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ON A SPECIAL SYMMETRY IN THE DYNAMICS OF
COMPLEX SYSTEMS IN A HOLOGRAPHIC-TYPE
PERSPECTIVE

Stefana AGOP!!, Maria-Alexandra PAUN?3, Citilin DUMITRAS*, Mihail
FRASILADY, Vladimir-Alexandru PAUN®, Maricel AGOP "%,
Viorel-Puiu PAUN®®, Gavril STEFAN?

By operating with the Scale Relativity Theory in the dynamics of complex
systems, we can achieve a description of these complex systems through a
holographic-type perspective. Then, gauge invariances of a Riccati-type become
functional in complex system dynamics, which implies several consequences:
conservation laws (in particular, for classical dynamics, the kinetic momentum
conservation law), simultaneity and synchronization between the structural units (of
a complex system) dynamics, and temporal patterns through harmonic mappings.

Keywords: scale relativity theory, Schrddinger-type scenario, Madelung-type
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1. Introduction

If, in the dynamics of complex systems, we operate with the Scale Relativity
Theory [1,2], the description of said complex systems can be achieved through a
holographic-type perspective. Indeed, as long as, in such a framework, the
description of dynamics is performed through continuous and non-differentiable
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curves (fractal/multifractal curves), such a perspective becomes viable: the
continuous and non-differentiable curves (fractal/multifractal curves) satisfy, in any
one of their points, the self-similarity property (the part reflects the whole and the
whole reflects the part — which would correspond to the holographic principle).

Now, two scenarios in the description of complex system dynamics become
operational: one scenario is explained through a Schrédinger-type
fractal/multifractal equation (Schrédinger-type scenario) and another through the
hydrodynamic-type fractal/multifractal equation system (Madelung-type scenario).

The two scenarios for describing complex system dynamics are not
mutually exclusive, moreover, they are complementary.

Taking into account the fact that, in any of the scenarios, symmetries are
highlighted, in the current paper, several symmetries will be explained only in the
Schrédinger-type scenario and their consequences will be discussed.

2. Conservation laws in complex systems dynamics as gauge
invariances of a Riccati-type.

It is a known fact that the dynamics of complex systems in the Scale
Relativity Theory (SRT) [1,2] can be described through a Schrddinger type
multifractal scenario explained through the differential equation (nonstationary
multifractal Schrodinger equation) [3]

4 2
22 (dt)[m]‘zalahp + m(dt)[m]‘latw =0, ()
where
0 =292 a0 =2 (2)
FTa T T axt Y T ax

In the above relations W is the states function, dt is the scale resolution, x*
is the multifractal spatial coordinate, ¢ is the non-multifractal temporal coordinate
with the role of an affine parameter of the motion curves (it is mentioned that in
SRT, the dynamics of the entities belonging to any complex system are described
through continuous and non-differentiable curves — multifractal curves), A is a
parameter associated to the multifractal-non-multifractal scale transition, f(a) is
the singularity spectrum with a singularity index of order @ = a(Dy) and Dg is the
fractal dimension of the motion curves [4,5].

The nonstationary multifractal Schrodinger equation admits, besides the
clasical Galilei group proper, an extra set of symmetries [6] that, in general
conditions, can be taken in a form involving just one space dimension and time, as
a SL(2,R) type group in two variables with three parameters [7]. Limiting the
general conditions, the space dimension can be chosen as the radial coordinate in a
free fall, as in the case of Galilei kinematics, which can also be extended as such in
general relativity [8,9], for instance in the case of free fall in a Schwarzschild field.
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The essentials of the argument of Alicia Herrero’s and Juan Antonio
Morales’ work just cited are delineated based on the fact that the radial motion in a
Minkowski spacetime should be a conformal Killing field, which is a three-
parameter realization of the SL(2R) algebra in time and the radial coordinate. This
is a Riemannian manifold of the Bianchi type VIII (or even type 1X, forcing the
concepts a little) [10]. The bottom line here is that, as long as the general relativity
is involved, the nonstationary Schrodinger equation describes the continuity of
matter.

And since, as a universal instrument of knowledge, the nonstationary
multifractal Schrodinger equation is referring to free particles, we need to show
what kind of freedom is this in classical terms.

