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THE KSGNS CONSTRUCTION ASSOCIATED WITH A
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MAP
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In this paper we prove a covariant projective version of the Stinespring
theorem in terms of Hilbert C∗-modules. We also present an extension of a pro-
jective u-covariant completely positive linear map on the twisted crossed product
A×ω

α G to a unique completely positive linear map in the case of locally compact
groups and discrete groups. The main result of the paper is the KSGNS construc-
tion associated with a projective u-covariant completely positive linear map.
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1. Introduction

The term of completely positive map was introduced by Stinespring in [21] and
showed that every positive map of a commutative C∗-algebra into the algebra L(H)
of operators on the Hilbert space H is completely positive, as is every scalar-valued
positive linear map of a general C∗-algebra. He also proved a well known theorem
about characterization of completely positive maps.

The physical significance of completely positive linear maps of C∗-algebras
has been observed over the years in many papers, in which it was shown that the
completely positive linear maps describe the change of states of quantum dynamical
systems, produced by quantum measurement or describe the time development of
open quantum dynamical systems. The completely positive linear maps, which
appear in the theory of quantum measurements, in the operational approach to
quantum mechanics and in the theory of the open quantum dynamical systems
are called respectively imperfect measurements, covariant instruments, generalized
observables and dynamical maps. The notion of completely positive maps generalizes
the notion of state, representation, conditional expectation and the notion of semi-
spectral measure.

The GNS (Gel’fand-Naimark-Segal) representation theorem is one of the most
useful theorems frequently applied to mathematical physics. The GNS construc-
tion applied to an invariant state, gives a cyclic covariant representation with an
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invariant cyclic vector. To every positive linear functional on a C∗-algebra A can
be associated a cyclic representation on a Hilbert space H by GNS construction. In
[21], Stinespring extended this theorem for a completely positive linear map (as a
generalization of a positive linear functional) from a C∗-algebra A into B(H), the
C∗-algebra of linear bounded operators on a Hilbert space H, in order to obtain a
representation of A on another Hilbert space K. On the other hand, Paschke [18]
(respectively, Kasparov [14]) showed that a completely positive linear map from A to
another C∗-algebra B (respectively, from A to the C∗-algebra of all adjointable op-
erators on the Hilbert C∗-module HB) induces a ∗-representation of A on a Hilbert
B-module, generalizing the Stinespring representation theorem. Since then, the gen-
eralization of a C∗-algebra of the GNS representation by Stinespring and Kasparov
is called the KSGNS representation of a C∗-algebra with a completely positive map.
By KSGNS (Kasparov-Stinespring-Gel’fand-Naimark-Segal) construction [15], to a
strictly completely positive map ρ from a C∗-algebra A on a Hilbert C∗-module F
over a C∗-algebra B can be associated a triple (Fρ, πρ, vρ) consisting of a Hilbert
B-module Fρ, a ∗-homomorphism πρ : A → LB(Fρ) and an adjointable operator
vρ : F → Fρ which is unique up to a unitary equivalence. If F = B = C, then the
KSGNS construction reduces to the classical GNS construction. If B = C (so F is a
Hilbert space), then we get the Stinespring construction. In the context of Hilbert
C∗-modules the construction was given by Kasparov [14]. In [9], Joiţa extended KS-
GNS construction for strict continuous completely multi-positive linear maps from
a locally C∗-algebra A to LB(E), the C∗-algebra of all adjointable B-module mor-
phisms from E into E, and showed in Theorem 4.3, [9] a covariant version of this
construction.

The relation of covariant completely positive maps to twisted crossed products,
that we approach in this paper, was explored in recent works [22], [4], [5], where
an abstract covariant version of Stinespring theorem has been proved for a unital
C∗-dynamical system (A,M,α), with M a left-cancellative semigroup with unit
[22], covariant projective homomorphisms have been extended to the twisted crossed
product C∗

θ (A,M,α) of a C∗-algebra A by the semigroup M under the action α
relative to the cocycle θ [22], completely multi-positive projective u-covariant non-
degenerate linear maps from a C∗-algebra A on a Hilbert C∗-module E have induced
completely multi-positive linear maps on the twisted crossed product A ×ω

α G [4]
and also projective u-covariant completely bounded multilinear maps have been
extended on the twisted crossed product (A×ω

