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A NUMERICAL APPROACH FOR HAMMERSTEIN 
INTEGRAL EQUATIONS OF MIXED TYPE USING 

OPERATIONAL MATRICES OF HYBRID FUNCTIONS  

Khosrow MALEKNEJAD1, Elham HASHEMIZADEH2 

Această lucrare prezintă o procedură eficientă numerice pentru rezolvarea 
ecuaţiilor neliniare Hammerstein integrale de tip mixt. Aceste ecuaţii apar în model 
dinamic de reactor chimic, unele probleme în teoria controlului şi reformulări 
diferite ale unei ecuaţii cu derivate partiale eliptica cu condiţii la limită neliniare. 
Metoda noastră foloseşte funcţia hibrid şi unele proprietăţi utile dintre aceste funcţii 
pentru a converti o Hammerstein şi ecuaţii Volterra-Hammerstein integrală de tip 
mixt într-o ecuaţie algebrică. Fiabilitatea şi eficienţa sistemului propus sunt 
demonstrate de unele experimente numerice. 

 
This paper presents an efficient numerical procedure for solving the nonlinear 

Hammerstein integral equations of mixed type. These equations arise in the dynamic 
model of chemical reactor, some problems in control theory and various 
reformulations of an elliptic partial differential equation with nonlinear boundary 
conditions. Our method uses hybrid function and some useful properties of these 
functions to convert a Hammerstein and Volterra-Hammerstein integral equations of 
mixed type into an algebraic equation.  The reliability and efficiency of the proposed 
scheme are demonstrated by some numerical experiments. 

 
Keywords: Hammerstein integral equation of mixed type, Volterra-Hammerstein 

integral equation of mixed type, block-pulse function, hybrid function, 
operational matrix, integration of the cross product, coefficient matrix. 

1. Introduction 

The theory and application of integral equations is an important subject 
within applied mathematics. Due to the fact that the nonlinear Hammerstein 
integral equations of mixed types appear in many problems in mathematical 
physics, the dynamic model of chemical reactor, some problems in control theory, 
and various reformulations of an elliptic partial differential equation with 
nonlinear boundary conditions, this paper deals with finding numerical solutions 
of these problems, see Refs. [1-3]. 

 In this paper we are going to use hybrid Legendre polynomials and Block-
Pulse functions as basis for the numerical solution of Hammerstein and Volterra-
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Hammerstein integral equations of mixed type that take the following forms 
respectively 

 
1

0
1

( ) ( ) ( , ) ( , ( )) ,   0 1,
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i i
i

u x f x k x s s u s ds xψ
=

= + ≤ ≤∑∫                        (1) 

0
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( ) ( ) ( , ) ( , ( )) ,   0 1,
d x

i i
i

u x f x k x s s u s ds xψ
=

= + ≤ ≤∑∫                         (2) 

where f , u  and k  are assume to be in 2L , with ( )( ),i x u xψ  nonlinear in u  for 

1,...,i d= . We assume that (1) and (2) have a unique solution ( )u x  to be 
determined. The existence results  for these equations had been discussed in [1]. 

Actually few numerical methods for approximating the solution of Eqs. (1) 
and (2) are known. Ganesh and Joshi introduced a kind of collocation method in 
[1] for Hammerstein integral equations of mixed type. Brunner in [4] extended 
Ganesh and Joshi method for nonlinear Volterra integro-differential equations and 
Volterra-Hammerstein integral equations of mixed type. Hadizadeh and Azizi in 
[5] used Taylor expansion approach for solving Eqs.(1) and (2). 

In the present paper we introduce a new computational method to solve 
Hammerstein and Volterra-Hammerstein integral equations of mixed type. This 
paper consists of reducing these integral equations to an algebraic equation by 
first expanding the candidate functions as hybrid functions, then some useful 
properties of hybrid functions such as integration of cross product, a special 
product matrix and a related coefficient matrix with optimal order are applied to 
solve these Hammerstein and Volterra-Hammerstein  integral equations of mixed 
type. The main characteristic of this technique is to convert these kinds of integral 
equations into an algebraic equation and in this way, the solution procedures are 
either reduced or simplified, accordingly. This method had been used for some 
Volterra, Fredholm [6], Hammerstein [7], Volterra Hammerstein [8] integral 
equations and integro-differential [9] and nonlinear Volterra-Fredholm integro-
differential [10] equations beforehand. 

