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NUMERICAL STUDY FOR AN ELASTIC-VISCOPLASTIC
MODEL IN GEOMECHANICS

Tuliana PARASCHIV-MUNTEANU'

Se studiaza variatia tensiunilor in jurul unei deschideri circulare verticale
excavata in sare. Este utilizat un model elasto-viscoplastic neasociat care descrie
compresibilitatea si/sau dilatanta pe durata fluajului tranzitoriu §i stationar §i care,
de asemenea, descrie deteriorarea care poate conduce la rupere. Am folosit metoda
elementului finit §i o metoda iterativa adaptate problemei rezultate. Solutia
numericd obtinutd este comparata cu solutia simplificata (solutia pentru fluaj) si cu
solutia elastica (raspunsul instantaneu). Se studiazd variatia in timp a razei
deschiderii si a starii de tensiune.

The variation of stress during creep convergence of a deep borehole
excavated in rock salt is studied. A non-associated elasto-viscoplastic constitutive
equation is used to describe both compressibility and/or dilatancy during transient
and steady-state creep, as well as evolutive damage possibly leading to failure. An
in-house FEM numerical method and iterative method is used for this purpose. The
obtained numerical solution is compared with the simplified solution (creep
solution), and with elastic solution (instantaneous response). The variation in time
of radial convergence of the borehole walls and of the stress state is studied.

Keywords: elastic-viscoplastic model, rock mechanics, numerical methods.
1. Introduction

In this paper we study the distribution of stresses, deformations and
displacement around a circular cylindrical borehole. This problem has been
studied by several authors analyzed various aspects of them. In some cases it was
used together with the linear elasticity assumption of plane state of stress (see
[1]). Also with the assumption of plane state of stress the problem has been
studied by Massier in [2], but with linear viscoelastic model. To describe the
creep of rocks around the borehole, stress relaxation, damage of rocks near the
border may be used different constitutive equations. The study of this problem
with an elasto-viscoplastic model like (1) is made by Cristescu [3], Cristescu and
Hunche [4], Paraschiv and Cristescu [5], considering the plane state of
deformation and for determining the creep solution.
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Using standard notation (see [3], [6]), the elasto-viscoplastic model that
we consider in this paper is described by equation
Lok 1 1y wi(t). oF as
e=2t(5z-55)0 Ltk (1= )5 @ thsgo (@), (D
where K and G are elastic moduli, k; and kg are viscosity constants, H is the
plasticity function, F is the viscoplastic potential for transitory creep, S is the
viscoplastic potential for stationary creep, W! is the irreversible stress work per

unit volume (the internal status parameter) given by
t

wi(t) =wiP +f a(s)-€l(s)ds ,
0
where WP is the primary value of W'.

In this paper we are compare the elastic solution with the simplified
solution for creep and the numerical solution as in [7] with the difference that in
this case we used the functions of the software package MATLAB. The numerical
solution obtained can be considered a complete solution because unlike the
simplified solution for creep, that solution shall take account of stress variation in
time. In most cases, note that near the opening takes place a stress relaxation is
comparable to instantaneous response. For short intervals of time, the simplified
solution for creep approximates well the behavior of rocks because is very close
to the numerical solution.

2. Mechanical problem formulation

We assume that the problem to solve is formulated in cylindrical
coordinate (r,0,z). Because it is assumed the plane state of deformation, the
domain for the studying problem is a section at depth h and is represented in
figure 1. Suppose that in all orizontal directions the primary stress is the same, oy,
and the depth h is sufficient great to consider that a,,, the vertical primary stress,
is not variable in the domain. Practically, the problem is not formulated for
circular crown because of axial symmetry the variables are not depending on 8,
they are depending only on r. Let a the initial radius of the vertical borehole and
meN,m=5, number of radius which defined the limits of the domain,
[a, ma]. Also we take consider small deformations. So, we obtain

— =0: 6_0.6_0.
Yo=t: =0 90" " 0z~ "
du, u,
ar;699=?;6rz=6r9:€zz:€zﬂ=0'
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Fig 1. The domain of problem.

Formulation of the problem for determining the stress distribution around a
vertical borehole in elasto-viscoplastic rock, as a quasi-static problem with the

internal status parameter (see [7], [8]), is:
to determine the displacement function u,:R, X [a,ma] = R, the stress
function o: R, X [a,ma] = S; and the internal parameter W': R, X [a,ma] - R

such that

DiveR(t,r) =0 in R, X [a,ma] , (2)
. W' 1(2G - 3K) OF oF
R — 2(¢ _ : _ 190
oR = 2Gé+ (3K — 26)é 1 + kyp (1 H(a))[ — - 1-26-

+k[(2G_3K)aS1 265] i R x [a, ma] 3

ST 3 @0 ggl M e lemal, ®)

W!=ky(1 W' oF +k in R, X[ ] 4

=kr H(o) 0 o S3g o in R, X[a,ma], 4

{af}(t, a)=p-odb , o&(ta)=0cR(ta)=0, vt>o0, )

u,(t,tma)=0, Vt>0,

o*0,r)=0c"+3 or oR00,1r)=7
u, (0,r)=1u , Vre€l[ama], (6)

w!(0,r) = H(e?)

where & and i are stress, respectively, radial displacement corresponding to
instantaneous response, ¢ = 0° = % + a¥, € = €R, p is the pressure on the
inner wall of the borehole.

