
U.P.B. Sci. Bull., Series C, Vol. 73, Iss. 4, 2011 ISSN 1454-234x

ARCHITECURE OF THE LINUX WATCHDOG
SOFTWARE FOR THE IP PBX

Mihai Constantin1

În această lucrare sunt proiectate propunerile de arhitectură referitoare la
software-ul de Watchdog pentru monitorizarea unui IP PBX. IP PBX conţine două
aplicaţii principale care interacţionează între ele: Common Media Server şi
IpSmallOfice. Common Media Server oferă capabilităţile de codec VoIP, iar
IPSmallOffice, aplicaţia principală care rulează pe Linux PC, controlează apelurile
telefonice şi oferă telefonie IP. Watchdog reprezintă o aplicaţie de sine stătătoare şi
necesită un fişier de configurare care să citească date despre procesele pe care le
monitorizează. De asemenea, această aplicaţie rulează ca „daemon” şi este pornită
la startup-ul întregului sistem IP PBX.

The architecture proposals of a Watchdog software for the IP PBX
monitoring are designed in this paper. IP PBX contains two main applications
which interact between them: Common Media Server and IpSmallOffice. Common
Media Server provides VoIP codec capabilities, and IpSmallOffice is the main
application running on a Linux PC, controls the phone calls and provides IP
telephony switching. The Watchdog is a stand-alone application and it needs a
configuration file to read the data about the processes it monitors. Moreover, this
application will be demonized and is added to start at system startup.

Keywords: Watchdog, Common Media Server, IpSmallOffice,Linux,
Processes,Polling,SIP,Keepalives

1. Introduction

IPSmallOffice and Common Media Server are interdependent applications.
Given this, when one of them is shutdown or, in a worse case, crashes, both of
them need to be restarted. This is where the watchdog comes in and helps ensure
the recovery of functionality in the best conditions.

IPSmallOffice and Media Server are communicating using the configured
number of pre-allocated SIP connections established at startup by IPSmallOffice.
However, every time the IPSmallOffice boots it establishes a new set of SIP
connections. Even though the first set of established connections is no longer
used, Common Media Server keeps them for a given amount a time. If there is a

1 PhD Student, Faculty of Automatic Control and Computer Science, University POLTEHNICA of
Bucharest, Romania, e-mail: mconstantin@luxoft.com

76 Mihai Constantin

potential crash of the IPSmallOffice application however, these connections are
not cleaned and Common Media Server should be restarted.

However, given that IPSmallOffice is a process in Linux, if there should
unfortunately happen to be a segmentation fault, the process will core and exit,
but it will not be started again automatically. This issue could affect the
operability of the system.
There could be also the reverse situation when Common Media Server is the
application that exists unexpectedly, that is if any of the four component processes
terminates unexpectedly.

2. Related work: Similar solutions

A watchdog timer is associated in the literature with two approaches: a
computer hardware or a software timer that triggers a system reset or other
corrective action if the main program, due to some fault condition, such as a hang,
neglects to regularly service the watchdog (writing a "service pulse" to it). The
intention is to bring the system back from the unresponsive state into normal
operation.

Watchdog timers can be more complex, attempting to save debug
information onto a persistent medium; i.e. information useful for debugging the
problem that caused the fault. In this case a second, simpler, watchdog timer
ensures that if the first watchdog timer does not report completion of its
information saving task within a certain amount of time, the system will reset with
or without the information saved. The most common use of watchdog timers is in
embedded systems, where this specialized timer is often a built-in unit of a
microcontroller.

Even more complex watchdog timers may be used to run unsafe code in a
computer security.

Watchdog timers may also trigger fail-safe control systems to move into a
safety state, such as turning off motors, high-voltage electrical outputs, and other
potentially dangerous subsystems until the fault is cleared.

For those embedded systems that can't be constantly watched by a human,
watchdog timers may be the solution. For example, most embedded systems need
to be self-reliant, and it's not usually possible to wait for someone to reboot them
if the software hangs. Some embedded designs, such as space probes, are simply
not accessible to human operators. If their software ever hangs, such systems are
permanently disabled. In cases similar to these, a watchdog timer can help in
solving the problem.