αG)
k, in the case of amenable groups,

to completely bounded multilinear maps [5].
In Section 2 we prove a covariant projective version of Stinespring theorem,

with a different approach than the one presented in Theorem 1, [3]. The third section
is dedicated to the extension on the twisted crossed product A ×ω

α G of projective
u-covariant completely positive linear maps in the case of discrete groups and locally
compact groups. The main result of the paper is presented in Section 4. Given a C∗-
dynamical system (G,A, α), we show that a projective u-covariant non-degenerate
completely positive linear maps from A to LB(E) induces a projective covariant
non-degenerate representation of (G,A, α) on a Hilbert B-module, uniquely up to
unitary equivalence, called the KSGNS construction.

Now we remind some definitions and notations that will be used throughout
the paper.
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Hilbert C∗-modules were first introduced by Kaplansky in 1953 in [13]. His
idea was to generalize Hilbert space by allowing the inner product to take values in
a commutative unital C∗-algebra rather than in the field of complex numbers.

Definition 1.1. ([15]) A pre-Hilbert A-module is a complex vector space E which
is also a right A-module, compatible with the complex algebra structure, equipped with
an A-valued inner product ⟨·, ·⟩ : E ×E → A which is C -and A-linear in its second
variable and satisfies the following relations:

(1) ⟨ξ, η⟩∗ = ⟨η, ξ⟩ for every ξ, η ∈ E;
(2) ⟨ξ, ξ⟩ ≥ 0 for every ξ ∈ E;
(3) ⟨ξ, ξ⟩ = 0 if and only if ξ = 0.

We say that E is a Hilbert A-module if E is complete with respect to the topology
determined by the norm ∥·∥ given by ∥ξ∥ =

√
∥⟨ξ, ξ⟩∥.

The theory of projective representations of finite groups was founded by I.
Schur [20]. Projective representations help us understand numerous physical sys-
tems. For example, they are used to describe the symmetry operations of a crystal
lattice and to label the energy levels of quantum systems. Mackey remarked in [16]
that a problem arising in quantum field theory can be formulated as a problem of
finding certain projective representations. Brown has used projective representa-
tions of translation groups to discuss the energy-level degeneracy occurring when a
crystal is subjected to a uniform magnetic field. Projective representations of abelian
groups arise naturally in the study of energy bands in the presence of a magnetic
field. A projective representation is also relevant for describing the symmetries of
quantum mechanical systems.

Let G be a locally compact group and let A be a C∗-algebra.

Definition 1.2. A map ω : G×G→ U(Z(A)), where

U(Z(A)) =
{
u ∈ A | u unitary, ua = au, ∀ a ∈ A

}
is called a multiplier on G if

i) ω(x, e) = ω(e, x) = 1A for all x ∈ G, where e is the identity of G;
ii) ω(x, y)ω(xy, z) = ω(x, yz)ω(y, z) for all x, y, z ∈ G.

Let E be a Hilbert C∗-module over A and let LA(E) be the Banach space of
all adjointable module homomorphisms from E to E (i.e. T is a bounded module
homomorphism such that there is T ∗ a bounded module homomorphism from E to
E satisfying ⟨η, T ξ⟩ = ⟨T ∗η, ξ⟩ for all ξ, η ∈ E).

Definition 1.3. A projective representation of G on E with multiplier ω is a
map π : G→ LA(E) such that

i) π(xy) = ω(x, y)π(x)π(y) for all x, y ∈ G;
ii) π(e) = IE, where IE is the identity operator on E.

Definition 1.4. A projective unitary representation of G on E with multiplier
ω is a map u from G to LA(E) such that:

i) ug is a unitary element in LA(E) for all g ∈ G;
ii) ugt = ω(g, t)ugut for all g, t ∈ G.

We remind some definitions that will be used throughout the paper.
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Definition 1.5. ([23]) A C∗-dynamical system is a triple (G,A, α), where G is
a locally compact group, A is a C∗- algebra and α is a continuous action of G on
A, i.e. a continuous homomorphism α : G→ Aut(A), where Aut(A) is the group of
automorphism of A.

