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A TREE STRUCTURE FOR STORAGE, ACCESS AND
COLLISION DETECTION OF DISKS

S. Sohrabi!, A. Moradinejad?, A. Asgharian?®

This paper presents a new and efficient tree data structure for sort-
ing and collision detection of disks in 2D based on a new tree-based data
structure, called hexatree, which is introduced for the first time in this pa-
per. The data structure relies on mapping the objects to a space 1 dimension
higher and then doing an appropriate range query in that range which is 3D
range queries with circular cones of fized direction and opening angle. Once
the tree is constructed in O(nlogn) time, disk collision detection queries
can be answered in time O(n®5%). The proposed algorithm, in principle, is
a dynamic structure; that is, it’s a structure that can be modified once it’s
built. The proposed algorithm can be used for designing CAD softwares and
other issues that require searching for a disk among a multitude of 2D disks.
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1. Introduction

In modeling process of data sets, there is a huge amount of data in geogra-
phy and many other disciplines [14, 15] that leads to regular geometric shapes
such as disks and polygons. Since this resources will grow exponentially, the
storing and analysing data become even more ubiquitous [16]. Consequently
we need to find efficient data structures for navigating through these data sets.

In computer science, a data structure is a set of data values, the rela-
tionships among them, and the functions or operations that can be applied to
the data [18, 3]. For example, in many cases, we need to know all the disks
in a large set that satisfy a certain relation with a given disk. This is known
as a disk query problem: given a set of data disks S, a query disk @, and
one relation R, a disk query is to retrieve all the disks C' € S, such that the
relation C' R () satisfies. The most common and widely studied problem in
disk query, is the collision detection problem where the relation R refers to
the collision relation [21]. As it turns out, searching a disk among a multitude
of two-dimensional disks is required and it is clear that to add or search a disk,
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one should not explore all the disks. On the other hand, in a structure, the
most important issue is the flexibility of the environment to work with objects
like disks, lines and arcs. So the environment and the used objects should
not be supposed rigid, since during the modeling process the objects may be
changed permanently. For solving this problem, the tree-based methods were
further developed. The most important reason for choosing trees is their high
screening ability.

The aim of this paper is to develop a novel tree data structure to storage,
access and collision detection of a set of disks by using a new tree-based data
structure. This data structure can also be used for designing CAD softwares
and other issues that require searching for a disk among a multitude of two-
dimensional disks. The existing data structures such as sphere tree and octree
mostly dose not have the necessary efficiency. So by increasing the degree of
nodes, the expense for searching the disks which intersects the query disk is
very economic. In order to sort the disks, we introduce an inventive dynamic
tree that has shown good efficiency in inserting nodes and searching. The main
contributions and results of the paper are as follows:

e We introduce a new tree-based data structure for disk collision detection.
e Using our data structure, we introduce a fast method for disk collision
queries.
e We also introduced a method for updating our data structure i.e. methods
for adding or removing disks.
The remainder of the paper is organized as follows. In section 2, the related
works have been reviewed. Section 3 contains our proposed data structure and
algorithm for the collision detection of disks. In section 4, we analyzed the
effectiveness of our algorithm against existing methods. Finally, in section 5,
summarizing the main results we conclude the paper.

2. Related work

Trees are most common hierarchical data structures used to solve geo-
metrical problems [3, 9]. Trees are hierarchical arrangement of items in which
the items are represented as being “above”; “below”, or “at the same level as”
one another. In the geometric problems, the hierarchical arrangement usu-
ally is constructed by recursively subdividing space and can represent spatial
phenomena at a variety of geographic scales with successively larger scales rep-
resented on successively lower tiers of the hierarchy. They have been used in
GIScience and computational geometry as an efficient means of storing spatial
data, as a fast way of retrieving that data and as a multiscale representation [9].
In order to construct a hierarchical tree, firstly a fixed object is considered.
Then, the enclosing rectangular cube or sphere or other types of geometric
shapes is used to divide the space occupied by the object. For example, in
AABB [20] and OBB [17] methods, a rectangular cube containing the entire
object is first found. Then the center point of the object volume is determined
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and then the rectangular cube will have two children, each of which will in-
clude half of the object that extends from the vertex of the original rectangle
to the center of the object. This creates two children for the original rectan-
gular cube and this process continues recursively on children until it reaches
the basic element of the object, such as a triangle. A typical example for such
a tree-based geometric data structure is the quadtree [10, 19]. Quadtrees were
introduced for the first time by Finkel and Bentley [4] as a suitable data struc-
ture for answering queries about sets of points in multi-dimensional space. A
quadtree is a tree data structure in which each internal node has exactly four
children. Quadtrees are the two-dimensional analog of octrees and are most
often used to partition a two-dimensional space by recursively subdividing it
into four quadrants or regions. These subdivided regions may be square or
rectangular, or may have arbitrary shapes. The other related works on object
query made use of interval trees [11], segment trees [2, 8, 13], range trees [7],
k-d trees [1], interval sorting [6], sphere tree [5, 12] and etc.