This paper is organized as follows: first, we introduce hybrid Legendre 
polynomials and Block-Pulse functions and their properties. In Section 3, we 
apply these sets of hybrid functions to approximate the solutions of Hammerstein 
integral equations of mixed type. Using the properties of hybrid functions together 
with collocation method, we reduce the nonlinear Hammerstein integral equations 
of mixed type to a system of nonlinear equations. These equations can be solved 
using Newton's iterative method. In Section 4 we convert Volterra-Hammerstein 
integral equations of mixed type to an algebraic equation. Section 5 exhibits error 
estimation for our method.  Finally in Section 6, we illustrate some numerical 
examples to show the convergence and accuracy of this method.  
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2. Some properties of hybrid functions 

2.1.  Hybrid of Block-Pulse functions and Legendre polynomials 

Consider the Legendre polynomials ( )mL x  on the interval [ 1,1]−  as 
 0 1( ) 1,  ( ) ,                                               L x L x x= =  

 1 1
2 1( ) ( ) ( ),  1,2,3,....

1 1m m m
m mL x xL x L x m

m m+ −
+

= − =
+ +

 

The set of { ( ) : 0,1,...}mL x m =  in the Hilbert space 2[ 1,1]L −  is a complete 
orthogonal set. 

A set of Block-Pulse functions ( ), 1, 2,..,i x i nφ =  on the interval [0,1)  are 
defined as follows 

11, ,
( )

0, .
i

i ix
x n n

otherwise
φ

−⎧ ≤ <⎪= ⎨
⎪⎩

                                          (3) 

The Block-Pulse functions on [0,1)  are disjoint, so for , 1, 2,...,i j n= , we have 
( ) ( ) ( )i j ij ix x xφ φ δ φ= , also these functions have the property of orthogonality on 

[0,1) . 
The orthogonal set of hybrid functions ( ),   1,2,...,ijh x i n=  and 

0,1,..., 1j m= −  where i  is the order for Block-Pulse functions, j  is the order for 
Legendre polynomials and x  is the normalized time, is defined on the interval 
[0,1)  as 

1(2 2 1), ,
( )

0, .

j
ij

i iL nx i x
h x n n

otherwise

−⎧ − + ≤ <⎪= ⎨
⎪⎩

                              (4) 

Since ( )ijh x  is the combination of Legendre polynomials and Block-Pulse 
functions which are both complete and orthogonal, it follows the set of hybrid 
functions be complete orthogonal set in 2[0,1)L . 

2.2. Function approximation 

Any function 2( ) [0,1)u x L∈  can be expanded in a hybrid function as 
1

1 0
( ) ( ) ( ),

n m
T

ij ij
i j

u x c h x x
−

= =

=∑∑ C B                              (5) 

where 
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( ( ), ( ))
,

( ( ), ( ))
ij

ij
ij ij

u x h x
c

h x h x
=                                       (6) 

for 1,2,..., , 0,1,..., 1,i n j m= = −  such that in Eq.(6), the symbol (.,.)   denotes the 
inner product. Also we have 

10 1, 1 20 2, 1 0 , 1[ ,..., , ,..., ,..., ,..., ] ,T
m m n n mc c c c c c− − −=C                    (7) 

and 
10 1, 1 20 2, 1 0 , 1( ) [ ( ),..., ( ), ( ),..., ( ),..., ( ),..., ( )] .T

m m n n mx h x h x h x h x h x h x− − −=B     (8) 

We can also approximate the function 2( , ) ([0,1) [0,1))k x s L∈ ×  as follows 
( , ) ( ) ( ),Tk x s x sB KB                                           (9) 

where K  is an nm nm×  matrix, that is given by 
( ( ), ( ( , ), ( )))

,
( ( ), ( ))( ( ), ( ))

i j
ij

i i j j

x k x s s
x x s s

=
B B

K
B B B B

                             (10) 

for , 1,2,...,i j nm= . 

