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VEHICLE DYNAMICS MODELING DURING MOVING
ALONG A CURVED PATH. MATHEMATICAL MODEL
USAGE ON STUDYING THE ROBUST STABILITY

Oana-Carmen NICULESCU-FAIDA', Adrian NICULESCU-FAIDA?

Problematica deplasarii pe traiectorie curba a unui automobil reprezintd un
subiect de studiu intens in incercarea inginerilor de profil si automatisti de a realiza
sistemul de control adecvat. Inainte de toate se impune cunoasterea riguroasda a
dinamicii autovehiculului aflat intr-o migcare circulard, pentru a se putea transpune
cdt mai exact realitatea fizicd in ecuatii matematice. Modelul matematic trebuie sa
cuprinda elementele definitorii pentru procesul respectiv, in scopul realizarii unui
compromis intre complexitatea ecatiilor §i puterea de calcul necesard procesarii
acestora. In aceastd lucrare este prezentat un model matematic neliniar cu sase
grade de libertate, pe baza caruia se studiazd influenta diferitilor parametri asupra
stabilitatii autovehiculului in curbd (unghi de bracare, viteza §i acceleratia
Liapunov, reiese faptul cd, la viteze mai mari de 120 km/h, unghiuri de bracare mici
pot destabiliza autovehiculul.

Rezultatele obtinute se pot pune in valoare printr-un sistem de control.

The problem of the motion of an automobil on a curved path represents a
subject of high interest, in the strive of the profile engineers and automatists to
design the proper control system. First of all rigorous knowledge is compulsory,
about the vehicle dynamics on a circular motion, in order to express as accurate as
possible the physical reality into mathematical equations. The mathematical model
must contain all the defining elements for the specified process, so that a
compromise can be done, between the complexity of the equations and the
computing power needed. This paperwork presents a mathematical nonlinear model
with six freedom degrees, based on which the influence of different parameters over
the stability of the vehicle on a curved path is studied (brackage angle, velocity and
acceleration of the vehicle a.s.o.).From the study based on the Liapunov meaning
stability criterion, we conclude that, at speed exceeding 120 km/h, small brakeage
angles can destabilize the vehicle.

The obtained results can be shown to advantage through a control system.
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1. Introduction

While moving along the curve, on the contact surface of each wheel,
forces appear maintaining the vehicle on the trajectory. Under these forces, the
tire is deformed and therefore the velocity of each wheel deviates from the tire
plane under a certain angle, function of the lateral stiffness of the tire and the
force value.

The movement on a curved trajectory has been debated in numerous
papers of the domain, among which [4] where a three freedom degrees model is
considered, subjected to the wheel forces given by the “magic formula” of H.B.
Pacejka, [5] from the same conference where a two freedom degrees model is
studied and the tire model proposed by Dugoff modified by the authors. In the
article [3] where a three freedom degree model is presented on a self made tire
model. In [8] the authors have studied the wheel dynamics on a curved path and in
straight line and the result obtained is very usefull to establish the sideslip angles.

The vehicle stability is studied in [6] using coefficients to correct the
forces that act upon each wheel.

In [2] a common bicycle model is made equivalent to a model in which
instead of the four forces on each wheel there are considered two forces with a
sliding point of application along the symmetry axes of the vehicle.

Among the many articles it is worth mentioned [1] in which the authors
define a way to control the sideslip of the vehicle starting from a two freedom
degree model. This method is used together with the control of the spinning
speed.

The present article analyzes the curved motion using a vehicle model with
six freedom degrees, which considers the displacement of the vehicle on the
transverse direction, on the longitudinal direction, also the rotation movements
around the transversal axis, around the longitudinal axis and the vertical
displacements for each of the four wheels of the vehicle. The mathematical model
offers better results comparing to the other models, considering the higher
precision of the estimation and the wider spectrum of the stability analysis.

The objective of this paper is to identify the critical situations that a
vehicle may encounter in a curve.

