candidates are simulated, the GPs are retrained with the additional
data. The algorithm stops either by engineer intervention, or by itself (if fail-
ures have been found or if the simulation budget has been exhausted). The aim
of the AP step is to propose better candidates, based on the GPs estimates.
This way we explore areas of the input hyperspace where standard approaches
would usually miss. These newly proposed candidates can be anywhere in the
hyperspace (each OC is defined in a continuous interval).

Although quite complex, the verification algorithm provides no indicator
as to how many AP iterations would be considered adequate. Furthermore,
there can be no universal guidelines as the circuits can vary greatly in com-
plexity and the time spent during verification should be minimized. In order to
aid the verification engineer in deciding when to stop the verification process,
we propose a metric that indicates the overall probability of circuit failure (see
the following section).

2.3. Specification Failure Probability (SFP)

We define SFP as a metric which indicates the probability that a response
of a circuit might not meet its specification. The SFP is computed using a
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previously trained GP model, which can be used to compute the response es-
timate and variance in each OCC. Fig. 2 illustrates how the GP uncertainty is
used to compute the SFP. For a certain data point, highlighted with a purple
cross, the Gaussian distribution marks the uncertainty around that specific
point. The probability of that data point to violate the imposed specifica-
tion is marked by the red filled area (SFP) within the Gaussian distribution.
Therefore, as the data point on the GP estimate line is closer, or exceeds the
specification green line, the red area will increase.

The SFP can be computed as described above for each OCC in the OC
hyperspace. However, the verification engineer needs an estimate of the SFP
across the entire input hyperspace (i.e., for all OCCs). In addition, it would
benefit the verification engineer to know the SFP for the OCCs where the
circuit is most likely to fail. Considering this, we compute the SFP starting
from a large set of OCCs in order to have a good coverage of the OC hyperspace
and thus a good insight of the probability of failure. More specifically, we use
the GP estimates for the OCCs as well as the Probability of Improvement
(PI) acquisition function in the SFP computation process. The PI function
can be described as the probability of an OCC to generate a response which
would be better (lower or higher depending on the case) than an imposed
threshold (in our case, the specification) based on the GP estimate. The large
set of OCCs is formed from a grid of equally spaced OCCs (3L OCCs, where
L is the number of input OCs), to which we add all the OCCs which were
proposed during previous AP iterations as being possible worst cases. The 3L

grid setting of minimum, middle and maximum values is used since it offers
good coverage of the hyperspace. Using more than 3 levels to calculate the
SFP would be computationally and time expensive. We then cluster these
OCCs in k=10 clusters, using K-means, and select the worst case (i.e., highest

Figure 1. Diagram of the circuit verification algorithm
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Figure 2. SFP for a given data point (purple).

SFP) in each cluster. The aim is to avoid biased results due to highly correlated
OCCs. By using K-means to select 10 candidates, the Total SFP metric should
better reflect the true specification failure probability. Finally, we combine the
individual SFP values for the worst case OCCs to obtain the Total SFP for
that response (see Algorithm 1). Firstly, we extract the worst case SFP per
cluster. This will lead to a list of 10 Specification Non-Failure Probabilities
(SNFP). Then, the Total SFP will be equal:

Total SFP = 1−
10∏
i=1

SNFPclusteri (1)

We note that SFP quality is highly dependant on the GP model. Thus, a
better fitted GP is more likely to output a more reliable SFP.

3. Experimental setup

For the experimental setup, we focus on 2 types of circuits: synthetic and
real. The synthetic circuit was first used in order to evaluate SFP in a fast (i.e.,
short function evaluation time) and well established context (i.e., true worst
cases are known in advance). Thus, this type of circuit gives a clear view of
the reliability of the SFP metric. The synthetic circuit was previously used
in our works [6] for setting various benchmarks. The circuit described in [6]
has 6 inputs (OCs) and 25 responses. The synthetic functions were proposed
by Infineon engineers to be very similar to the way real circuit responses vary
with regard to the various operating conditions.

The second circuit, is an Infineon voltage regulator, with 27 design vari-
ables, 7 input OCs, one process corner and 3 responses. The three responses
are Gain Margin (GM), Phase Margin (PM) and Power Supply Rejection Ra-
tio (PSRR). These must respect the following imposed specifications: GM >
8, PM > 20 and PSRR < –26. We should note that since we are in the Pre-Si
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phase, this does not represent a physical circuit, but a model of the circuit
simulated through tools such as PSpice or Cadence.