2.3. The integration of the cross product 

The integration of the cross product of two hybrid function vectors ( )xB  
in Eq.(8) can be obtained as 

1

0

0 0
0 0

( ) ( ) ,

0 0

Tx x dx

…⎡ ⎤
⎢ ⎥…⎢ ⎥= =
⎢ ⎥
⎢ ⎥…⎣ ⎦

∫

L
L

D B B

L

                         (11) 

where L  is a m m×  diagonal matrix that is given by 
1 0 0

10 0
1 3 .

10 0
2 1

n

m

…⎡ ⎤
⎢ ⎥
⎢ ⎥…
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥…⎢ ⎥−⎣ ⎦

L                                 (12) 

Matrix D  is very important for numerically solving Hammerstein integral 
equation of mixed type (1), because of its sparsity, it can increase the calculating 
speed, as well as save the memory storage. 
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2.4. Operational matrix of integration 

The integration of the vector ( )xB  defined in Eq.(8) is given by 

0
( ) ( ),

x
x dx x′ ′∫ B PB                                        (13) 

where P  is the nm nm×  operational matrix for integration and is given in [6,11]  
as 

,

…⎡ ⎤
⎢ ⎥…⎢ ⎥
⎢ ⎥= …
⎢ ⎥
⎢ ⎥
⎢ ⎥…⎣ ⎦

S T T T
0 S T T

P 0 0 S T

0 0 0 S

                                       (14) 

that S  and T  are m m×  matrices and they can be seen in [6] in details. 

2.5. Product operational matrix 

In the study of Volterra-Hammerstein integral equation of mixed type by 
hybrid functions, it is always necessary to evaluate the product of ( )xB  by ( )T xB , 
that is called the product matrix of hybrid functions. Let 

( ) ( ) ( ),Tx x xΩ = B B                                         (15) 
where ( )xΩ  is an nm nm×  matrix. Multiplying the matrix ( )xΩ  by  C  that 
defined in Eq.(7) we obtain 

( ) ( ),x xΩ =C CB                                           (16) 
where C  is an nm nm×  matrix and is called the coefficient matrix. Hsiao in [6] 
shows the method of producing this matrix. 

With the powerful properties of Eq.(16) we can convert a Volterra-
Hammerstein integral equation of mixed type to an algebraic equation. 

3. Numerical solvability of Hammerstein integral equation of mixed 
type 

For solving Hammerstein integral equation of mixed type (1), we let 
( ) ( , ( )),  0 1,i iz s s u s sψ= ≤ ≤                                  (17) 

then we get 
1

0
1

( ) ( ) ( , ) ( ) .
d

i i
i

u x f x k x s z s ds
=

= +∑∫                            (18) 

substituting (18) in (17) results, 
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1
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We approximate this equation as 

,
1

( ) ( ) ( ),    1, 2, , ,
n

T
i i j j i

j
z x a x x i d

=

= = …∑ B A B                    (20) 

which ( )xB  is defined in Eq.(8). Using Eqs.(9), (11), (19) and (20) we get 

1
( ) ( , ( ) ( ) ),    1,2, , .

d
T T
i i j j

j
x x f x x i dψ

=

= + = …∑A B B K DA            (21) 

 In order to find ,  1,2, ,i i d= …A  we collocate Eq.(21) in nm  nodal points of 
Newton-Cotes as 

2 1, 1, 2, , .
2p
px p nm
nm
−

= = …                               (22) 

then we have equation (21) as follows 

1
( ) ( , ( ) ( ) ),  1, , , 1, , .

d
T T
i p i p p p j j

j
x x f x x p nm i dψ

=

= + = … = …∑A B B K DA  (23) 

We can calculate the unknown vectors , 1, 2, ,i i d= …A  from the above nonlinear 
system of equations. The required approximated solution ( )u x  for our 
Hammerstein integral equation of mixed type (1), can be obtained by using 
Eqs.(18) and (20) as follows 