2. The mathematical model

The model with six freedom degrees takes into account the movement of
the vehicle on transverse direction, on longitudinal direction, of the rotation
movements around its transverse axis, around its longitudinal axis, and of the
movements on the vertical for each of the four wheels of the car. Comparing to
the previously studied model, other five more movements are considered: the
rotation around the longitudinal axis (the rolling motion) and the vertical
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movements for each wheel, in order to better analyse the stability of the vehicle
with a higher precision than the analyzed case based on the bicycle model.
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Fig. 1. The forces representation, acting on the wheels of the vehicle

In Fig.1. the following elements appear:
m - the mass of the vehicle;
[ - the length of the vehicle;

[, - the distance between the center of mass and the rear axel axis;

E - the front wheelbase (the distance between the front wheels);
p - the curvature radius;

a, - the sliding angle of the wheel;

0 - the brackage angle;

B - the deviation angle;

F,, - the perpendicular force on the direction of the wheel, due to the sliding of
the wheel, determined by the sliding angle «,;
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F, - the driving force;
F,, - the centrifugal force;

F, = mV? :

P
R, - the resistive force to rolling;
R =R +R,;

V' - the velocity of the vehicle.

As it can be noticed in Fig.1., three pairs of forces act upon the front
wheels, along the wheel (F, and R,) and perpendicular on it ( F})).

For the front wheels, the force along the wheel is the driving force (F))
generated by the engine minus the resistive force to rolling (R,).

For the rear wheels the force from the wheel plane represents the
resistance to rolling (R,).

In the center of mass the centrifugal force act along the curvature radius
(Fy)

Let us write the equation of the moment around the vertical axis, crossing
through the intersection point between the longitudinal axis and the rear axel:

: E . E
(F;py +F2py)l+(F; R _R2)151n5_(Ep —sz)zsmé'—i-(& _R3)E )
=F,l cos

The torque given by the resistances to rolling for the rear wheels
E .
(R,—R, )3 is much smaller than any other terms and can be neglected.

The force perpendicular on the direction of the wheel, for small
deformations of the tire, is expressed as:
F;’p = caiai (2)
where:
¢, - the rigidity coefficient of the tire adapted to brackage, described by

al

the formulas:

1 1 1
calz_ca ~r 2 (3)
=25 ()
where:

A —the sliding of the wheel;
¢, — the transversal elasticity coefficient of the tire (experimentally determined).
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The intermediate measure /), is described by the formula:

2 2
c A 1 ¢
H, = | | ——1g () 4)
UN, 1-1 A=1 uN,
where:

¢, — the longitudinal elasticity coefficient of the tire (experimentally determined);

1 — the friction coefficient between the tire and the the rolling path;
N, - the soil reaction for each wheel;

In order to determine the N, reactions from the road, the vertical

movement was considered equal to the displacement of the joining point of the
body with the suspension. The N, reaction is considered proportional to the

movement, which is almost exact if the tire vertical deformation is neglected,
compared to the deformation of suspension spring.

2
(N1+N3)E—G£—mV h,cos f=0 (5)
2 p
2
(N, +N,)1~GL-" " h_sinp=0 ©)
N,+N,+N,+N, =G (7)

For solving the equations system a fourth relation is necessary, between
the 4 unknowns.
If we consider:
N,+N,=N,+N, )
from the four equations the forces Ni can be calculated.
For computing the traction force F, the following formula will be used:

M i, _

F = )

r
where:

M, - the engine moment corresponding to the vehicle velocity and to the
coupled gear;

i - the current gear ratio;

i, - the main transmission ratio;

n, - the total mechanical efficiency of the transmission;
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r - the rolling radius of the wheel.
R, - the rolling resistance is described by the expression R, = fN, (10)
where:

f — the rolling resistance coefficient.
The sliding rear angles, as they result from the fig.1, have the formulas :

a, =arctg Lm(ﬂ) . a, = arcig Lm(ﬂ)
§+pcos(ﬁ) —§+pc()s(ﬁ)

The sliding front angles have the formulas:

21/ 21
a, =arctg| ————— and a, =arctg| —————-
1 2 2 2 2 2
2yp =1l -F 2yp =l +E

respectively, according to the results obtained in the work [13] where the authors
study these parameters starting from the general plane movement equations of a
body, particularly for the circular motion. In the same work the result for the
sliding angle of the vehicle is presented:

_ ’ 2 _12

[

N

From the equation (1) results the curvature radius of the trajectory, p . The

radius is calculated using Mathcad software. These results will be used to
determine the stability by the help of the robust stability criterion.