Definition 1.6. A projective covariant representation of a C∗-dynamical sys-
tem (G,A, α) on a Hilbert B-module E is a triple (Φ, v, E), where Φ is a ∗- represen-
tation of A on E, v is a projective unitary representation of G on E with multiplier
ω and Φ(αg(a)) = vgΦ(a)v

∗
g , for all g ∈ G and a ∈ A.

Definition 1.7. ([21], [1]) Let A and B be two C∗-algebras and let Mn(A), respec-
tively Mn(B) denote the ∗-algebra of all n× n matrices over A, respectively B with
the algebraic operations and the topology obtained by regarding it as a direct sum of
n2 copies of A, respectively B. A linear map ρ : A → B is completely positive if
the linear map ρ(n) : Mn(A) → Mn(B), defined by ρ(n)([aij ]

n
i,j=1) = [ρ(aij)]

n
i,j=1 is

positive for all positive integers n.

Definition 1.8. Let (G,A, α) be a C∗-dynamical system and let u be a projective
unitary representation of G on a Hilbert B-module E with multiplier ω. We say that
a completely positive linear map ρ from A into LB(E) is projective u-covariant
with respect to the C∗-dynamical system (G,A, α) if ρ(αg(a)) = ugρ(a)u

∗
g for all

a ∈ A and g ∈ G.

2. A covariant projective version of the Stinespring theorem in terms
of Hilbert C∗-modules

The next theorem is a covariant projective version of the Stinespring theorem
in terms of Hilbert C∗-modules ([3]) proved by following the steps of one of Heo’s
results [7].

Theorem 2.1. Let E be a Hilbert B-module and let (G,A, α) be a unital C∗-
dynamical system. If u is a projective unitary representation of G on E with the
multiplier ω and if a linear map ρ from A into LB(E) is projective u-covariant
completely positive, then there are :

(i) a Hilbert B-module Eρ;
(ii) a representation Φρ of A into LB(Eρ);
(iii) a projective unitary representation vρ from G into LB(Eρ) with the multiplier

ω;
(iv) an isometry Vρ ∈ LB(E,Eρ),

such that for all a ∈ A and g ∈ G,

(a) ρ(a) = V ∗
ρ Φρ(a)Vρ and ug = V ∗

ρ v
ρ
gVρ,

(b) (vρg)∗Φρ(αg(a))v
ρ
g = PVρΦρ(a)|XV

, where PVρ is the projection on the
image XVρ of Vρ.

Proof. By Theorem 2.4, [17] there are : a B-module Eρ, a ∗-representation Φ from
A into LB(Eρ) and an isometry Vρ ∈ LB(E,Eρ) such that ρ(a) = V ∗

ρ Φρ(a)Vρ for all
a ∈ A. Moreover, EΦρ = spΦρ(A)VρE.

We define a map vρ on G by vρg = VρugV
∗
ρ for all g ∈ G. Then each element

vρg is in LB(Eρ). Moreover, (vρg)∗ = Vρu
∗
gV

∗
ρ = Vρug−1V ∗

ρ = vρ
g−1 .
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We show that vρ is a projective representation with the multiplier ω. We have

vρg1g2 = Vρug1g2V
∗
ρ = Vρω(g1, g2)ug1ug2V

∗
ρ = ω(g1, g2)Vρug1ug2V

∗
ρ =

ω(g1, g2)Vρug1V
∗
ρ Vρug2V

∗
ρ = ω(g1, g2)v

ρ
g1v

ρ
g2

for all g1, g2 ∈ G.
It remains to prove that (vρg)∗Φρ(αg(a))v

ρ
g = PVρΦρ(a)|XVρ

for all a ∈ A.

Therefore, for all a ∈ A and g ∈ G, we have

(vρg)
∗Φρ(αg(a))v

ρ
g = Vρu

∗
gV

∗
ρ Φρ(αg(a))VρugV

∗
ρ =

Vρu
∗
gρ(αg(a))ugV

∗
ρ = Vρρ(a)V

∗
ρ = VρV

∗
ρ Φρ(a)VρV

∗
ρ ,

where the third equality results from the u-covariance of ρ. �

Remark 2.1. If Vρ is an unitary operator, then the triplet (Φρ, v
ρ, Eρ) becomes a

projective covariant representation of (G,A, α) into LB(Eρ).