For our current necessities it is best to start with the finite equations of the
specific SL(2,R) group, and build gradually upon these [11,12], in order to discover
the connotations we are seeking for. Working in the variables (t, x) as above, the
finite equations of this group are given by the transformations:
at+f
yt+6 » X = m (3)

t —

This transformation is a realization of the SL(2,R) structure in variables
(t,x), with three essential parameters (one of the four constants «, 5, y and & is
superfluous here). Every vector in the tangent space SL(2R) is a linear combination
of three fundamental vectors, the infinitesimal generators:
_ 0 X—ta+xa X—tza+ta (4)
o KeTlytaae BTV tU%

satisfying the basic structure equations:

X1

[X1»X2] = X1, [XZ'X3] = X3, [Xs,Xs] = —2X, (5)

which we take as standard commutation relations for this type of algebraic structure,
all along the present work. The group has an invariant function, which can be
obtained as the solution of a partial differential equation:

(cXy +2bX, + aX3)f(t,x) =0

of of ©)
(at? + 2bt + C)E+ (at + b)xa =0
The general solution of this equation is a function of the constant values of

the ratio:

.XZ

— ()
at? + 2bt + ¢
which represents the different paths of transitivity of the action described by (4).
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In order to draw some proper conclusions from these mathematical facts, let
us go back to the transformation (3) and consider it from the point of view of
classical physics.

First, comes the second of Kepler laws, viz. that law serving to Newton as
a means to introduce the idea of a center of force: if, with respect to such a material
point, a motion proceeds according to the second Kepler law, then the field of force
should be Newtonian. The wave mechanics shows that this law means more than it
was intended for initially, namely that it should have a statistical meaning,
according to the idea of Planck’s quantization [11,12]. Indeed, if ‘X’ denotes the
distance of the moving material point from the center of force, we have

2 — A . dt — 42
xd@—adtadg—x (8)
where @is the central angle of the position vector of the moving material point with
respect to the center of force. In this form the law usually serves as a transformation
in the mathematical treatment the central motion. However, from the point of view
of the physical content of time, the second equality in equation (8) tells us much
more if we take the argument out of the mathematical form of the classical Kepler

problem.
In such a context, if it is considered that (7) is constant
2
X
e ————— = 9
21 2bit e L = const. )
then from (7) and (8), through the substitutions
dt Lat®> 1 2Lbt R Lc
— = WU = — 2 e —_— = 10
awe- " Ta MV Ta uv @k a0

the following Riccati-type differential equation is satisfied (i.e., we operate here
with a Riccati-type gauge):
1 ., R
W= W +2Mw K =0. (11)
For obvious physical reasons, it is therefore important to find the most
general solution of that equation. José Carinefia et al. offer us a pass in short but
modern and pertinent review of the integrability of Riccati's equation [13]. For our

current needs it is enough to note that the complex numbers
2

K (R
wo = R +iMQ, wi = R — iMQ; 02 :M_(M) (12)

roots of the quadratic polynomial on the right side of equation (11), are two
solutions (constants, that's right) of the equation: being constants, their derivative
Is zero, being roots of the right-hand polynomial, it cancels. So, first we do the
homographic transformation:
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w— W,

7z =

w—w,
and now it can easily be seen by direct calculation that z is a solution of the linear
and homogeneous equation of the first order

(13)

z=2iQz - z(t) = z(0)e?*¥, (14)

Therefore, if we conveniently express the initial condition z(0), we can give
the general solution of the equation (11) by simply inverting the transformation
(13), with the result

20Q(t—ty),,*

W= Wy +re . Wo (15)

1+ ‘reZlQ(t_tr)
where r and t,. are two real constants that characterize the solution. Using equation

(12) we can put this solution in real terms, i.e.

2rsin |2Q(t —t
z= R+ MQ (200t - t,)]
1+ r?+ 2rcos [2Q(t — t,)]

(16)

_ 1—72
+1
1+ r?+ 2rcos [2Q(t — t,)]
which highlights a frequency modulation through what we would call a Stoler
transformation [11,12] which leads us to a complex form of this parameter. More
than that, if we make the notation

r = coth T, a7
equation (16) becomes
Zz=R+ MQh (18)

where h is given by

_ 52i0(t—tm) o;
P cosht—e sinh 7 (19)

cosh T + e~2i2t-tm)ginh 7
The meaning of this complex parameter will be clear a little later. For the
moment, let's note that any dynamic process appears here as a frequency modulation
process [13]. Moreover, by admitting a gauge invariance of a Riccati-type, in the
Classical Theory of Motion, the kinetic momentum conservation law is obtained.