In the case of collision detection problems, because the output size of a
collision detection query may be O(n), the worst case running time for any
query algorithm is O(n); however, some algorithms are output sensitive and
their running time is specified with both the number of objects n and the size
of the query result (or the number or reported objects) m. As an example,
the interval trees which are used for checking the overlapping intervals have
a query time of O(logn + m) and an initial creation (or preprocessing) time
of O(nlogn), while limiting memory consumption to O(n). The segment tree
which is also a binary tree for arrangement of intervals, have a query time of
O(logn + m), and O(n?) space complexity. The range trees are another type
of binary trees that are used for arrangement of intervals, but the query time
is O(log*n + m), and their total construction and storage time is O(nlogn)
[2]. Because segment trees can be generalized to 2-dimensional space, one can
use an O(logn+m) algorithm for finding the overlapping rectangles. Also, k-d
tree data structure [1] can be used in 2-dimensions to create such an algorithm
for rectangles. However, none of the above mentioned data structures and al-
gorithms do not give an efficient method for querying disks overlaps. A naive
approach to find all overlapping disks with a given query disk, is to check the
query disk with all he disks which requires O(n) time. In this paper, we give
a data structure and an output sensitive algorithm to find the all overlapping
disks in time O(n!°%3 +m) in which m is the number of overlapping disks with
the query disk. In other words, our algorithm is an output sensitive algorithm
and its running time is better than O(n) approach when the size of output is
less than O(n). To be able to answer queries in O(n'°8s3 4+ m) time, our algo-
rithm uses a tree-based data structure called hexatree. The hexatree contains
all the disks and is constructed incrementally by adding disks. Inserting each
disk in the hexatree take O(logn) time, so the time to build the hexatree is
O(nlogn), which is regarded as preprocessing time.
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3. Proposed method for collision detection of disks

In this section we describe the structure and construction of proposed tree
structure for sorting and querying 2D disks. This idea can also be extended
for other regular shapes such as polygons with their special conditions (for
example, when circulation is not permitted).

3.1. The structure and construction

In the proposed method, we will firstly convert each disk in the collection
S, into a unique 3D point in the conventional 3D space XY R, where the X
and Y axes are used to represent the coordinates of the center and the R-axis
is used to show the radius of the disk.
Now, we consider two disks A, B € S as follows:

disk A: (2 —24)* + (y —ya)* =13,
disk B : (x —2p)* + (y — yp)* =13,
Suppose that (x4,ya,74) and (xg,yp, rp) are the corresponding 3D points for

the disks A and B, respectively. Then, the trivial condition for their collision
is

dap < T4+ 7B, (1)
where 1o
dap = ((xa—25)*+ (ya —yn)®) " (2)
On the other hand, we know that
1/2
((x—20)* + (y —0)?) P < 20, (3)

denotes the upper half of a simple standard cone where the angle at the apex
of the cone is 90 degrees, i.e., if a plane passes through the central axis of the
cone, the cross-section is a right triangle where the lateral lines of the triangle
have a slope of +1.

Now we consider a query disk Q : (z — zq)* + (y — yq)* = 5, with a non-
negative radius and map it into the 3D point (2, yg, —r¢) such that the vertex
of the corresponding test (query) cone coincides on it (see Fig. 1).

With the above assumptions, a point P is on or inside the test cone, if and
only if the relation

((xp — 20)* + (yp — y@)?) /> < rp +1q,

holds, which is the same codition for collision of two disks. Therefore, the
corresponding disk for each point on or inside the test cone intersects with the
query disk.

It needs to be explained here that if we use octree [6], then as shown in Fig.
2, two nodes (or sometimes depending on the position of the current node,
three child nodes) of eight nodes can be ignored certainly, which are not very
desirable. In Fig. 2, the child nodes of the current node that are not scrolled
during the search process, are shown in pink and the blue disk is the same
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F1GURE 1. The test cone corresponding with the query disk.