Proof. Let g ∈ G and a ∈ A. Then

vρgΦρ(a)(v
ρ
g)

∗ = VρugV
∗
ρ Φρ(a)(VρugV

∗
ρ )

∗ = VρugV
∗
ρ Φρ(a)Vρu

∗
gV

∗
ρ = Vρugρ(a)u

∗
gV

∗
ρ =

Vρρ(αg(a))V
∗
ρ = VρV

∗
ρ Φρ(αg(a))VρV

∗
ρ = Φρ(αg(a)).

�

3. Projective u-covariant completely positive linear maps extended
on the twisted crossed product A×ω

α G

Busby and Smith [2] introduced the twisted actions and constructed in Theo-
rem 2.2, [2] a Banach ∗-algebra denoted by L1(G,A, α, ω) as a generalization of the
group algebra L1(G) (the algebra of all integrable functions on G with scalar values),
now the integrable functions on G taking values in a C∗-algebra A. They studied
the theory of covariant representations of the twisted dynamical system (G,A, α, ω)
and proved that the representations of the twisted group algebra L1(G,A, α, ω) are
in one-to-one correspondence with the covariant representations of the twisted dy-
namical system (G,A, α, ω) (Theorem 3.3,[2]) and that the enveloping C∗-algebra of
L1(G,A, α, ω) is the twisted crossed product of A by G under the action α relative
to the multiplier ω denoted by A×ω

α G.
The following theorem is a generalization to projective representations of

Proposition 2, [12].

Theorem 3.1. Let (G,A, α) be a unital C∗-dynamical system and let E be a Hilbert
module over a unital C∗-algebra B. If u : G → LB(E) is a projective unitary rep-
resentation of G on E with the multiplier ω and ρ : A → LB(E) is a projective
u-covariant completely positive linear map of (G,A, α), then there is a completely
positive linear map φ : A×ω

α G→ LB(E) uniquely defined by

φ(f) =

∫
G
ρ(f(g))ugdµ, for all f ∈ Cc(G,A)

where Cc(G,A) is the set of continuous functions from G to A with compact supports.
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Proof. By Theorem 2.1, there is a projective covariant representation (Φρ, v
ρ, Eρ) of

(G,A, α) in LB(E,Eρ) such that ρ(a) = V ∗
ρ Φρ(a)Vρ and V ∗

ρ v
ρ
gVρ = ug, for all a ∈ A

and g ∈ G.
Let Φρ × vρ be the representation of A ×ω

α G associated with (Φρ, v
ρ, Eρ)

(Theorem 3.3, [2]). We define φ : A×ω
α G→ LB(E) by

φ(f) = V ∗
ρ (Φρ × vρ)(f)Vρ.

It is clear that φ is a completely positive linear map from A×ω
α G into LB(E).

If f ∈ Cc(G,A), then

φ(f) = V ∗
ρ (Φρ × vρ)(f)Vρ =

∫
G
V ∗
ρ Φρ(f(g))v

ρ
gVρdg =∫

G
V ∗
ρ Φρ(f(g))Vρugdg =

∫
G
ρ(f(g))ugdg

and since Cc(G,A) is dense in A×ω
α G, φ is unique. �

Remark 3.1. Theorem 3.1 can be written in the case of discrete groups:

Theorem 3.2. Let (G,A, α) be a unital C∗-dynamical system with G a discrete
group and let E be a Hilbert module over a unital C∗-algebra B. If u : G → LB(E)
is a projective unitary representation of G on E with the multiplier ω and ρ : A →
LB(E) is a projective u-covariant completely positive linear map of (G,A, α), then
there is a completely positive linear map ψ : A×ω

α G→ LB(E) uniquely defined by

ψ(f) =
∑
g

ρ(f(g))ug, for all f ∈ K(G,A)

where K(G,A) is the dense subalgebra of l1(G,A) of all functions from G to A with
finite supports.