The watchdog timer is a chip external to the processor. However, it could
also be included within the same chip as the CPU; this is done in many
microcontrollers. In either case, the watchdog timer is tied directly to the

Architecure of the Linux Watchdog software for the IP PBX 77

processor's reset signal. Expansion card based watchdog timers exist and can be
fitted to computers without an onboard watchdog.

Most of the watchdogs are found on different PBX platforms as hardware
watchdog. This watchdog needs to be ping-ed every few seconds to ensure the
monitored application is working correctly. If this does not happen, it reboots the
PBX. This type of implementation isn’t blocked waiting for a resource or other, as
the watchdog resets the PBX.
 The watchdog solution discussed on this paper is not a hardware one. On
Linux, there already are two types of watchdogs. There is a hardware one and also
a software one: softdog. Also, in the process of deciding the best solution, the
preemptive Linux Kernel is considered.
 Here are some research and comparisons with other similar process
monitoring and control tools.

The watchdog will be started, as all the other processes, at system startup
and will be running until reboot/shutdown of system. The watchdog will have a
configuration file that specifies all the information about the processes to monitor.

The configuration file about the processes contains also the PID of the
applications.

When a certain application has exited, the PID and binary is no longer in
/proc. The Watchdog will first check if it was a crash or a clean shutdown by
looking for the lock file, then, if it was a crash, it will restart the application and
scan for the new PID.

Another tool for managing and monitoring processes is Monit. It is a utility
for managing and monitoring processes, files, directories and devices on a Unix
system. Watchdog architecture for IP PBX manages only two main applications:
Common Media Server and IpSmallOffice.

The Monit, also, needs a configuration file to read data monitoring
processes, both (Watchdog and Monit) are demonized and start at startup. The
Watchdog configuration file contains less information than the Monit.

The Watchdog needs the TinyXML parser to extract the information,
because configuration file format is XML that makes the interaction between the
Watchdog and the processes more easily for understanding and control.
 Another existing tool for monitoring processes and tasks is God. This can
be configured easily because the config file is written in Ruby.

Example of configuration file :

 God.watch do |w|
 w.name = "gravatar2-mongrel-#{port}"
 w.interval = 30.seconds # default
 w.start = "mongrel_rails start -c #{RAILS_ROOT}
-p #{port} \

78 Mihai Constantin

 -P #{RAILS_ROOT}/log/mongrel.#{port}.pid
-d"
 w.stop = "mongrel_rails stop -P

 #{RAILS_ROOT}/log/mongrel.#{port}.pid"
 w.restart = "mongrel_rails restart -P

 #{RAILS_ROOT}/log/mongrel.#{port}.pid"
 w.start_grace = 10.seconds
 w.restart_grace = 10.seconds
 w.pid_file = File.join(RAILS_ROOT,
"log/mongrel.#{port}.pid")

 ...
 end

 To start the God monitoring process as a daemon simply run the god
executable passing in the path to the config file.
 There are two methods of monitoring all the applications in the Watchdog:
polling and keepalives. The default method of monitoring for all added
applications is polling for the watchdog. When the Watchdog is monitored
through keepalives, no message is received and the lock file is still present.

The Monit is more complex than Watchdog because it manages also files,
directories and devices. Features included in the Monit are to start, stop or restart
services and processes, dependencies between services configuration. Also, the
Monitor can be configured to send alert notifications and alert reports on service
error and recovery.

God tool uses only polling as method of monitoring.
The Watchdog deals with situations where one application fails. It can

recognize and differentiate crash and a clean shutdown.
The Watchdog configuration file contains the general parameters for the

watchdog behavior, the polling interval and the list of processes. An application
has a specific information: process name, start command, the path of the file used
to monitor start/stop, starting delay , the value of keepalive if the application is
monitored through keepalives.