1
( ) ( ) ( ) .

d
T

j j
j

u x f x x
=

= +∑B K DA                               (24) 

4. Numerical solvability of Volterra-Hammerstein integral equation of 
mixed type 

Consider the Volterra-Hammerstein integral equation of mixed type given 
in Eq.(2). For solving these equations like in the previous section, we let  

( ) ( , ( ))i iz s s u sψ=  for 0 1s≤ ≤ . Then from Eq.(2) we get 

0
1

( ) ( , ( ) ( , ) ( ) ),   1,2, , .
d x

i i i i
i

z x x f x k x s z s ds i dψ
=

= + = …∑∫               (25) 

After using Eqs.(9), (13), (16) and (20) we get 

1
( ) ( , ( ) ( ) ( )),   1, 2, , .

d
T T

ji i j
j

x x f x x x i dψ
=

= + = …∑A B B K A PB           (26) 

By collocating Eq.(26) in  nm  nodal points (22) we have, 
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1
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ji p i p p p j p
j

x x f x x x p nm i dψ
=

= + = … = …∑A B B K A PB

(27) 
After solving nonlinear system (27) we get ,  1, 2, ,i i d= …A , then we will have 
the approximation solution of Volterra-Hammerstein integral equations of mixed 
type (2) as 

1
( ) ( ) ( ) ( ).

d
T

jj
j

u x f x x x
=

= +∑B K A PB                              (28) 

5. Error estimation 

If we approximate our function with Legendre polynomials, we have the 
following theorem for its error analysis. 

Theorem 1. Let ( ) ( 1,1)ku x H∈ −  (Sobolev space), 
0

( ) ( )
J

J i i
i

u x a L x
=

=∑  be the best 

approximation polynomial of ( )u x  in 2L , then 
2 0[ 1,1] ( 1,1)

( ) ( ) ( ) ,k
k

J L H
u x u x C J u x−

− −
− ≤‖ ‖ ‖ ‖                      (29) 

where 0C  is a positive constant, which depends on the selected norm and is 
independent of ( )u x  and J ;  see Refs. [12, 13]. 

If we approximate our function with hybrid Legendre polynomials and 
Block-Pulse functions, we have the following error bound for it accordingly. 

Theorem 2. Let ( ) (0,1)ku x H∈ , 1[ , ]i
i iI

n n
−

=  and 
1

1 0
( ) ( )

n m

nm ij ij
i j

u x c h x
−

= =
∑∑   then 

2 0 0[0,1] ( )
( ) ( ) ( ) ( ) .k

i

k
nm i nL H I

u x u x C nm max u x−
≤ ≤− ≤‖ ‖ ‖ ‖                (30) 

Proof.  By using Theorem 1 it is obvious. 
Now we perform the estimation of the error for the Hammerestein and 

Volterra-Hammerestein integral equations. If we approximate the answer of Eqs. 
(1) and (2) by Eqs. (24) and (28) respectively, we have 

 ( ) ( ) ( )          | |nme x u x u x= −
1

        ( ) ( ) ( ) ,| |
d

j
j

u x f x xω
=

= − −∑  

where ( )e x  is defined as an error function. Also for Hammerestein and Volterra-
Hammerstein integral equations of mixed type, the function ( )j xω  is defined as 
follows respectively 
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When we put px x=  

  
1

( ) ( ) ( ) ( ) ,| |
d

p p p j p
j

e x u x f x xω
=

= − −∑  

 then our aim is ( ) 10 pk
pe x −≤  ( pk  is any positive integer). If we prescribe, 

(10 ) 10pk kmax − −=  and since in our hybrid function n  and m  are adjustable, for a 
fixed m  we can increase n  as far as the following inequality holds at each of the 
points px  

  ( ) 10 .k
pe x −≤  

 It means that we can find  m  and n  such that the error function ( )pe x  
approaches 0 . 