Proof. By Theorem 2.1, there are a Hilbert B-module Eρ, a representation Φ of A
into LB(Eρ), a projective unitary representation vρ from G into LB(Eρ) with the
multiplier ω and an isometry Vρ ∈ LB(E,Eρ) which satisfy (a) and (b) from Theorem
2.1. The representation (Φρ, v

ρ) gives rise to a homomorphism Φρ × vρ : l1(G,A) →
LB(Eρ) uniquely defined by (Φρ × vρ)(f) =

∑
g

Φρ(f(g))v
ρ
g , f ∈ K(G,A) and from

Theorem 3.3, [2] results that Φρ×vρ extends to a representation Φρ×vρ : A×ω
αG→

LB(Eρ). We consider a completely positive map ψ : A ×ω
α G → LB(E) given by

ψ(f) = V ∗
ρ (Φρ × vρ)(f)Vρ, f ∈ A×ω

α G.
By Theorem 2.1 (a), we have

ψ(f)(ξ) =
∑
g

V ∗
ρ Φρ(f(g))v

ρ
gVρξ =

∑
g

V ∗
ρ Φρ(f(g))Vρugξ =

∑
g

ρ(f(g))ugξ

for all f ∈ K(G,A) and ξ ∈ E. �

4. The KSGNS construction associated with a projective u-covariant
completely positive linear map

We present a projective generalization of the construction proved by Joiţa in
Theorem 4.3, [9]. Given a C∗-dynamical system (G,A, α), a projective u-covariant
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non-degenerate completely positive linear map from A to LB(E) induces a projec-
tive covariant non-degenerate representation of (G,A, α) on a Hilbert B-module,
uniquely up to unitary equivalence.

Definition 4.1. ([15]) Let B a C∗-algebra and let E and F be two Hilbert B-
modules. The strict topology on LB(E,F ) is the one given by the seminorms
V 7−→ ∥V x∥ (x ∈ E) and V 7−→ ∥V ∗y∥ (y ∈ F ). Let A a C∗-algebra. A completely
positive linear map ρ : A→ LB(E) is said to be strict if for some approximate unit{
eλ
}
λ
of B, the net

{
ρ(eλ)

}
λ
satisfies the Cauchy condition for the strict topology

in LB(E). If A is unital then the condition of strictness is automatically satisfied.

Definition 4.2. ([15]) Let A be a C∗-algebra , let E be a Hilbert C∗-module over
a C∗-algebra B and let ρ : A → LB(E) be a completely positive map. ρ is called
non-degenerate if ρ(eλ) −→ 1 strictly in LB(E), for (eλ)λ an approximate unit of
A.

Definition 4.3. ([10]) A representation Φ of a C∗-algebra A on a Hilbert module
E is non-degenerate if Φ(A)E is dense in E.

Theorem 4.1. Let (G,A, α) be a C∗-dynamical system, let u be a projective unitary
representation of G on a Hilbert module E over a C∗-algebra B with the multiplier
ω and let ρ be a projective u-covariant, non-degenerate, completely positive linear
map from A to LB(E).

1. Then there is a projective covariant non-degenerate representation (Φρ, v
ρ, Eρ)

of (G,A, α), where vρ is a projective unitary representation with the multiplier ω and
Vρ in LB(E,Eρ) such that

(a) ρ(a) = V ∗
ρ Φρ(a)Vρ, for all a ∈ A;

(b)
{
Φρ(a)Vρξ; a ∈ A, ξ ∈ E

}
spans a dense submodule of Eρ;

(c) vρgVρ = Vρug for all g ∈ G.

2. If F is a Hilbert B-module, (Φ, v, F ) is a projective covariant non-degenerate
representation of (G,A, α), where v is a projective unitary representation with mul-
tiplier ω and W is an element in LB(E,F ) such that

(a) ρ(a) =W ∗Φ(a)W , for all a ∈ A;
(b)

{
Φ(a)Wξ; a ∈ A, ξ ∈ F

}
spans a dense submodule of F ;

(c) vgW =Wug for all g ∈ G,
then there is a unitary operator U in LB(Eρ, F ) such that

(i) Φ(a)U = UΦρ(a), for all a ∈ A;
(ii) vgU = Uvρg , for all g ∈ G;
(iii) W = UVρ.