The Monit configuration file contains the pooling interval and the list of
processes and services. A process in Monit configuration file contains specific
information such as from the Watchdog configuration file: start and stop
command , the path of the file used to monitor (pidfile). Moreover, the Monit
configuration file contains address where it sends the alert messages. Also Monit
can test the identification number of a process. This test is useful to detect
possible process restarting which has occurred between two testing cycles.

The Wachdog, Monit and God are similar solutions used for monitoring and
controlling processes and can manage the behavior of the entities controlled.

Architecure of the Linux Watchdog software for the IP PBX 79

3. Requirements

Given the problems presented above, a common solution that should tackle
all of them is required – watchdog application.

The watchdog handles the following situations which are analyzed below.
Media Server is up, IPSmalloffice has crashed. The watchdog detects the

IPSmalloffice crash, close Media Server and start them both as a normal start
operation.

Common Media Server is up, IPSmalloffice has rebooted. Common Media
Server connections are already handled from the IPSmalloffice restart code.
Watchdog cannot detect this behavior as the restart is implemented as exec on
self.

Common Media Server is up, IPSmallOffice has closed manually (not
likely, but should be considered). This situation mainly can appear only if the
admin-user manually issues a “service ipoffice stop” command in the Linux
console. The proposal is that watchdog also stops Common Media Server, as there
is no reason to keep Common Media Server running with the pre-allocated
connections when IPSmallOffice was stopped.

Common Media Server has closed manually, IPSmalloffice is up. This is
the same situation as above.

Common Media Server has crashed, IPSmalloffice is up. The watchdog
detects the Common Media Server crash, closes IPSmalloffice and starts them
both as normal start operation. Although IPSmallOffice has voice path without
Common Media Server using direct media, when Common Media Server gets up
again, IPSmallOffice does not detect it. This is why they both are restarted. If
IPSmallOffice could re-establish connections to the newly restarted Common
Media Server, then only Common Media Server is handled.

However, the watchdog differentiates between a crash of the application
and a clean shutdown. If the application was shutdown manually, it isn’t restarted
automatically.

Watchdog is easily extendable to cover other applications that might need
monitoring in the future.

Watchdog is a robust application, so to ensure that it does not crash under
stress conditions and thus monitoring will fail.

As a failsafe, watchdog is re-spawned from /etc/inittab file, to ensure
functionality, even if it happens to crash. This re-spawn behavior might have
further implications that should be considered if this requirement is added. These
implications depend also on the solution preferred.

There is some logging set in place to keep track of the actions performed
by the Watchdog: start/stop of processes, crashes detected, etc, as this is useful for
debugging the applications that were crashed and restarted.

80 Mihai Constantin

 The Watchdog has additional requirement to check hard disk space
availability and if this reaches a certain limit, it should check for cores and do
cleanup so that cores do not take a high percentage of the disk space.
 If the watchdog is able to monitor other applications, there is a
configuration file that specifies the applications to monitor, their binary name and
path, their start/stop commands and parameters and also some solution-specific
values (polling interval, etc).

There is a possibility that IPSmallOffice gets into a state where it does not
function correctly (not responding or other) but the process is still running. This
type of behavior is either because it is waiting for a resource to be freed, or just
some intensive processing is happening at the moment. In this case the watchdog
cannot detect the problem.

Another very important issue is that watchdog detects between
IPSmallOffice being properly shutdown and being crashed. This cannot be done,
however, based on the current way the IPSmallOffice is functioning. It is
necessary to handle the correct shutting down and notify the Watchdog about it..
Also, if the design allows it, the use of waitpid helps getting the exit status for
these processes and the crash is detected this way.

 4. Design proposals. Contributions

 Based on the research, the following solutions are designed and they are
the main contributions of this paper. These contributions are highlighted on this
section.

