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VEHICLE DYNAMICS MODELING DURING MOVING 
ALONG A CURVED PATH. MATHEMATICAL MODEL 

USAGE ON STUDYING THE ROBUST STABILITY 

Oana-Carmen NICULESCU-FAIDA1, Adrian NICULESCU-FAIDA2 

Problematica deplasãrii pe traiectorie curbã a unui automobil reprezintã un 
subiect de studiu intens în încercarea inginerilor de profil şi automatişti de a realiza 
sistemul de control adecvat. Inainte de toate se impune cunoaşterea riguroasã a 
dinamicii autovehiculului aflat într-o mişcare circularã, pentru a se putea transpune 
cât mai exact realitatea fizicã în ecuaţii matematice. Modelul matematic trebuie sã 
cuprindã elementele definitorii pentru procesul respectiv, în scopul realizãrii unui 
compromis între complexitatea ecaţiilor şi puterea de calcul necesarã procesãrii 
acestora. În aceastã lucrare este prezentat un model matematic neliniar cu şase 
grade de libertate, pe baza cãruia se studiazã influenţa diferiţilor parametri asupra 
stabilitãţii autovehiculului în curbã (unghi de bracare, viteza şi acceleraţia 
automobilului etc.). Din studiul realizat cu ajutorul criteriului stabilitãţii în sens 
Liapunov, reiese faptul cã, la viteze mai mari de 120 km/h, unghiuri de bracare mici 
pot destabiliza autovehiculul. 

Rezultatele obţinute se pot pune în valoare printr-un sistem de control. 
 
The problem of the motion of an automobil on a curved path represents a 

subject of high interest, in the strive of the profile engineers and automatists to 
design the proper control system. First of all rigorous knowledge is compulsory, 
about the vehicle dynamics on a circular motion, in order to express as accurate as 
possible the physical reality into mathematical equations. The mathematical model 
must contain all the defining elements for the specified process, so that a 
compromise can be done, between the complexity of the equations and the 
computing power needed. This paperwork presents a mathematical nonlinear model 
with six freedom degrees, based on which the influence of different parameters over 
the stability of the vehicle on a curved path is studied (brackage angle, velocity and 
acceleration of the vehicle a.s.o.).From the study based on the Liapunov meaning 
stability criterion, we conclude that, at speed exceeding 120 km/h, small brakeage 
angles can destabilize the vehicle. 

The obtained results can be shown to advantage through a control system. 
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1. Introduction 

While moving along the curve, on the contact surface of each wheel, 
forces appear maintaining the vehicle on the trajectory. Under these forces, the 
tire is deformed and therefore the velocity of each wheel deviates from the tire 
plane under a certain angle, function of the lateral stiffness of the tire and the 
force value.     

The movement on a curved trajectory has been debated in numerous 
papers of the domain, among which [4] where a three freedom degrees model is 
considered, subjected to the wheel forces given by the “magic formula” of H.B. 
Pacejka, [5] from the same conference where a two freedom degrees model is 
studied and the tire model proposed by Dugoff modified by the authors. In the 
article [3] where a three freedom degree model is presented on a self made tire 
model. In [8] the authors have studied the wheel dynamics on a curved path and in 
straight line and the result obtained is very usefull to establish the sideslip angles.  

The vehicle stability is studied in [6] using coefficients to correct the 
forces that act upon each wheel. 

In [2] a common bicycle model is made equivalent to a model in which 
instead of the four forces on each wheel there are considered two forces with a 
sliding point of application along the symmetry axes of the vehicle. 

Among the many articles it is worth mentioned [1] in which the authors 
define a way to control the sideslip of the vehicle starting from a two freedom 
degree model. This method is used together with the control of the spinning 
speed. 

The present article analyzes the curved motion using a vehicle model with 
six freedom degrees, which considers the displacement of the vehicle on the 
transverse direction, on the longitudinal direction, also the rotation movements 
around the transversal axis, around the longitudinal axis and the vertical 
displacements for each of the four wheels of the vehicle. The mathematical model 
offers better results comparing to the other models, considering the higher 
precision of the estimation and the wider spectrum of the stability analysis. 

The objective of this paper is to identify the critical situations that a 
vehicle may encounter in a curve. 