Proof. 1. Let
{
eλ
}
λ∈Λ be an approximate unit of A such that the net

{
ρ(eλ)

}
λ∈Λ

is strictly Cauchy in LB(E).
Let a ∈ A. It is not difficult to check that the linear map Φρ(a) from A⊗alg E

to A⊗alg E defined by

Φρ(a)(b⊗ ξ) = ab⊗ ξ,

a, b ∈ A, ξ ∈ E extends to a bounded linear operator Φρ from Eρ to Eρ. Moreover,
Φρ(a) is adjointable and (Φρ(a))

∗ = Φρ(a
∗). Thus we have obtained a map Φρ from

A to LB(Eρ). It is easy to verify that Φρ is a ∗-representation of A on Eρ.
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Let a1, . . . , an ∈ A and ξ1, . . . , ξn ∈ Eρ. Since

∥
∑
i

ρ(ai)ξi∥2 = ∥
∑
i,j

⟨ξi, ρ(a∗i )ρ(aj)ξj⟩ ∥ ≤

∥ρ∥ · ∥
∑
i,j

⟨ξi, ρ(a∗i aj)ξj⟩ ∥ = ∥ρ∥ · ∥
∑
i

ai ⊗ ξi∥2

(the inequality is obtained from Lemma 5.4. [15]), the linear map a⊗ξ+N 7−→ ρ(a)ξ
from A ⊗alg E/N to E extends by linearity and continuity to a bounded linear

operator Ṽ from Eρ to E, where N =
{
z ∈ A⊗alg E; ⟨z, z⟩ = 0

}
.

Let λ ∈ Λ and ξ ∈ E. We denote by ξλ the element eλ ⊗ ξ in A⊗alg E. Since

the net
{
ρ(eλ)ξ

}
λ
is convergent in E, the net

{
ξλ+N

}
λ
is convergent in Eρ. Define

a map Vρ from E to Eρ by Vρξ = lim
λ∈Λ

(ξλ + N). To show that Vρ is an element in

LB(E,Eρ) it is sufficient to show that

⟨Vρξ, a⊗ η +N⟩ =
⟨
ξ, Ṽ (a⊗ η +N)

⟩
for all ξ ∈ E and a⊗ η ∈ A⊗alg E.

Let ξ ∈ E and a⊗ η ∈ A⊗alg E. Then we have

⟨Vρξ, a⊗ η +N⟩ = lim
λ∈Λ

⟨
ξλ +N, a⊗ η +N

⟩
= lim

λ∈Λ
⟨ξ, ρ(eλa)η⟩ =

⟨ξ, ρ(a)η⟩ =
⟨
ξ, Ṽ (a⊗ η +N)

⟩
.

Hence, Vρ ∈ LB(E,Eρ).
Let a ∈ A and ξ ∈ E. We denote by ξa the element a⊗ ξ in A⊗algE. It is not

difficult to check that Φρ(a)Vρξ = ξa+N. Therefore the submodule of Eρ generated
by

{
Φρ(a)Vρξ; a ∈ A, ξ ∈ E

}
is exactly A ⊗alg E/N and thus the condition (b) is

verified.
Let a ∈ A. Then we have

V ∗
ρ Φρ(a)Vρξ = V ∗

ρ (ξa +N) = ρ(a)ξ,

for all ξ ∈ E and so the condition 1(a) is also verified.
For each g ∈ G, we define a linear map vρg from A⊗alg E to A⊗alg E by

vρg(a⊗ ξ) = αg(a)⊗ ugξ

Using the fact that ρ is projective u-covariant, it is not difficult to check that vρg
extends to a bounded linear map vρg from Eρ to Eρ and since⟨

vρg(a⊗ ξ +N), b⊗ η +N
⟩
=

⟨
a⊗ ξ +N, vρ

g−1(b⊗ η +N)
⟩

for all a ⊗ ξ, b ⊗ η ∈ A ⊗alg E, vρg ∈ LB(Eρ) and moreover, (vρg)∗ = vρ
g−1 . Also it is

easy to check that the map g 7−→ vρg is a unitary representation of G on Eρ.
To show that (Φρ, vρ, Eρ) is a covariant projective representation of (G,A, α)

it remains to prove that Φρ(αg(a)) = vρgΦρ(a)v
ρ
g−1 for all g ∈ G and a ∈ A and that

vρ is a projective representation with the multiplier ω.
Let g ∈ G and a ∈ A. We have

(vρgΦρ(a)v
ρ
g−1)(a⊗ ξ +N) = (vρgΦρ(a))(αg−1(a)⊗ ug−1ξ +N) =
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vρg(aαg−1(a)⊗ ug−1ξ +N) = αg(aαg−1(a))⊗ ugug−1ξ +N =