4.1. Solution 1 – Keepalives

 A first contribution is by designing a Watchdog application that needs
pinging every few seconds. In case the pings are lost, a timer expires and resets
the IPSmalloffice/Common Media Server applications.
 The Watchdog is a daemon that starts using one of the options in 4.4 –
Start/Stop mechanism. This daemon runs a timer set to 10 seconds (this period
should be set so to avoid extra processing but to ensure a time to return to service
short enough). The daemon is “listening” to IPSmallOffice using a message queue
where IPSmallOffice sends periodically a message to the application:
APPS_KEEPALIVE. Every time this message is received, the daemon resets the
IPSmallOffice timer. When no message is received, given that the timer was no
longer reset, it will expire after the set period and the callback method will restart
both IPSmallOffice and Common Media Server.
 There is a certain problem that needs be addressed. This is the reset by
hand of the IPSmallOffice. In this case, the watchdog knows that the absence of
messages is due to user actions. The solution is implemented by adding two more

Architecure of the Linux Watchdog software for the IP PBX 81

messages: APPS_STOPPED and APPS_STARTING to let the watchdog know
the state of the IPSmallOffice is user controlled and not due to a crash.
 Another requirement is the possibility that Watchdog to be re-spawned by
using init. In this case, the only issue might that, when Watchdog restarts, it
should know the state the applications were when it was restarted. This state is
written somewhere every time it changes for each application so that at restart it is
loaded and Watchdog can continue from exactly the same point it was closed.
 The advantage is that this solution relies more on the IPSmallOffice to
offer information and keeps Watchdog simpler.

The disadvantage is the overridden if this call is added whenever there is a
task change, but this might happen at a 30 seconds interval, so it has to support
this kind of delay in processing the messages.

4.2. Solution 2 – Polling

 Another contribution is by designing a solution that starts from the concept
of having as little interaction and changes in IPSmallOffice/Common Media
Server. The main idea behind the solution is to have an application that runs in the
background and that is polling the processes and takes action according to their
status.
 The Watchdog is a daemon that starts, similar to solution 1. It has a
continuous loop that should only be interrupted at exit. For every iteration, the
watchdog checks the status of the IPSmallOffice/Common Media Server. If they
are all up and running, the Watchdog does a sleep for 20 seconds – this value is
according to the one used in solution 1, to ensure an optimal time to return to
service, while not doing extra processing. In this solution, the Watchdog cannot
wait for the process exit status, as the process is not a child. If any of the checked
processes is down, it checks the way the process has been exited: whether it
crashed or exited nicely – user action. Depending of the way the process exited,
the Watchdog restarts the process or leave it as it is. After all the appropriate
actions have been taken, the watchdog sleeps the number of seconds established.
This solution handles in the same way all the applications monitored.
 It is also addressed here the re-spawn requirement, related to this solution.
Given that the polling is done by PID, this is saved every time a process is started
and removed when it is stopped. When Watchdog restarts, it loads the list of PIDs,
checks it against the existing PIDs and takes appropriate action.
 The main advantage is that all the monitoring is done inside the watchdog,
with small changes in the applications, this approach being innovative in some
aspects. Another advantage is that the only changes needed in the IPSmallOffice
are a mechanism to check if process exited cleanly or it crashed. This can be

82 Mihai Constantin

solved by looking at the process exit code, if it is correctly used in the code and if
the processes are children processes – see solution 3 for this.

The disadvantage is that this solution does not cover the blocking of the
process.