In order to determine the numerical value of the Liapunov function, which
will be used to study the robust stability, it is necessary to compute the curvature
radius for each case separately.

The equation (1) is graphically solved. For each pair of values of the
brakeage angle (o) or of the velocity (V') the function Ah(p) is graphically

represented, and the p value for which the function becomes null, is the solution

of the equation.

The graphical solving method is used because of the complexity of the
resulting equation when one unknown is replaced.

All the necessary data for the numerical computation of the curvature
radius are to be found in the table below:
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Table.1
The necessary values for the numerical calculus of the curvature radius p
Fix parameters Variable parameters
Masses [kg] and Dimensions . . 0 | Velocity
Momentum[Nm] (] Ratios Coefficients Angle[’] [km | h]
m=1350 [, =14 i,=4,1 | ¢, =8500[N/rad]
m, =10 =16 7, =0,9 ¢, =10500[N /rad]
M, =150 I=1,+1 A=0,1 | £=0,9 S Vv
E=15 i=0,26 | £=0,015
h,=0,4
r=0,291
The results of the numerical calculus are shown in the table below.
Table.2
The curvature radius for different brackage angles 5[° ] and velocities V[km/ h]
ol°]
Vv 5 10 15 20 25
[km/h]
50 1161,1 585,66 396,2 303,25 276,54
60 1931,05 972,24 655,68 500 461
70 2846,27 1431,56 963,8 732,84 680
80 3909,57 1965,12 1321,64 1003,5 906
90 5124,25 2574,56 1730,3 1312,47 1178,7
100 6494 3261,74 2190,98 1660,72 1454,54
110 8023,15 4028.8 2705,2 2049,26 1759,55
120 9716,55 4878,12 3274,28 2479,25 2093.8

The model is nonlinear and in order to analyze the stability, the criterion of

the robust stability is used. This implies to choose a function called Liapunov,
variable in time, and its first order derivative is always positive and which fulfils
the condition L(0)=0. The stability is obtained only when the Liapunov function
(L) becomes negative.

In order to define the Liapunov function, the case of accelerated motion

will be studied.

For the Liapunov function two variables dependent of time are chosen

such that the first and second derivatives by time, to be determined.

The derivatives derive from two of the equations of the dynamical

equilibrium of the vehicle, which are determined from the Fig.2:
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Fig. 2. The forces acting the wheels of the vehicle, in the case of the curved accelerated motion in
horizontal plane (x,y)

In Fig. 2. the following terms are used:
F,, - the forces perpendicular on the wheel due to the sliding angle of the vehicle;

Ft - the traction force for the front tyres

where:
M. - the pulling force on the wheels;
r - the tire radius.
F . - the inertial forces on x axis for the 1 wheel;

F

yi

- the inertial forces on y axis for the i wheel;

V - the tangent acceleration of the vehicle;
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V. - the tangent acceleration for each wheel;

i/ - the angular acceleration of the vehicle around the vertical axis crossing the

center of mass.
The equation of the momentum around the vertical axis crossing the center

of mass is described as:
J = 2Fil, sin §+§(Fp2 —F,)sind+(F,, +F,,)l, cos&

E E
_(Fp3 +Fp4)ls _(F;l _F;Z)E_(Fyl +Fy2)l_f’ _(Fv3 _Em)g (11)

~(Fy+F,)I,—(R +R,)I,sind—(R, —Rz)gcosa—(& —R4)§

and

The equilibrium force equation on the transversal direction is:

my?

mV sin f§ +

cos B =2F1sinS+(F,, +F,,)cosd+(F, +F,,) (12)

~(F,+F,)~(R +R,)sins+(F, +F,,)
The derivatives of the above mentioned variables are in this case { and
¥, from which it results that the variables are 17 and ¥ . The derivatives i and
y represent the acceleration, respectively the angular velocity for the gyration

motion around the vertical axis from the center of mass, CG , while ¥ and V
represent the acceleration and the angular velocity tangent to the trajectory of the
vehicle respectively.