F1GURE 2. The principles of search process in octrees.

cross-section disk that the position of the node is evaluated whit respect to it.
If the node is located inside the disk, all of its children nodes are traversed.
At this stage we need to sort the converted points properly and ef-
fectively. For this purpose, we propose a new six-nodes tree, which we call
it as “hexatree” (see Fig. 3). The main reason for choosing this new tree is
that we need an space partitioning that matches with the standard cone, es-
pecially with the slope of standard cone. Also in tree traversing, as few nodes
as possible should be visited among the nodes according to their position in
the converted environment (compared to the test cone) to continue the search
path. Therefore, the best partitioning is obtained by considering the position
of each point as the center of a cube. By connecting this point with the ver-
tices of each side of the cube, we obtain six pyramids, as shown in Fig. 4.
Since we are only dealing with four pages connected to the center of the cube,
in practice, we consider the base of each pyramid to be infinite. In this way,
the 3D space is divided into the six completely separated partitions without a
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root

FIGURE 3. A sample of the haxatree.

FIGURE 4. Six pyramids in a cube.

bulky intersection. We remark that the above mentioned principles for octrees
are also used for search process in the new tree.

3.2. The traversal for inserting new node (new disk)

If the tree is empty, we make it as the first node and consider six empty
nodes for it. Depending on which of the six pyramids of the root node is located
in, the next node is transferred to the corresponding node among the empty
children of the root node, and then six empty children are also considered for
this node. The process is the same for the next nodes: It starts from the root
node and then finds the first step of the path and goes to the appropriate
child node. If it is empty, it is added there. Otherwise, according to its
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X}

FI1GURE 5. The intersection of the test cone at the height of the
node A.

position relative to the middle node, it goes to the appropriate child node.
This process continues until the node is added. The cost of operation of this
part is logarithmic and it is done quickly.

In order to determine whether a point is located in the pyramid or not, we
define the vector d = P — C , where C' is the coordinates of the center of the
cube and P is the desired point for which we are looking to find the appropriate
child node index. By the above assumptions, we know that if

(d,n;) <0, i=1,234, (4)

where n;, i = 1,2, 3,4 denote the normal vector of the four side planes of the
pyramid, then the point is located inside the pyramid. We must care that the
direction of all normal vectors should be out of the pyramid. If even one of
the inner products in (4) be positive, then the point is not located inside the
desired pyramid.

3.3. The construction algorithm

In the case of the hexatree algorithm, we need an important and simple
function which examines the test cone. To improve the search performance of
the hexatree, we use a simple geometric principle. If we consider the cross-
section of the test cone at the height of the current node A, Fig. 5 occurs.
Here we present an argument that increases the effective ratio of the intended
tree. For this purpose, we first introduce the “cross-section disk” as follows:

Definition 3.1. For a current node A, the cross-section disk is a cross-
sectional area of the test cone at the height of the piont A, where the normal
vector of its plane is aligned with the R-axis.

Having the test cone and the converted point related to a disk, to know the
position of the point relative to the cone, we need the concept of cross-section
disk. Using this disk, it is easy to identify that which children of the node
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- 1.41 L*

FIGURE 6. The light-red disk is the criterion disk at the node A.

should not be followed during the search process. To improve the search per-
formance, we consider a hypothetical disk where its center is the center of the
cross-section disk and its radius is the v/2 times the radius of the same disk.
We call it as the “criterion disk” (see Fig. 6). An important feature of the
criterion disk is that in the search process, one can easily ignore traversing 3
out of 6 sub-trees of a node which leads to a higher performance search. If the
node A is located in the first quarter (as is shown in the Fig. 6), we can easily
ignore the 3 child nodes in searching process. For the other nodes, the same
event happens, only the indexes of the explored nodes are different.

From the above discussion, the effective ratio will be near to 3/6 and in cases
where the average of the radii is near to the radius of a node, it will get a
better answer. Now, we are ready to present the algorithm of adding nodes.
The adding algorithm requires a simple function to determine the index of the
child in which the new node should be inserted depending on the geometric
position of the input argument. We call it by Child Index in Algorithm 3.1.
The AddNode procedure in Algorithm 3.1 only does a single recursive call on
one of its children, so its running time is easily proportional to the height of
the tree. Because we expect the height of the tree to be O(logg n), the running
time of AddNode is O(logn).

3.4. The search algorithm

For the search algorithm (Algorithm 3.2), the function TwoConeCollision
is used to investigate the collision of two standard cones where the values
of p,q,s, k,u,v,w, z are obtained according to the geometric position of the
present node and the intersection of the cone with a plane with normal vector
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Algorithm 3.1 AddNode

procedure ADDNODE(t € nodes; z,y,r € R)
if t # NULL then
j =CHILD__INDEX(t = z,t — y,t = r,x,y,T)
ADDNODE(t — child(j),z,y,)

else
new(t)
t—wxrx==x
t—=y=1y
t—=r=r

for i =1 to 6 do
t — child(i) = NULL
end for
end if
end procedure

(0,0,1) at the height of the intended node. We remark that the location of
the point in each quarter of the coordinates of the standard disk is a decisive
issue and in searching process the maximum performance is obtained when the
points are out of the criterion disk.