4.3. Solution 3 – Complex control

This solution starts from the idea (main contribution) of giving Watchdog
the responsibility of starting and stopping IpSmallOffice/Common Media Server
and having the possibility of monitoring them as children processes.
 Watchdog is a daemon that starts up along with the OS. It has a lock that
ensures there is only one instance running at a time. The watchdog is running all
the time the OS is up. The IPC mechanism used is message queues. When the
watchdog starts up, it sets the lock and opens a message queue to receive
start/stop commands. When the user wants to start/stop an application, he should
run the command “watchdog start <application_name>” or “watchdog stop
<application_name>”. When this new watchdog starts, checks the lock, does see
the lock is taken and another watchdog is already up and monitoring. After that, it
checks the arguments received and sends messages to tell the monitoring
watchdog what actions to take, and then it will exit.
 When Watchdog starts the applications it will have the PIDs for them, it
can wait for them to terminate and it can get the exit status they had. Using this
exit status, it can see if the process has terminated cleanly or if it has crashed,
hence having the possibility to take the appropriate actions: restart
IpSmallOffice/Common Media Server.
 The main problem with this solution is that Common Media Server is, by
design, started using a script with the command “service acms start”. The script
does some checks and configuring and after all is set up, starts the four processes
that form Common Media Server.
 Given this behavior there are two possibilities.
 This first one is to reproduce from code all that is happening in the acms
script for both start and stop, which is rather complicated and adds to the
complexity of the solution all together. Another issue with this option is that it
also implies maintenance work at every Common Media Server release to ensure
that all changes performed on Common Media Server script will reflect in the
code.
 The second possibility is to start Common Media Server just by running
“service acms start” using the script, but this way it cannot monitor the state of
Common Media Server process with waitpid.

Both ways to fix these architecture issues are original contributions.

Architecure of the Linux Watchdog software for the IP PBX 83

There are implications for this solution from the re-spawn requirement.
Given that this solution handles children processes, if the watchdog is restarted,
the children will have as parent the init process. When watchdog starts, it will not
have access to the wait methods for the initial children. The solution for this is
that Watchdog maintains a list of the children PIDs and with the use of an
“Adoption” kernel module that should handle the process table, the newly started
Watchdog can adopt the children that were passed to init.

The advantages are: watchdog can control and monitor the applications
better, also watchdog is easily extendable to handle other applications.

The main disadvantage is there is a single point of failure, if watchdog
crashes, because the applications are started through it. Also if the exit status is
not set appropriate every time exit is called, it might be considered a inconsistent
behavior.

4.4. Start/Stop mechanism

The start/stop mechanism for Watchdog is closely related to that of the
IPSmallOffice in that watchdog should always be informed when the
IPSmallOffice is closing gracefully. Whatever options can be found for managing
watchdog, there still has to be implemented in the IPSmallOffice the handling of
SIGTERM/SIGKILL so that IPSmallOffice exits gracefully and could notify the
watchdog of this.

There are several ways the watchdog can be integrated into the start/stop
mechanism, and they are analyzed below as original contributions.

The watchdog daemon can start at boot and run while the OS is running.
This possible solution relies on the communication with IPSmallOffice.
IPSmallOffice notifies the Watchdog when it starts up, at which moment the
Watchdog starts its monitoring behavior. When IPSmallOffice is shutdown
cleanly, it notifies the Watchdog which will exit the monitoring until notified
again that IPSmallOffice is running. The advantage is that is the most generic
solution, as whatever other application monitorized with the Watchdog, it can be
easily covered, without changing the start/stop of the daemon. The disadvantage is
this solution relies on notifications for the proper monitoring behavior. The
notification system should be very reliable.

Watchdog is started by the IPSmallOffice start/stop scripts, right after
Common Media Server and IPSmallOffice started and isn’t stopped until the OS
reboots. When IPSmallOffice is cleanly stopped, it notifies the Watchdog so that
it knows what type of shutdown it was. The Watchdog continues monitoring, but
it keeps the state of the IPSmallOffice saved so that doesn’t restart it. When
IPSmallOffice starts, it will notify the Watchdog again that it is up and the
monitoring should not ignore it anymore. The advantage is that even if it only

84 Mihai Constantin

starts with IPSmallOffice’s first run, it will run until the machine is rebooted, so
every other application that will start AFTER the IPSmallOffice does can be
monitored. The disadvantage is this solution ties the Watchdog behavior and
monitoring strictly to the start of IPSmallOffice and Common Media Server.

Another solution is the case when Watchdog uses the same start/stop
scripts as the IPSmalloffice and Common Media Server. The Watchdog is started
right after Common Media Server and IPSmalloffice are already started. When
IPSmalloffice exits cleanly, it will notify the Watchdog. When receiving this
notification, the Watchdog exits. The advantage is less use of notifications – only
for shutdown. The disadvantage is this solution ties the Watchdog behavior and
monitoring strictly to IPSmalloffice and Common Media Server, thus not
allowing monitoring other applications, making it less easily extendable.