3. Simultaneity in complex systems dynamics as gauge invariances of a
Riccati-type

Consider an extended body revolving in a central field (for example of
Newtonian forces). It can be imagined as a swarm of classical material points, and
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such a swarm illustrates classical laws, provided it is considered as a swarm of free
material points in the classical sense of the word [14]. In the first of equations (3)
this requirement would mean that the material points are considered simultaneously
[15]. Then each material point can be located in the swarm by four homogeneous
coordinates («,f3,7%,0), or three nonhomogeneous coordinates, if the equations (3)
represent the content of time and radial coordinate for the space region covered by
this body. The simultaneity in the motion of the swarm of material points can be
differentially characterized, giving a Riccati equation in pure differentials:
at + f
yt+8
Thus, for the description of the extended body in motion as a succession of
states of the ensemble of simultaneous material points, it suffices to have three
differential forms, representing a coframe of the SL(2R) algebra:
_ady—yda , add—dbda+pdy—ydp . pdé—ddp
Tas—py YT as — By T Tas - py
That this coframe refers to such an algebra, can be checked by direct
calculation of the Maurer-Cartan equations which are characteristic to this algebra:
dA\w! — w*'Aw? =0

0, dt = w't? + w?t + w? (20)

1

(21)

dAw?+2(w3Awt) =0 (22)

dAwd —w?Aw3=0

Using these conditions one can prove that the right hand side of equation
(9) is an exact differential [15], therefore it should always have an integral. The
Cartan-Killing metric of this coframe is given by the quadratic form («?/2)? — o' @’
so that a state of an extended orbiting body in the Kepler motion, can be organized
as a metric phase space, a Riemannian three-dimensional space at that. The
geodesics of this Riemannian space, are given by some conservation laws of
equations

w! = a'(dh); w? = 2a?(dh); w3 = a3(dh) (23)

where al?® are constants and @ is the affine parameter of the geodesics, so that,
along these geodesics the differential equation (9) is an ordinary differential
equation of Riccati type:
dt
Frin alt? + 2a’t + a® (24)
This equation can be identified with (8), provided its right hand side is
proportional to the square of a ‘radial coordinate’ of a free classical material point.
Mathematically this requires an ensemble generated by a harmonic mapping
between the positions in space and the material points, with the square of the radial
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coordinate ‘X’ measuring the variance characterizing the distribution of material
points in space. Following the same line of thought previously presented, a solution
of the same type as (19) can be highlighted [16-20].

4. Synchronization in complex systems dynamics as gauge invariances
of a Riccati-type

According to the meanings of the state function ¥ from the Scale Relativity
Theory, a physical significance is only attached to the density of state p = Y¥. In
such a context, if ¥ = a + ib, then the constant density of states can be localized
inside the unity radius circle

x2+y2=1 (25)
where
2 bZ
g A (26)
p p

Now, the metric of the Lobachevsky plane can be produced as a Caylean
metric of a Euclidean plane, for which the absoluteness is the circle (25). In this
way, the Lobachevsky plane can be put into a biunivoc correspondence with the
interior side of the circle. In such a conjecture, using the general procedure of
metrization of a Caylean space, which implies the differential quadratic form
[11,12]

ds? Q(dX,dX) 02%(X,dX)

k2 QX X) 02X, x)’

where 2(X,Y)is the duplication of 2(X,X) and k is a constant connected to the
space curvature, it results:

ds? (1 —y?»dx?+ 2xydxdy + (1 — x?)dy?

(27)

28
k2 (1 —x2 —y?)2 ’ (28)
where
QX,X)=1—x2?—y?
QX,dX) = —xdx — ydy (29)
Q(dX,dX) = —dx? — dy?
Now, performing the coordinate transformations
__ hh-1 __ h+h
X = TR Y = hhet (30)
with
h=u-+iv, h=u-—iv (31)

the metric (28) takes the form of Poincaré metric of the superior complex plane
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ds? dhdh _ du® +dv?

=4 =

kZ (h _ }‘_1)2 UZ
~ The metric (32) induces the simply transitive group in the quantities h and
h, whose actions are:

, (32)

ah+ b

(_) —I
ch+d
_ ah +b
A 7 )
ch +d
The structure of this group is typical of SL(2R), i.e.,
[B*,B*] = BY,
[B2,B%] = B?, (34)
[B%,B'] = —2B2
where B! are the infinitezimal generators of the group:

(33)

9]
B =h—+h— (35)

and admits the 2-form (32).