αg(a)αg(αg−1(a))⊗ ugug∗ξ +N = αg(a)a⊗ ξ +N =

Φρ(αg(a))(a⊗ ξ +N)

for all a ⊗ ξ ∈ A ⊗alg E. Hence Φρ(αg(a)) = vρgΦρ(a)v
ρ
g−1 = vρgΦρ(a)(v

ρ
g)∗, so

(Φρ, v
ρ, Eρ) is a covariant representation.
To show that condition (c) is verified, let ξ ∈ E and g ∈ G. Then we have

∥vρgVρξ − Vρugξ∥2 = lim
λ
∥vρgξλ − Vρugξ∥2 =

lim
λ
∥
⟨
ξ, ρ(e2λ)ξ

⟩
+ ⟨ξ, ξ⟩ − ⟨ρ(αg(eλ))ugξ, ugξ⟩ − ⟨ugξ, ρ(αg(eλ))ugξ⟩ ∥ ≤

lim
λ
∥ ⟨ξ, ρ(eλ)ξ⟩+ ⟨ξ, ξ⟩ − ⟨ρ(eλ)ξ, ξ⟩ − ⟨ξ, ρ(eλ)ξ⟩ ∥ = lim

λ
∥ ⟨ξ − ρ(eλ)ξ, ξ⟩ ∥ = 0

Hence condition (c) is also verified.
Now we show that vρ is a projective representation with the multiplier ω.
Let g1, g2 ∈ G. By condition (c) and the fact that u is a projective represen-

tation with the multiplier ω, we have:

vρg1g2Vρ = Vρug1g2 = Vρω(g1, g2)ug1ug2 =

ω(g1, g2)Vρug1ug2 = ω(g1, g2)v
ρ
g1Vρug2 = ω(g1, g2)v

ρ
g1v

ρ
g2Vρ.

Therefore, vρ is a projective representation.
2. Using the fact that ρ(a) = V ∗

ρ Φρ(a)Vρ = W ∗Φ(a)W for all a ∈ A, it

is not difficult to check that ∥
m∑
s=1

βΦρ(as)Vρξs∥ = ∥
m∑
s=1

βΦ(as)Wξs∥ for all β ∈ C,

a1, . . . , am ∈ A and ξ1, . . . , ξm ∈ E. Therefore the linear map Φρ(a)Vρξ 7−→ Φ(a)Wξ
from the submodule of Eρ generated by

{
Φρ(a)Vρξ; a ∈ A, ξ ∈ E

}
to the submodule

of F generated by
{
Φ(a)Wξ; a ∈ A, ξ ∈ E

}
extends to a surjective isometric B-

linear map U from Eρ onto F . Then, by Theorem 3.5, [15], U is unitary. We define
this unitary operator U in L(Eρ, E) by

U(

m∑
s=1

βΦρ(as)Vρξs) =

m∑
s=1

βΦ(as)Wξs,∀a1, . . . , am ∈ A,∀ξ1, . . . , ξm ∈ E

Let a ∈ A. From

Φ(a)U(Φρ(b)Vρξ) = Φ(a)Φ(b)Wξ = Φ(ab)Wξ =

U(Φρ(ab)Vρξ) = UΦρ(a)(Φρ(b)Vρξ)

for all b ∈ A, ξ ∈ E, we conclude that Φ(a)U = UΦρ(b).
Since Φ and Φρ are non-degenerate, by Proposition 4.2, [11], we have UVρξ =

lim
λ
UΦρ(eλ)Vρξ = lim

λ
Φ(eλ)Wξ =Wξ for all ξ ∈ E. Therefore, W = UVρ.

Let g ∈ G, a ∈ A, ξ ∈ E. We have

(vgU)(Φρ(a)Vρξ) = vg(Φ(a)UVρξ)vg(Φ(a)Wξ) = Φ(a)vgWξ =

Φ(a)Wugξ = U(Φρ(a)Vρugξ) = U(Φρ(a)v
ρ
gVρξ) = (Uvρg)(Φρ(a)Vρξ)

This implies that vgU = Uvρg and thus the assertion 2 is proved. �
Remark 4.1. The representation (Φρ, Vρ, Eρ) constructed in the theorem above is
called KSGNS construction associated with ρ.
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