Another way is to use the Watchdog for starting/stopping all the
applications. This way it knows all the process ids needed for monitoring. The
advantages are there is no need for notifications from one process to another.
Watchdog has also more control over the processes in IP PBX. The main
disadvantage is that application is more complex, thus more prone to crashes.
Another disadvantage is that if exit codes are not reliable, there is need for
detection between crash and clean shutdown.

4.5. Differentiate between crash and shutdown

There is an important requirement that Watchdog differentiates between an
application crash and a clean shutdown issued either from the web interface or
manually from a terminal. In order to achieve this, the solution proposed is a
rather simple one, given that all the applications we have are started/stopped using
scripts.

When one application is started, the start script should create an
application-specific file, where it could optionally write the PID of the started
application. When the application is stopped, the stop script should delete the file
it has created at start.

After this mechanism is set in place, when the watchdog detects an
application has terminated it looks for the application-specific file created by the
script at start. If the file is still present, then there was a crash. If the file is deleted
and watchdog cannot find it, then the shutdown was user action.

This mechanism is useful to detect and define the situation and restart and
reconfigure the processes. It is innovative in some aspect, and as it is not present
in other similar solutions(like Monit, God…), this is a main contribution of this
paper .

Architecure of the Linux Watchdog software for the IP PBX 85

4.6. Common Media Server components and behavior

Common Media Server is formed by several processes. The first one that
should be mentioned is initacms, which is started as a daemon. This process,
based on a configuration file, starts as children other four necessary processes:
acmsComms, msmlCon, acmsdispatcher and aSoftMS. From the investigations
made so far, initacms plays the role of watchdog for all his children, restarting it if
anything happens to it. So, to ensure Common Media Server not crashing all we
have to do is check initacms. If this process goes down, then Common Media
Server should be started.

5. Conclusions. New innovative aspects. New contributions

The original contributions are by designing a solution based on a mixture
of “Solution 1 – Keepalives” and “Solution 2 – Polling” analyzed above, using
also the method from “3.5 Differentiate between crash and shutdown” to handle
start/stop and to differentiate between manual stop and crash. The main features
of the proposed solution, the keepalives and the polling mechanism, will be
designed in order to clarify originality and value of this.

The keepalives will be used for IPSmallOffice monitoring, because its
code can be accessed and it is ideal to prevent deadlocks or other similar
situations for the applications. The polling will be used for all the other third-party
applications which can be monitored.

For the applications where the start script can get the PID (ipsmalloffice,
initacms) this value should be written inside the application-specific lock file we
use during the lifetime of the process. This will help Watchdog to get the PID
without going through the /proc folder to find it. This approach is innovative and
by this contribution it is detected the crash of a process. At every polling iteration
the watchdog will simply check that the PID and the process it ran are still valid
and up.

The IPSmallOffice can be monitored through both methods: polling or
keepalives. An option should be added in the Watchdog configuration file so that
the monitoring method can be selected. When the Watchdog is monitored through
keepalives, no message is received and the lock file is still present, the Watchdog
could send a signal to IPSmallOffice to make it generate a core.

The current status of this research is that is found a proper solution, but it
needs to do some real experiments with it(by prototyping it).

To understand the importance of a software watchdog, let’s look at what
many existing systems use to recover from software faults: a hardware watchdog
attached to the processor reset line. Typically, a component of the system software
checks for the system integrity, and then strobes the timer hardware to indicate

86 Mihai Constantin

that the system is “sane”. The good news is that system recovers from the
software or hardware lockup. The bad news is that system must also completely
restart, which defeats our goal of high system availability.