2. The mathematical model 

The model with six freedom degrees takes into account the movement of 
the vehicle on transverse direction, on longitudinal direction, of the rotation 
movements around its transverse axis, around its longitudinal axis, and of the 
movements on the vertical for each of the four wheels of the car. Comparing to 
the previously studied model, other five more movements are considered: the 
rotation around the longitudinal axis (the rolling motion) and the vertical 
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movements for each wheel, in order to better analyse the stability of the vehicle 
with a higher precision than the analyzed case based on the bicycle model. 
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Fig. 1. The forces representation, acting on the wheels of the vehicle  

In Fig.1. the following elements appear: 
m  - the mass of the vehicle; 
l  - the length of the vehicle; 

sl  - the distance between the center of mass and the rear axel axis; 
E  - the front wheelbase (the distance between the front wheels); 
ρ  - the curvature radius; 

iα  - the sliding angle of the wheel; 
δ  - the brackage angle; 

iβ  - the deviation angle; 

ipF  - the perpendicular force on the direction of the wheel, due to the sliding of 
the wheel, determined by the sliding angle iα ; 
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tF  - the driving force; 

cfF  - the centrifugal force;  
2

cf
mVF
ρ

= ; 

iR  - the resistive force to rolling;  

1 2iR R R= + ; 
V  - the velocity of the vehicle. 

 
As it can be noticed in Fig.1., three pairs of forces act upon the front 

wheels, along the wheel ( tF  and iR ) and perpendicular on it ( ipF ).  
For the front wheels, the force along the wheel is the driving force ( tF ) 

generated by the engine minus the resistive force to rolling ( iR ).  
For the rear wheels the force from the wheel plane represents the 

resistance to rolling ( iR ). 
In the center of mass the centrifugal force act along the curvature radius 

( cfF ). 
Let us write the equation of the moment around the vertical axis, crossing 

through the intersection point between the longitudinal axis and the rear axel: 

( ) ( ) ( ) ( )1 2 1 2 1 2 4 3sin sin
2 2

cos

py py t p p

cf s

E EF F l F R R l F F R R

F l

δ δ

β

+ + − − − − + −

=
     (1) 

The torque given by the resistances to rolling for the rear wheels 

( )4 3 2
ER R−  is much smaller than any other terms and can be neglected. 

The force perpendicular on the direction of the wheel, for small 
deformations of the tire, is expressed as:    

ip i iF cα α=                                                                                                               (2) 
where: 
           icα  - the rigidity coefficient of the tire adapted to brackage, described by 
the formulas: 

( )1 2
1 1

1 1 1
1 4

c c
H H

α αλ

⎡ ⎤
= −⎢ ⎥

− ⎢ ⎥⎣ ⎦
                                      (3) 

where: 
λ  – the sliding of the wheel;  
cα – the transversal elasticity coefficient of the tire (experimentally determined). 
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The intermediate measure iH  is described by the formula: 

( )
2 2

1 1
1 1

1
1 1

c cH tg
N N
λ αλ α

μ λ λ μ
⎛ ⎞ ⎛ ⎞

= +⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
                           (4) 

where: 
cλ – the longitudinal elasticity coefficient of the tire (experimentally determined); 
μ – the friction coefficient between the tire and the the rolling path; 

iN  - the soil reaction for each wheel; 
 
In order to determine the iN  reactions from the road, the vertical 

movement was considered equal to the displacement of the joining point of the 
body with the suspension. The iN   reaction is considered proportional to the 
movement, which is almost exact if the tire vertical deformation is neglected, 
compared to the deformation of suspension spring. 

 
 
                                                   (5) 
 
                                                             (6) 
 
                                                             (7) 
 
 
 

For solving the equations system a fourth relation is necessary, between 
the 4 unknowns. 

If we consider: 
1 4 2 3N N N N+ = +                                                  (8) 

from the four equations the forces Ni can be calculated.     
For computing the traction force tF  the following formula will be used: 

0 .m t
t

M iiF ct
r
η

= =                                                (9) 

where: 
         mM  - the engine moment corresponding to the vehicle velocity and to the 
coupled gear; 
         i - the current gear ratio; 
         0i  - the main transmission ratio; 
         tη  - the total mechanical efficiency of the transmission; 
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         r - the rolling radius of the wheel. 
        iR  - the rolling resistance is described by the expression i iR fN=             (10)  
     where: 
              f – the rolling resistance coefficient. 