Since (32) is invariant with respect to the group SL(2R)[3,4,8], this group
can be assimilated with a “synchronization” group between the different structural
units of complex system. In this process, the amplitude of each of the structural
units of any complex system participates, in the sense that they are correlated.
Moreover, the phases of any entity of the complex system are also correlated [21-
25].

5. Temporal patterns in complex systems dynamics through harmonic
mappings

In the following, complex system dynamics will be generated through
harmonic mappings. Indeed, let it be assumed that the complex system dynamics
are described by the variables (Y7), for which the following multifractal metric
was discovered:

h;;dy‘dy’ (36)
in an ambient space of multifractal metric:

VapdX@dXP (37)
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In this situation, the field equations of complex system dynamics are derived
from a variational principle, connected to the multifractal Lagrangian:
aytay’
=y®Bp. — 38
L=Y"hij3xaaxp (38)
In the current case, (36) is given by (32), the field multifractal variables
being h and h or, equivalently, the real and imaginary part of h. Therefore, if the

variational principle:
5 f L\fyd3x (39)

is accepted as a starting point where y = |yaﬁ|, the main purpose of the complex
system dynamics research would be to produce fractal/multifractal metrics of the
multifractal Lobachevski plane (or relate to them). In such a context, the
multifractal Euler equations corresponding to the variational principle (39) are:

(h — h)V(VR) = 2(Vh)?

_ _ _ 40
(h = R)V(VE) = 2(VR)’ (40)
which admits the solution:
h b — sinh (6] —ia
_ cosh(®/,) —sinh(®/;)e e )

- cosh(%/,) + sinh(P/,)e-ia’
with « real and arbitrary, as long as (‘D/Z) is the solution of a multifractal Laplace
equation for the free space, such that

v2(®/,) =0 (42)

For a choice of the form a = 20¢t, in which case a temporal dependency

was introduced in the complex system dynamics, (41) becomes:
" i[e?® sin(20t) — sin(20t) — 2ie®] 43)
"~ e2®[cos(20t) + 1] — cos(202t) + 1

The significance of this complex parameter must be linked to the harmonic
mappings between the Euclidean space (i.e., measurement space) and the
hyperbolic space (i.e., phase space, in which the “self-structuring” manifests — for
details see [11,12]) For the moment, let it be noted that the measurement process is
mimed here as a frequency modulation process. More precisely, this process is a
calibration of the difference between the multifractal Kinetic energy and the
multifractal potential energy, which brings this quantity to a perfect squared form.

In Fig. 1 a-d the “self-structuring temporal pattern” of the structural units of
complex systems in the form of quasi-periodicity are presented: 3D diagram,
contour diagram, time series and reconstituted attractor for the scale resolutions
given by 2,4, = 2.8.
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(a) 3D diagram (b) contour plot
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(c) time series (d) reconstituted attractor

Fig.1. a—d. - “Self-structuring temporal pattern” of structural units of the complex system
in the form of quasi-periodicity (3D diagram (a), contour diagram (b), time series (c) and
reconstituted attractor (d) for scale resolution given by Q,,., = 2.8). Such patterns are not
singular. By employing the Multifractal Theory of Motion in the description of complex systems
dynamics [26-31], several types of patterns can be highlighted: period doubling, intermittences,
harmonized oscillations, damped oscillations etc.

6. Conclusions

In a Scrodinger-type scenario for the description of complex system
dynamics, a SL(2R) symmetry is highlighted. The existence of such a symmetry
has several consequences for the aforementioned dynamics: conservation laws as
gauge invariances of a Riccati-type (in particular, for classical dynamics, the kinetic
momentum conservation law); simultaneity as gauge invariances of a Riccati-type;
synchronization as gauge invariances of a Riccati-type; temporal patterns through
harmonic mappings.
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Moreover, the existence of such a symmetry implies, through a Poincaré
metric of the hyperbolic space, that holography can be associated with deep
learning.

REFERENCES

[1]. L. Nottale, “Scale Relativity and Fractal Space-Time: A New Approach to Unifying Relativity
and Quantum Mechanics”, Imperial College Press, London, UK, 2011.