3. Instantaneous response

The stress distribution after excavation is obtained by exact elastic solution
(the instantaneous response). The problem is:
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to determine the displacement function 1i: [a,ma] — R, the stress function
oR:[a,ma] - S; such that
DivaR(r) =0 in [a,ma],
oR = 2Gé+ (3K —2G)é1 in [a,ma], (7
of(an=pn—-on, ti(ma)=0.
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Fig 2. Stress and radial displacement corresponding with the instantaneous response.

Solving the problem (7) is obtained
2

) = [T+ (1M %] -0,

2
oty = [T = (1= R | - o) ®
3K —2G -
Gy (r) = mN(P —opn) , GR(r) =6R(1r) =64,0)=0,
and
1 3K — 2G\ -~ . a®
1) =55 (1= ) = (-] 0= ©
where

_ (G + 3K)

~ (G +3K) +3Gm?
Instantaneous response is represented in figure 2.

4. Elasto-viscoplastic creep. Simplified solution

In case of elasto-viscoplastic creep (see [3], [4], [5]) we assume that in
[to, T] the stress components are constants equal with the instantaneous response
given by (8):
oR(t)=0%, Vte][t,T].
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Of (1) is obtained
w! (t)) oF
H(o®)' 0o

aS
sl _ _ S s
€eE=¢€ =k (1 (a)+k$aa(a),

where o5 = R + of.
Using (4) it results

aS aS
wi(t) B ks%(o's)'o's 1 wirP ksa_(o's)'o's
T U T s+ U HGY T O e e
ky T3g (a ) o ko —(a ) o
0 [~ s 2 @) At
from which is obtained the following equation

| ks 92 (0%) - o WP ks9o (o%) - o8
e =kp{— 3}‘: +H =gy + g‘;
kTa (O-S) oS (o%) kr 3¢ (a5) - o

oF
0 [~ ks 30 (09) 5t — )]} 50 (0% + ks 5 (0.

that integrate with the condition, €!(ty,,7) = €(r), corresponding with the
instantaneous response. By integration we obtain

; s Sao-( N Y4k as .

€(tr) =€)+ —W%(U )+ 5%(0) (t—to) +
HoVGe@) [, WP ksGa@)-o®
gi(aS) - 1O e @) o8

{ exp[ es) 5)0 ( 5) - as(t—to)]} for to<t<ts,
and
s
€l(t,r) = &) + —il,,ii"(&g—i(a% ks o2 (0%) |t — t0) +
5 (0%) a5

H(as)g—a(as) . WIP) ksaa(as) o’
_F(O-S).O-S H(o%) kTg_a(GS).as

oF as
{1 - exp[ H(O'TS) (%) - o5(tg — to)]} + kS%(as)(t —ts), for t=>ts,

where t; is the time of creep stabilization which is obtain for W! — H(6®), so
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as
H(c%) | ks % (0°) - 0*
n

JoF
G600 \(1-7 (GS)> (kT 55 (05 0%) + ke S = S (65)- a5
For radial displacement we have u,.(t,r) = regy(t,r). In figure 3 are represented
deformations and displacement corresponding the solution in case of creep when
compared with the instantaneous response given in (8) and (9). It was considered
an example of constitutive equation for salt (see [3]).
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Fig. 3. Comparation between elastic solution and simplified creep solution.

5. Numerical solution

If (u, a®) is the solution of the problem (2)-(6) and we denote &t = u — i
and @ = oR — @R then we obtain
{Div&(t,r)=0, Vt>0, r€lama], (10)
u(t,ma)=0, o(t,a)n=0, Vt>0.
So, it remains to solve the problem:
to determine the displacement function u:R, X [a,ma] = R, the stress
function @: R, X [a,ma] = S; and the internal parameter W': R, X [a,ma] - R
such that
o = 2Ge(il) + BK —26)e(i) 1 +
o (1 wWi(t) 2G - 3K OF
r H(G + 3+ oP) 3
2G — 3K dS _
ks [T—(a+a+ap)1 2G—(a+a+ap)] in R, X [a,ma],
wi()
H(o+d6+a0") 0

JoF
(a+cr+ap)1—ZG—(0'+a+ch)

W!=kp(1- )—(a+a+ap) (6g+d+o")+

aS
ks%(c_r+6+ap)-(6+5+a”), in R, X [a,ma], (11)
o(t,r) =0, u(ty,r) =0, Wl(ty,r) = H(a?), V1 € [a,mal.
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According with theory of quasi-static process (see [7], [8]) we denote
V,={v=(v,00)] vy € L*(Q), vy =v,(r), v;(ma) =0}, (12)
V,={o € [L12(Q)]¥*3 |6 =0a(r), Dive =0, a(a)n =0}. (13)