The sliding rear angles, as they result from the fig.1, have the formulas :  

                  ( )
( )

3
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2

slarctg E
ρ β

α
ρ β
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= ⎜ ⎟
⎜ ⎟+
⎝ ⎠

 ;             ( )
( )

4

sin

cos
2

slarctg E
ρ β

α
ρ β

⎛ ⎞
⎜ ⎟−

= ⎜ ⎟
⎜ ⎟− +
⎝ ⎠

 

  
The sliding front angles have the formulas:  

                 1 2 2

2
2 s

larctg
l E
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ρ
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      and       2 2 2
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respectively, according to the results obtained in the work [13] where the authors 
study these parameters starting from the general plane movement equations of a 
body, particularly for the circular motion. In the same work the result for the 
sliding angle of the vehicle is presented: 

2 2
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           From the equation (1) results the curvature radius of the trajectory, ρ . The 
radius is calculated using Mathcad software. These results will be used to 
determine the stability by the help of the robust stability criterion. 

In order to determine the numerical value of the Liapunov function, which 
will be used to study the robust stability, it is necessary to compute the curvature 
radius for each case separately.  

The equation (1) is graphically solved. For each pair of values of the 
brakeage angle (δ ) or of the velocity (V ) the function ( )h ρ  is graphically 
represented, and the  ρ  value for which the function becomes null, is the solution 
of the equation. 

The graphical solving method is used because of the complexity of the 
resulting equation when one unknown is replaced. 

All the necessary data for the numerical computation of the curvature 
radius are to be found in the table below: 
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Table.1  

The necessary values for the numerical calculus of the curvature radius ρ  
Fix parameters Variable parameters 

Masses [kg] and  
Momentum[Nm] 

Dimensions 
 [m] Ratios Coefficients Angle[ ]o  

Velocity 
[ / ]km h  

1350m =  1, 4fl =  0 4,1i =  8500[ / ]c N radα =  

10rm =  1,6sl =  0,9tη =  10500[ / ]c N radλ =
 

150mM =  f sl l l= +  0,1λ =  0,9μ =  

 1,5E =  0, 26i =  0,015f =  

 0, 4gh =    

 0, 291r =    

 
δ  
 

V  
 

The results of the numerical calculus are shown in the table below. 
Table.2 

The  curvature radius for different brackage angles [ ]oδ  and velocities [ / ]V km h  
 

5 10 15 20 25 

50 1161,1 585,66 396,2 303,25 276,54 
60 1931,05 972,24 655,68 500 461 
70 2846,27 1431,56 963,8 732,84 680 
80 3909,57 1965,12 1321,64 1003,5 906 
90 5124,25 2574,56 1730,3 1312,47 1178,7 
100 6494 3261,74 2190,98 1660,72 1454,54 
110 8023,15 4028,8 2705,2 2049,26 1759,55 
120 9716,55 4878,12 3274,28 2479,25 2093,8 

 
The model is nonlinear and in order to analyze the stability, the criterion of 

the robust stability is used. This implies to choose a function called Liapunov, 
variable in time, and its first order derivative is always positive and which fulfils 
the condition L(0)=0. The stability is obtained only when the Liapunov function 
(L) becomes negative. 

In order to define the Liapunov function, the case of accelerated motion 
will be studied. 

For the Liapunov function two variables dependent of time are chosen 
such that the first and second derivatives by time, to be determined.  

The derivatives derive from two of the equations of the dynamical 
equilibrium of the vehicle, which are determined from the Fig.2: 

V 
[km/h] 

[ ]oδ  
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Fig. 2. The forces acting the wheels of the vehicle, in the case of the curved accelerated motion in 

horizontal plane (x,y) 
 

In Fig. 2.  the following terms are used: 
piF  - the forces perpendicular on the wheel due to the sliding angle of the vehicle; 

Ft  - the traction force for the front tyres  
rMFt

r
=  

where: 
        rM  - the pulling force on the wheels; 
        r  - the tire radius. 

xiF  - the inertial forces on x axis for the i wheel; 

yiF  - the inertial forces on y axis for the i wheel; 

V  - the tangent acceleration of the vehicle; 
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iV  - the tangent acceleration for each wheel; 
ψ  - the angular acceleration of the vehicle around the vertical axis crossing the 
center of mass. 

The equation of the momentum around the vertical axis crossing the center 
of mass is described as: 

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 1 1 2

3 4 1 2 1 2 3 4

3 4 1 2 1 2 3 4
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z f p p p p f
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y y s f

EJ Ftl F F F F l

E EF F l F F F F l F F

E EF F l R R l R R R R

ψ δ δ δ

δ δ

= + − + +

− + − − − + − −

− + − + − − − −

      (11) 

and 
The equilibrium force equation on the transversal direction is:  

( ) ( )

( ) ( ) ( )

2

1 2 3 4

1 2 1 2 3 4

sin cos 2 sin cos

sin

p p p p

y y y y

mVmV Ft F F F F

F F R R F F

β β δ δ
ρ

δ

+ = + + + +

− + − + + +

         (12) 

The derivatives of the above mentioned variables are in this case ψ  and 
V , from which it results that the variables are ψ  and V . The derivatives ψ  and 
ψ  represent the acceleration, respectively the angular velocity for the gyration 
motion around the vertical axis from the center of mass, CG , while V  and V  
represent the acceleration and the angular velocity tangent to the trajectory of the 
vehicle respectively. 