A simple analysis shows, however, that for a reasonably balanced tree with
inner nodes of degree p for which a search continues at ¢ children, about
O(n(l"g a/ logp)) nodes are visited for ¢ > 2 . Therefor, by considering the above
algorithm, we observe that the search process is performed recursively for ¢ = 3
child nodes out of p = 6 nodes. Therefore, the recursive relation for the time
complexity of the Search procedure is as follows:

T(n) = 3T(n/6) + O(1),

Which means time complexity of Search is O (nl°63/1°66)) ~ O(n®61).

4. Discussion and comparison

As we know, there are no algorithms or data structures for the disk
collision query problem. A naive approach for this problem is to test the given
query disk with all the disks which requires time O(n). However, our proposed
algorithm can do such queries is O(n’®!) expected time. Instead, our algorithm
require to build a hexatree for the given set of disks to be able to answer the
queries. It means that, our algorithm requires O(nlogn) preprocessing time.
Therefore, it is efficient for the applications that demand a lot of collision
queries. Also, our algorithm is useful in dynamic application in which the
disk may be removed or inserted, because we can remove or insert a node in
the hexatree in O(logn) time. Therefor, the effectiveness of our algorithm in
comparison with naive approach is clear. However, one may use some of the
existing data structures to prone the search space, in give efficient algorithm.
The most similar data structure for hexatree is octree. It is not possible to
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Algorithm 3.2 Search

procedure SEARCH(t € nodes;x,y,r € R)
if t # NULL then
if TWoCONECOLLISION(t — x,t — y, V2(r + rmaz), z,y,r) then
if TWOCONECOLLISION(t — z,t — y,t — r,x,y,r) then
result =t
end if
SEARCH(t — child(1 — 6),x,y,r)
else
SEARCH(t — child(TopChild _Index),x,y,r)
if t - x <z then
if t -y <y then
SEARCH(t — child(p), z,y,r)
SEARCH(t — child(q),z,y,r)
else
SEARCH(t — child(s),x,y,r)
SEARCH(t — child(k),x,y,T)
end if
else
if t -y <y then
SEARCH(t — child(u),x,y, )
SEARCH(t — child(v), z,y,T)
else
SEARCH(t — child(w),x,y,r)
SEARCH(t — child(z),z,y,T)
end if
end if
end if
end if
end procedure

acquire a asymptotic bound on the time complexity of such a method which use
octree instead of hexatree to find disk collisions. Therefore, we can not compare
them in terms of time complexity. Thus, we have conducted a experimental
comparison between the octree and the hexatree (our algorithm) for preprocess
and search times (by milliseconds). The result of the experiments is given in
Table 1, where n is the total number of disks. The disks are generated with
random radii and positions. As we see in Table 1, the search time for the
presented tree in this paper is less than the octree, while both trees are made
from the same disk set. Also, an implementation of the proposed algorithm
has been shown in Fig. 7, for collision detection of a query disk (in red) with
a set of 10000 disks (in black) with random radii in [10,40] and centers in
[1,1000] x [1,1000]. The total number of visited disks (in green) is 551, while
the number of answer disks (in yellow) is 100. We observe that only 5% of
disks has been visited.
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TABLE 1. The comparison between the octree and the hexatree
in cunstruction and searching disks.

Preprocess Time (ms) Search Time (ms)
n hexatree octree hexatree octree
10000 5.25 3.5 0 0
100000 52 26 0.25 2.5
1000000 1207.5 466.75 2.5 20
5000000 5432.5 1919.5 16.25 100.5
10000000 10496.6  8086.667 28.2 522.6

FIGURE 7. An implementation of the proposed method for disk query.

5. Concluding remarks

In this paper, a new method based on the new 6-degree tree structure
called hexatree has been presented for effective collision detection of disks.
Because of our space partitioning method, each internal node in a hexatree
has 6 children. After building a hexatree for a set of disks, we can answer
disk collision queries very fast. An advantage of hexatree in comparison with
the other rigid methods such as sphere tree is that it is dynamic, i.e. we can
insert or remove disks dynamically. The idea presented in this paper can be
extended for querying other regular geometric shapes such as polygons and will
be reported in future works. A limitation of our method is that it works only
on 2D disks. Therefore, extending the algorithm for 3D space can be addressed
in future works. Also, giving a worst-case upper bound for the running time
of our search algorithm is another issue for our future works.
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