6. Numerical results 

6.1. Example 1 
Consider a mixed Hammerstein integral equation of the form  

3 1

0
1

( ) ( ) ( , ) ( , ( )) ,i i
i

u x f x k x s s u s dsψ
=

= +∑∫                           (31) 

where 

 
2 5 23( ) ,

30 4 20
x xf x = − + −  

 2 2
1 2 3( , ) ,   ( , ) ( ),   ( , ) 1,k x s x s k x s x s k x s= = + =  

 2 3 4
1 2 3( , ( )) [ ( )] ,   ( , ( )) [ ( )] ,   ( , ( )) [ ( )] ,s u s u s s u s u s s u s u sψ ψ ψ= = =  

and the exact solution is ( ) 1u x x= − . Table 1 exhibits the computational results  
with 4m = , 2n =  and 8m = , 8n =  besides exact solutions. 

6.2. Example 2 

Consider the Volterra-Hammerstein integral equation of mixed type as 
follows 

2

0
1

( ) ( ) ( , ) ( , ( )) ,
x

i i
i

u x f x k x s s u s dsψ
=

= +∑∫                           (32) 

where 

 /2 21( ) 2 (1 2ln[ ]),
4

x xf x e e x x= − − +  
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 ( )
1 2( , ) ln( ),   ( , ) ,x sk x s x s k x s e −= + =  

 1 2( , ( )) ln( ( )),   ( , ( )) ( ),s u s u s s u s u sψ ψ= =  
and the exact solution is ( ) xu x e= . Table 2 shows the computational results with 

4m = , 2n =  and 8m = , 8n =  versus the exact solutions. 
Table 1 

Approximate and exact solutions for Example 1. 

ix  Solution with 
8m = , 2n =  

Solution with 
8m = , 8n =  

Exact 
solution 

0.0   -1.00005 -1.00000 -1 
0.1 -0.90006 -0.90000 -0.9
0.2 -0.80007 -0.80001 -0.8
0.3 -0.70008 -0.70001 -0.7 
0.4 -0.60008 -0.60002 -0.6 
0.5 -0.50009 -0.50001 -0.5 
0.6 -0.40009 -0.40002 -0.4 
0.7 -0.30010 -0.30006 -0.3
0.8 -0.20010 -0.20005 -0.2
0.9 -0.10011 -0.10008 -0.1 
1.0 -0.00011 -0.00008 0 

7. Conclusion 

As we know nonlinear Hammerstein integral equations of mixed type are 
some complicated equations that arise in applied science and there are only a few 
numerical methods for numerically solving them; see Refs [1-5]. In this paper the  

Table 2 
Approximate and exact solutions for Example 2. 

ix  Solution with 
8m = , 2n =  

Solution with 
8m = , 8n =  

Exact 
solution 

0.0   0.99982 1.00000 1 
0.1 1.10517 1.10517 1.10517 
0.2 1.22141 1.22140 1.22140 
0.3 1.34985 1.34986 1.34986
0.4 1.49183 1.49182 1.49182
0.5 1.64868 1.64872 1.64872 
0.6 1.82211 1.82212 1.82212 
0.7 2.01376 2.01375 2.01375 
0.8 2.22553 2.22554 2.22554 
0.9 2.45961 2.45960 2.45960
1.0 2.71835 2.71830 2.71828

hybrid Legendre polynomials and Block-Pulse functions  and the associated 
operational matrices of integration D , operational matrix P , product matrix Ω  
and coefficient matrix C  are used to solve Hammerstein and Volterra-
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Hammerstein integral equations of mixed type. The method is based on reducing 
the system into a set of algebraic equations. The main advantage of this method is 
its efficiency and simple applicability and this truth that the values of n  and m  
for this hybrid function are adjustable as well as being able to yield more accurate 
numerical solutions. As showed in our examples we can get better errors in 
Hammerstein and Volterra-Hammerstein integral equations of mixed type when 
m  has a suitable fix value and n  is increased. The operational matrices of this 
hybrid function are sparse hence the implementation of hybrid function method on 
Hammerstein integral equations of mixed type is much faster than other functions 
methods and reduces the CPU time and at the same time keeping the accuracy of 
the solution. The numerical examples support this claim. 
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