The terms containing the variables ψ  and V  are grouped together: 
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4 sin cos 2 sin
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The terms following ψ  and V  in the equations (13) and (14) are constant.  
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The equation system, from which the Liapunov function resides according 
to the robust stability theory, is: 

1 1 1 2 1
2

2 1 2 2 2 2 2

a x b x c

a x b x d x c

= +⎧
⎨

= + +⎩
                                      (15) 

which in this case, is expressed as: 

1 1 1
2

2 2 2 2

a bV c

a b V d V c

ψ

ψ

⎧ = +⎪
⎨

= + +⎪⎩
 

The chosen function will be: 
2 1 2 2 2L a x b x c t= − −  

and, accoding to the relations between velocity and acceleration from the clasical 
mechanics, the Liapunov function becomes: 

2 2 2
VtL a b Vt c t
ρ

= − −                                            (16) 

It can be easily noticed that if 0t = (the Liapunov function argument) then 
0L = , that is (0) 0L = , which represents one of the conditions for the system to 

be stable. 
In the relation (16) V is not known, this variable is measured using an 

acceleration sensor. 
  The second condition for the system to be stable is that the first order 
derivative of the Liapunov function to be strictly positive: 

 2 1 2 2 2 0dL a x b x c
dt

= − − >                                        (17) 

In the relation (17) the second equation of the system (15) is introduced: 
2 2

2 2 2 2 2 2 2 2 2 2 20 0( )( )dL dLb x d x c b x c d x A x
dt dt

= + + − − > ⇒ = > ∀ ∈ℜ  

 The third condition of the stability of the system is that the Liapunov to 
become negative. 

The stability of the vehicle will be checked under certain relevant 
conditions, in order to define the behavior of the vehicle in curves. The variable 
elements are the brakeage angle and the initial velocity in the curve. For this, five 
brakeage angles and seven velocities will be chosen. The ends of the angles and 
velocities ranges are considered as the lowest or highest limits, which these 
elements may have in real conditions. 

The values of the Liapunov function, computed using expression (16) are 
shown in the table 3: 
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Table.3    

The Liapunov function values 

 

5 10 15 20 25 

50 -351 -333 -302 -262 -221 
60 -334 -312 -281 -243 -203 
70 -305 -280 -257 -214 -175 
80 -269 -241 -213 -173 -101 
90 -217 -193 -165 -98 8 
100 -158 -137 -81 1 53 
110 -85 -66 3 42 95 
120 -3 15 31 74 131 

The mathematical model gives better good results compared to the ones 
obtained in [6] where a linear mathematical model was used. The improvement 
consists of the higher precision of the estimation but also the larger width of the 
spectrum of the stability analysis. 

The precision of the stability estimation, for this vehicle, can be noticed if 
small calculus steps are used, for the brackage angle and velocity also. 

According to the robust stability criterion, it results that the vehicle is 
stable as it is shown in the fig. bellow: 
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Fig. 3. The stability limit of the vehicle on a curved path 

The curve from the fig. 3 represents the stability limit of the studied 
vehicle; that means if the vehicle has a small velocity and a brakeage angle of the 
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wheel such that the point corresponding to the respective coordinates is under the 
curve, then the motion on the specified trajectory is stable and if the point is above 
the curve then the motion is unstable. 

3. Conclusions 

From the performed analysis, it results that the vehicle is stable until a 110 
km/h velocity when the brakeage angle reaches the value of 10o, at the value of 
15° of the brakeage angle the stability is at its limit for the same velocity, and 
when the wheels have more than 15o the instability tendency grows more, until the 
value 25o of the brakeage angle when the stability is lost at velocities less than 90 
km/h. 
 The original mathematical model with six freedom degrees is without 
approximations this contributing to the exactness of the results obtained. The 
stability criterion applied is also an original approach regarding this type of 
application due to the higher degree of difficulty of the Liapunov function finding. 

It is important to notice that this criterion shows the tendency of loosing 
the stability, this means that it indicates exactly the conditions when the vehicle 
starts loosing adherence or contact with soil for at least one of the wheels. 
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