Compare this behavior to a software watchdog, which can intelligently
choose from several, less drastic, recovery methods. Instead of always forcing a
full reset, the software watchdog could:

-simply restart that process without shutting down the rest of the system,
or

-abort any related processes, initialize the hardware to a ’safe’ state, and
restart the related processes in a coordinated manner or,

-if the failure is critical, perform a coordinated shutdown of the entire
system and sound an audible alarm to notify the maintenance staff

The software watchdog lets retain programmed control of the system, even
though several processes with the control software may have failed. A hardware
watchdog timer can still help recover from hardware “latch-ups”, but for software
failures it could have much better control. Furthermore, by employing the “partial
restart” approach, the system can survive intermittent software failures without
experiencing any downtime.

While performing a partial restart, the system can also collect information
about the nature of the software failure. For example, if the system contains or has
access to mass storage (flash memory, hard drive, a network link to another
computer with a hard drive), the software watchdog can generate a
chronologically archived sequence of process dump files. These dump files can
then give the information to fix the issues before experiencing similar failures.

A software watchdog not only decreases costly downtime, but also helps to
avoid software faults in the future.

Here are analyzed and proposed some innovative aspects regarding the
subject of this paper.

A first aspect is the contribution to design a formal language to specify
dependencies between monitored and controlled entities. This helps in
understanding what happens with entities monitored. The innovative proposal for
this is to add in configuration file new information about dependencies. This
information can be added in a new attribute in the Watchdog XML configuration
file structure.

Example
 <dependson value=”.... ”/>

The value can be the path to the pidfile of the process or the process name.

Architecure of the Linux Watchdog software for the IP PBX 87

Moreover, this new improvement helps the Watchdog to detect easily a
crash and deals with it according with the situation. This makes the Watchdog
more clear related of what it decides to do in a lot of situations.

One of the most important advantages of this improvement is that the
Watchdog can control and monitor better the entities and take the best decisions.

A second innovative aspect that could be designed in the Watchdog
architecture is a generic interface for inter-process monitoring and control. By this
contribution, the interface enables the Watchdog to monitor and control
communications between processes.

The approach is based on the communication between the applications and
the Watchdog. This communication is made with an unidirectional message queue
for the Watchdog that can receive the status of the applications. The design of this
aspect can be done with an additional message queue to communicate bi-
directional between the applications. Also the Watchdog configuration file needs
to be modified.

An application can communicate only with the Watchdog. The
communication between two applications could be made from the first application
to Watchdog and from Watchdog to the second application.

This solution implies to modify the applications architecture to receive and
send messages with the watchdog. Also the watchdog configuration file is
modified with some new attributes.

Both these innovative aspects and contributions add a better control of crash
situations and process failure. The interface also improves the communication
between processes and the Watchdog.

R E F E R E N C E S

[1] Inter Process Communications,
(http://users.actcom.co.il/~choo/lupg/tutorials/multi-process/multi-process.html for a
tutorial)

[2] SIP- Session Initiation Protocol., http://www.ietf.org/html.charters/sip-charter.html for details
[3] M. Barr, "Watchdog Timers" article, Embedded Systems Programming,, pp. 79-80
[4] M.J. Rochind: Advanced Unix Programming , Prentice-Hall, Englewood Cliffs
[5] RFC 3261 - Internet Official Protocol Standard for Session Initiation Protocol (SIP), an

application-layer control (signaling) protocol for creating, modifying, and terminating
sessions with one or more participants. These sessions include Internet telephone calls,
multimedia distribution, and multimedia conferences. See details at
http://www.faqs.org/rfcs/rfc3261.html

[6] A.S. Tanenbaum, Modern Operating Systems,2nd edtition, Prentice Hall
[7] A.S. Berger, Embedded Systems Design, CMP Books
[8] K. Kopper, The Linux Enterprise Cluster. Build a Highly Available Cluster with Commodity

Hardware and Free Software, No Starch Press

88 Mihai Constantin

[9] M. Meskes, Watchdog,: The Linux Software Daemon, Belltown Media Houston, TX.
[10] Murpy Niall, “Watchdog Timers,” Embedded Systems Programming, p.112
[11] J. Santic, “Watchdog Timer Techniques”, Embedded Systems Programming, p. 58.