[2]. I. Merches, M. Agop, “Differentiability and fractality in dynamics of physical systems, World
Scientific”, New Jersey, 2016.

[3]. M. A. Paun, M. R. N. Avanaki, G. Dobre et al., “Wavefront aberration correction in single mode
fibre systems”, in Journal of Optoelectronics and Advanced Materials, vol. 11, no. 11, 2009,
pp. 1681-1685.

[4]. B. B. Mandelbrot, “Fractal Geometry of Nature”, San Francisco: W.H. Freeman and Co., 1982.

[5]. E. A. Jackson, “Perspectives of Nonlinear Dynamics”, VVol. 1, Cambridge University Press, New
York, 1993.

[6]. U. Niederer, “The Maximal Kinematical Invariance Group of the Free Schrddinger Equation”,
Helvetica Physica Acta, vol. 45, 1972, pp. 802-810.

[7]. V. Alfaro, S. de Fubini, G. Furlan, “Conformal Invariance in Quantum Mechanics”, Il
Nuovo Cimento A, vol. 34, 1976, pp. 569-611.

[8]. A. Herrero, J. A. Morales, “Radial Conformal Motions in Minkowski Space-Time, Journal of
Mathematical Physics”, vol. 40(6), 1999, pp. 3499-3508.

[9]. A. Herrero, J. A. Morales, “Painleve-Gullstrand Synchronizations in Spherical Symmetry,
Classical and Quantum Gravity”, vol. 27, 2010, 175007.

[10]. L. Bianchi, “On Three-Dimensional Spaces Which Admit a Continuous Group of Motions,
General Relativity and Gravitation”, vol. 33, 2001, pp. 2171-2253. (This is a translation of
the original Italian from year 1897, by R. T. Jantzen under Golden Oldies initiative of the
periodical).

[11]. N. Mazilu, M. Agop, “At the Crossroads of Theories. Between Newton and Einstein - The
Barbilian Universe” (In Romanian), Ars Longa Publishing House, lasi, 2010.

[12]. N. Mazilu, M. Agop, “Skyrmions: A Great Finishing Touch to Classical Newtonian
Philosophy”, World Philosophy Series, Nova, New York, 2012.

[13] J. F. Carinena, J. Clemente-Gallardo, G. Marmo, “Reduction Procedures in Classical and
Quantum Mechanics”, International Journal of Geometrical Methods in Modern Physics, vol.
4, 2007, pp. 1363 — 1403. arXiv:math-ph/0709.2366.

[14]. J. W. Larmor, “On the Statistical Dynamics of Gas Theory as Illustrated by Meteor
Swarms and Optical Rays”, Nature, Volume 63(1624), 1900, pp. 168 - 169; British
Association Report, September 1900, pp. 632-634.

[15]. E. Cartan, “La Théorie des Groupes Finis et Continus et la Géométrie Différentielle Traitées
par la Méthode du Repére Mobile”, Gauthier Villars, Paris, 1951.

[16]. N. D. Tesloianu, I. Nedelciuc, V. Ghizdovat, M. Agop, and C. Lupascu-Ursulescu, “A fractal
physics explanation for acute thrombotic occlusion in an apparently healthy coronary artery”,
Anatolian Journal of Cardiology, 18(2), 2017, p. 155.

[17]. N. Mazilu, M. Agop, I. Gatu, et al., “The classical theory of light colors: a paradigm for
description of particle interactions”, International Journal of Theoretical Physics, 55(6),
2016, pp. 2773-2793.

[18]. N. Mazilu, M. Agop, I. Gatu, et al., “From Kepler problem to skyrmions”, Modern Physics
Letters B, 30(13), 2016, p.1650153.

[19]. M. Agop, S. Irimiciuc, D. Dimitriu, et al. “Novel approach for EKG signals analysis based on
Markovian and non-Markovian fractalization type in scale relativity theory”, Symmetry,
13(3), 2021, p. 456.



188 St. Agop, M.-Al. Paun, C. Dumitras, M. Frasila, V.-Al. Paun, M. Agop, V.-P. Paun, G. Stefan

[20]. N. Cimpoesu, S. Stanciu, D. Tesloianu, R. Cimpoesu, R. F. Popa and E. Moraru, “A study of
the damping capacity of mechanically processed cu-9.2 Al-5.3 Mn-0.6 Fe shape memory
alloys”, Metal Science and Heat Treatment, 58(11), 2017, pp. 729-733.