Another aspect regarding the problem of circuit failures is that in our
scenario, the circuits are considered black boxes and the inputs are well defined
between certain limits and do not stray from those limits. The handling of
process corners is done by encoding the categorical values in 2 integer values.
This was done in order to be compatible with the BoTorch framework, which
we use for our GPs. More details can be found in our prior work [6].

The reliability of the SFP is assessed comparing its value to the known
(or estimated) response limit. This takes into consideration values obtained
during FP and completed AP iterations as well as true minimum or maximum
values (if available). As we obtain closer values to the specification, we would
expect higher SFP values, while obtaining a value below/over the imposed
minimum/maximum threshold would lead to a SFP of 100%.

4. Experimental Results

4.1. Synthetic circuit with infallible specifications

The first experiment was performed on the synthetic circuit. Its specifi-
cations were set to be 2% lower than the true minimum for all the 25 responses.
By setting the specifications slightly below the true minima of the synthetic
responses, we make sure they cannot be failed. Thus, we expect to obtain a
decreasing trend in the SFP values and eventually values of 0%, as the GPs
become more precise after each iteration. The results (see Fig. 3) show that

Algorithm 1: Specification Failure Probability

Input: A set of N OCCs data points comprised from
3L + previous AP OCCs candidates, where L is the number
of input OCs

Output: Total SFP value for a response

1 Calculate the SFP value for each data point as the probability of
the estimate to exceed the specification.

2 Create 10 clusters using K-means, based on the data points position
in the hyperspace.

3 Create the SFP vector of length 10 based on the K-means clusters.

4 for i = 1 to 10 do
5 Add the data point with the best SFP value to the SFP vector
6 end for
7 Calculate the Specification Non-Failure Probability (SNFP) as

SNFP = 1− SFP
8 Calculate the Total SFP value for the response as:

Total SFP = 1−
∏
(SNFP)
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Figure 3. SFP values for the 25 responses of the synthetic
circuit configured with infallible specifications. Ox axis shows
the algorithm phases: it starts with FP and then continues with
10 iterations of AP.

many responses have low SFP values after the FP stage. Eight responses have
SFP values higher than 10% after FP and continue to exhibit high values at
early AP iterations. However, the algorithm reaches small SFP values for all
responses, with a maximum SFP of 1.51%, as early as iteration 4. This in-
dicates very low probability to find OCCs that can generate responses below
specification values. This is indeed the case, since the specifications have been
set deliberately as infallible. Such behaviour is ideal in terms of SFP: for a
well-designed circuit it should point out quickly that there is no reason to
spend more time on verification.

4.2. Synthetic circuit with fallible specifications

In the second experiment, we set the specifications for the synthetic re-
sponses as the true minimum +1% of the response range. This way, the spec-
ifications are fallible and we expect to see relatively high values of SFP as we
get closer to the imposed specifications. The experimental results are in line
with the expectations. Due to the relative simplistic nature of some of the cir-
cuit’s responses, the verification algorithm managed to find failures for most
of the responses during the FP stage. For the responses for which failures were
not discovered during FP, we present in Table 1 the specifications values, the
worst response values found during FP and the SFP computed after FP. An
important conclusion regarding the results presented in Table 1 is that most
of the responses have high SFP values after FP. This indicates that the ver-
ification engineer should continue to perform simulations for these responses,
since there is a high probability circuit failure. Indeed, as it can be observed in
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Table 1. Synthetic responses for which the verification algo-
rithm did not find failures during FP.

Response Spec. Worst FP value SFP after FP AP 1 value
4 38.6 38.8 83.2% 38.6
9 51.2 85.8 25.0% 49.5
10 94.9 148.2 78.0% 91.4
11 63.1 83.4 59.9% 61.4
12 80.8 102.8 74.4% 78.0
15 62.9 82.5 84.7% 60.0
16 12.4 19.9 93.0% 9.2
19 47.3 67.5 98.3% 45.0

Table 1, the verification algorithm provides OCCs for which the specifications
are failed for all responses in AP iteration 1. Note that for some responses
(e.g., 9 and 11), we obtain small SFP values after FP. These are more complex
responses for which the GPs are not sufficiently trained with the 100 samples
available in FP. Normally, a few iterations of AP would be required in order
to take a decision of whether to continue to simulate candidates or stop the
verification process.