Obviously, the solution (@,d,W?') for problem (10)-(11) has the properties

(u,0,0) eV, and @ € V,. Initial conditions from (11) are correspond to the

difference between elastic response and instantaneous response on [0, t,]. For

computation we assume that t, = 0 because in [0, t,] changes do not occur.
Determine the numerical solution on the interval [0,T]. Let M € N, M > 2

and At = % . In [0, T] consider the moments of time

t0=0, tn+1=tn+At, Tl=0,M—1.
To determine an approximate solution #j for 4 we consider a finite dimensional
subspace V, ¢ V; = {v € I?(a,ma) | v(ma) =0}, dimV, =1. Let @) =0

and consider that
I

3! (a”“) _C R suchthat utl = Z o lo;, Va=0,M—-1, (14)
j=1

where B = {(pl, v, @1} C€ V,p is abasisin V.

Assumed that V,, is a finite dimensional space obtained by finite element method.

The coefficients (a”“) __ are obtained from the following linear system

=11
1 1
ZRUCY}‘H =ZRU@}1—M T, i=11, (15)
j:l ]=1
where
L
a; =— , =1, )
j a J

3K +4G (™ 09,09 mq
ij 3 (L 3s s %S +f 5 Pivids

3K —2G 0p; 09 o
+Tf1 <<p]a +a e;lds , i,j=1,1,

m whr 2G — 3K OF
T, = 1- or p
L kT{fl U He+a+0m | 3 aotontToTI)
oF 99,
-2G (Eﬁ+&+a")]ﬂds+
ao,, ds
m whr 2G — 3K OF ,
fl A heivaron | 3 ag onto+a)

JdF
- 26—/ ah+a+ap)](pids}+
00
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2G — 3K dS aS 0;
ks{f [ (T +T+0N) 26 (a’,}+&+aP)]a—‘ds+

ZG—SKOS as
f [ —(ah+a+a”)—ZGW(ah+a+a)]q)lds},

i=1,1.
To compute stress and internal parameter we will consider that % = 0 and
WH? = H(e?) and determine the a3*! and (W) forn=0,M —1 from
following equalities
Pt = Gy (tars), WOP = (WDy(tsn), (16)
where @}, and (W"),, verify the following problem with initial conditions:
(G, = 2G[e(@Y) — e(@)] — BK — 2G) [e(@*?) —e(@M)] 1 +

wh, 2G — 3K OF ,
AtkT<1—H(3h+5+aP))[ S (G + T+ 0N -
oF
20—(6h+’&+a”)]+
2G — 3K dS as
- - P _ _ P
) Atks[ 3 (ah+a+a)1 2G (ah+a+a)] a7

Wy
H(o, + ¢ + a?)

oOF
) o

Wh, = At k(1 — P

(6,+0+d") (6, +7+ ")

as
+Atk5%(6h+3+a’°)-(Eh+3+ap), t € [ty thstl

a'h(tn) = 67}: )
L (W)(E) = W}
The numerical solution is obtained based on following algorithm:
Input: the functions H,F,S and corresponding constants ([7]);
of = primary stress;
T = length of time;
M = number of steps in time;
m = number of radius;
I = dimension of space V;,;
B = {@4, ..., p;} = a basis in V;
Initializations: At = — , Ar = ml ;
M -1
to=0, thy1 =t,+At, n=0M—1;
a’=0, j=11;
(& )r() =0, (ege)n(j) =0, j =11
o, =0, WHy=H(a");
Compute the instantaneous response & , 1 using (8) and (9) ;
For n=0M—1 do
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Compute (&}Hl)j_ﬁ from system (15),
Compute
C—Zn'l'l _ &1_’1,"'1
Eh ) ="F—"—, j=1I-1
ap+t - gy
(Err)z-‘-l(l) = Ar - ;
~Nn
n+i/; j+1 ;
=, =11
(€00)n™ " () 15 (= 1Dbr J
Forj = 1,1 do

Compute (a, , (W"),,) firom (17) using ODE ([9],[10]);
0r () = On(tns1) s
WHRHG) = WDp(tase)
End for

End for

Output:

&, (), WHYG), j= T

The results for the numerical solution using the equations and algorithm above
are presented in figure 4 for the components of deformation and stress, and in
figure 5 for the displacement and the internal parameter. In the numerical

g

computation we considered T = 7.8 - 10%s, m = 15,1 = 140, M = 100.
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Fig. 4. Comparation between elastic solution, simplified solution and numerical solution.
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Fig. 5. a) Displacement for elastic, simplified and numerical solutions; b) Internal parameter.
6. Conclusions

This study shows that the elasto-viscoplastic model (1) describes well the
behavior of salt rock around underground openings. For problem (2) - (6) is
proposed an algorithm to determine the numerical solution that is compared with
the elastic solution and the creep solution. For short period of time, the creep
solution and the numerical solution are very close (see figures 4b and 5a). Large
variations are observed for stress and displacement near the boundary r = a.
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