[21]. R. Stana, I. C. Botez, V.P. Paun, M. Agop, “New Model for Heat Transfer in Nanostructures*,
Journal of Computational and Theoretical Nanoscience, 9(1), 2012, pp. 55-66.

[22]. V. P. Paun, “Relaxation model for polymeric materials in the hereditary theory of elasticity,
Materiale Plastice, 40(2), 2003, pp. 81-82.

[23]. Z. Borsos, V.P. Paun, I.C. Botez, C.M. Stoica, P. Vizureanu, and M. Agop, “Structural
Conductivity of Carbon Nanotubes”, Revista de Chimie, vol. 59, no. 10, 2008, pp. 1169-
1171,

[24]. V. P. Paun, “An estimation of the polymer translocation time through membrane*, Materiale
Plastice, 43(1), 2006, pp. 57-58.

[25]. V. P. Paun, “Creep model for polymeric materials*, Materiale Plastice, 40(1), 2003, pp.25-26.

[26]. P. Postolache, Z. Borsos, V.A. Paun, and V.P. Paun, “New Way in Fractal Analysis of
Pulmonary Medical Images”, in University Politehnica of Bucharest Scientific Bulletin-
Series A-Applied Mathematics and Physics, vol. 80, no. 1, 2018, pp. 313-322.

[27]. M.V. Nichita, M.A. Paun, V.A. Paun, and V.P. Paun, “Fractal Analysis of Brain Glial Cells.
Fractal Dimension and Lacunarity”, in University Politehnica of Bucharest Scientific
Bulletin-Series A-Applied Mathematics and Physics, vol. 81, no. 1, 2019, pp. 273-284.

[28]. V. P. Paun, “Fractal surface analysis of Zircaloy-4 SEM micrographs using the time-series
method®, 6th International Conference on Solid State Surfaces and Interfaces, CENTRAL
EUROPEAN JOURNAL OF PHYSICS, 7(2), 2009, pp. 264-269.

[29]. D. Bordescu, M.A. Paun, V.A. Paun, and V.P. Paun, “Fractal analysis of Neuroimagistic.
Lacunarity degree, a precious indicator in the detection of Alzheimer’s disease”, in
University POLITEHNICA of Bucharest Scientific Bulletin, Series A-Applied Mathematics
and Physics, vol. 80, no. 4, 2018, pp. 309-320.

[30]. M. A. Paun, and V. A. Paun, High-Frequency 3-D Model for the Study of Antennas in Cochlear
Implants, 7th IEEE International Workshop on Advances in Sensors and Interfaces (IWASI),
IEEE Transactions on Components Packaging and Manufacturing Technology, 8(7), 2018,
pp.1135-1140.

[31]. V. A. Paun, L. Ochiuz, M. Hortolomei, et al., In Vitro Release Kinetics Evaluation of
Erythromycin in Microemulsions for Dermal Applications, Materiale Plastice, 53(4), 2016,
pp. 699-702.


https://www.webofscience.com/wos/author/record/28335303
https://www.webofscience.com/wos/author/record/2530682
https://www.webofscience.com/wos/author/record/86149
https://www.webofscience.com/wos/woscc/full-record/WOS:000302828700010
javascript:void(0)
https://www.webofscience.com/wos/woscc/full-record/WOS:000184497500005
https://www.webofscience.com/wos/author/record/13471589
https://www.webofscience.com/wos/woscc/full-record/WOS:000236960700012
https://www.webofscience.com/wos/woscc/full-record/WOS:000182851800007
https://www.webofscience.com/wos/woscc/full-record/WOS:000265522000010
https://www.webofscience.com/wos/woscc/full-record/WOS:000265522000010
https://www.webofscience.com/wos/woscc/general-summary?queryJson=%5B%7B%22rowBoolean%22:null,%22rowField%22:%22CF%22,%22rowText%22:%226th%20International%20Conference%20on%20Solid%20State%20Surfaces%20and%20Interfaces%22%7D%5D
javascript:void(0)
javascript:void(0)
https://www.webofscience.com/wos/author/record/29370039
https://www.webofscience.com/wos/author/record/26901697
https://www.webofscience.com/wos/woscc/full-record/WOS:000438909700002
https://www.webofscience.com/wos/woscc/full-record/WOS:000438909700002
https://www.webofscience.com/wos/author/record/12609978