4.3. Real circuit (LDO) with realistic specifications

For this circuit, we initially perform a 10 iteration experiment, with 100
samples in the FP stage. Looking at the results (see Table 2), we notice
that GM response has high SFP values from the beginning (FP stage). This
indicates high failure probability; 88.2% at iteration 10. The SFP of the PM
response starts with a relatively high value of 64.9%, but ending on a less

Table 2. SFP for the real circuit responses.

Iter. SFP GM SFP PM SFP PSRR
FP 97.5% 64.7% 7.5%

AP 5 89.3% 15.4% 6.8%
AP 10 88.2% 10.9% 1.1%
AP 15 87.8% 8.2% 1.2%
AP 20 82.1% 3.6% 0.6%
AP 25 76.5% 1.9% 0.1%
AP 30 77.6% 3.3% 0.1%
AP 35 74.4% 2.2% 0.0%
AP 40 62.7% 1.5% 0.0%
AP 45 65.5% 2.6% 0.0%
AP 48 100.0% 6.6% 0.0%
AP 50 100.0% 3.6% 0.0%



SFP: A Metric for Assessing Circuit Failure Probability During Pre-Si Verification 207

pessimistic value of 10.09%; while for the PSRR response we begin with a low
value of 7.5% and end on an even lower value of 1.1% indicating that the GP
for this response seems almost certain that the PSRR response cannot fail the
specification. Given these initial results over 10 iterations, we decide to further
simulate candidates in order to find a possible specification failure for the GM
response (given its high SFP value). Thus, we sequentially add an additional
10 iterations, while monitoring the SFP values. Since the SFP for GM still
has high values, we continue to add iterations up to iteration 50. Looking
back at Table 2, we observe that our commitment has been justified, since at
iteration 48, the algorithm finds an OCC which leads to a GM value of 7.92,
which represents a specification violation (GM needs to be strictly higher than
8). For the PM response we observe a steady decrease of the SFP values over
the 50 AP iterations, reaching a value of 28.6 as opposed to the specification
of 20. Finally, after initial iterations, the GP model for PSRR should precisely
approximate the response and assign under 1% SFP after iteration 20. This
is justified by the maximum value found by this response. The found value of
-34.1 (compared to the spec. of -26) is relatively far from the response range.

5. Discussion

The experimental results showed three possible scenarios:
(1) the SFP is high after fixed planning and decreases steadily during adaptive

planning to values close to 0%;
(2) the SFP is relatively high after fixed planning and remains high or in-

creases during adaptive planning;
(3) the SFP is low after FP and remains low during AP.
Scenarios 1) and 3) were observed for the synthetic circuit configured with
infallible specifications and the PM and PSRR of the real circuit. In both these
cases, the SFP predicted correctly the outcome: the verification algorithm did
not find specification failures and could have been stopped early on, saving
time. Scenario 2) was observed for the synthetic circuit configured with fallible
specifications and for the GM response of the real circuit. Again, in both
situations, the SFP is reliable: the verification algorithm identifies specification
failures. In a real scenario this would be an important warning for the engineer:
continue the verification process as there is a high probability that the circuit
fails for some OCCs. Note that SFP cannot be considered an absolute metric;
e.g., SFP=50% does not necessarily mean that there is a 50% probability that
the circuit would fail the specifications. In order to obtain such an absolute
metric one would need to evaluate it in all possible OCCs and with a very
accurate surrogate model. The aim of the algorithm consist in finding potential
failures using a small number of simulations compared to a standard exhaustive
approach, while the SFP offers valuable insight of these failures in a large,
albeit limited no. of points in the hyperspace. Overall, the SFP is an objective
metric and can be successfully used (i) to compare the likelihood of failure
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between circuits, (ii) to provide warnings of possible failures and eventually
(iii) to stop the verification early on for adequate circuits. For future work, we
plan on testing the SFP metric on more scenarios for both synthetic and real
circuits.

6. Conclusions

In this paper we introduced a powerful metric for assessing failure risk
at any stage during Pre-Si verification. The specification failure probability
(SFP) gives valuable insight to the verification engineer, as it approximates the
probability of circuit failure. In this context, SFP can save time that would
otherwise be spend on unnecessary simulations or can issue warnings of possible
failures early on. The SFP metric was validated on both synthetic and real
circuits. The experiments showed various scenarios of SFP values and trends,
all of them being correlated with the final outcomes: failure identification
or circuit sign-off. Nonetheless, even though SFP can be a valuable tool for
the verification engineer, it is worth noting that its values should always be
correlated with the quality of the GP surrogate model. As the SFP is based
on the GP estimate, these two are intrinsically intertwined.
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