The terms containing the variables 7 and ¥ are grouped together:

[ S+ 2m B+ dm, (1 +2) |=V [ ~4m,sin p(1, +1,) ]

. E .
+2Ftl, s1n5+5(Fp2 —Fpl)sm5+(Fpl +Fp2)lf coso

E (13)
~(Fys# By )l = f (N, + N,)l sing = f (N, = N, ) - cos 8
E
_f(N3—N4)5
. V2
7 4m, (1, -1,) ] =Vmsin g +2FtsinS
l//[ m,(f S)J msin S P cos B sin (14

+(Fp1 +Fp2)cos5+(Fp3 +Fp4)—f(N1 +N2)sin5
The terms following {7 and V in the equations (13) and (14) are constant.
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The equation system, from which the Liapunov function resides according
to the robust stability theory, is:

{alx1 =bx, +¢

. . 2
a,x, =bx, +d,x; +c,

15)

which in this case, is expressed as:
ayi =bV +c,
i =bV+d,V?+c,
The chosen function will be:
L=a,x,—bx,—c,t
and, accoding to the relations between velocity and acceleration from the clasical
mechanics, the Liapunov function becomes:
L:azﬁ—bzw—czz (16)
P
It can be easily noticed that if # = 0(the Liapunov function argument) then
L =0, that is L(0)=0, which represents one of the conditions for the system to
be stable.
In the relation (16) V is not known, this variable is measured using an
acceleration sensor.

The second condition for the system to be stable is that the first order
derivative of the Liapunov function to be strictly positive:

%zale—bzxz—c2>0 17)
In the relation (17) the second equation of the system (15) is introduced:

% =bx, +d,x; +¢c,—b,x,—c, >0= % =d,x; >0(A)(V)x, eR

The third condition of the stability of the system is that the Liapunov to
become negative.

The stability of the vehicle will be checked under certain relevant
conditions, in order to define the behavior of the vehicle in curves. The variable
elements are the brakeage angle and the initial velocity in the curve. For this, five
brakeage angles and seven velocities will be chosen. The ends of the angles and
velocities ranges are considered as the lowest or highest limits, which these
elements may have in real conditions.

The values of the Liapunov function, computed using expression (16) are
shown in the table 3:
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The Liapunov function values

3(°)
Vv 5 10 15 20 25
(km/h)
50 -351 -333 -302 -262 =221
60 -334 =312 -281 -243 -203
70 -305 -280 -257 -214 -175
80 -269 -241 -213 -173 -101
90 -217 -193 -165 -98 8
100 -158 -137 -81 1 53
110 -85 -66 3 42 95
120 -3 15 31 74 131

The mathematical model gives better good

small calculus steps are used, for the brackage angle and velocity also.

Table.3

results compared to the ones
obtained in [6] where a linear mathematical model was used. The improvement
consists of the higher precision of the estimation but also the larger width of the
spectrum of the stability analysis.

The precision of the stability estimation, for this vehicle, can be noticed if

According to the robust stability criterion, it results that the vehicle is
stable as it is shown in the fig. bellow:

The brackage angle (degrees)

The stability limit

90 100 110 120 100 110 120 110 120 120

Fig. 3. The stability limit of the vehicle on a curved path

The velocity of the vehicle V(km/h)

The curve from the fig. 3 represents the stability limit of the studied
vehicle; that means if the vehicle has a small velocity and a brakeage angle of the
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wheel such that the point corresponding to the respective coordinates is under the
curve, then the motion on the specified trajectory is stable and if the point is above
the curve then the motion is unstable.

3. Conclusions

From the performed analysis, it results that the vehicle is stable until a 110
km/h velocity when the brakeage angle reaches the value of 10°, at the value of
15° of the brakeage angle the stability is at its limit for the same velocity, and
when the wheels have more than 15° the instability tendency grows more, until the
value 25° of the brakeage angle when the stability is lost at velocities less than 90
km/h.

The original mathematical model with six freedom degrees is without
approximations this contributing to the exactness of the results obtained. The
stability criterion applied is also an original approach regarding this type of
application due to the higher degree of difficulty of the Liapunov function finding.

It is important to notice that this criterion shows the tendency of loosing
the stability, this means that it indicates exactly the conditions when the vehicle
starts loosing adherence or contact with soil for at least one of the wheels.
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