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ON HYPERACTIONS OF HYPERGROUPS

Jianming Zhan1, S.Sh. Mousavi2, M. Jafarpour3

In this paper, we define the notion of hyperaction of a hyper-
group on a nonempty set and also the notion of index of a subhypergroup
in a hypergroup, as a generalization of the concept of action of a group
on a nonempty set and the notion of index of a subgroup in a group, re-
spectively. Some properties such as the generalized orbit-stabilizer theorem,
are investigated. In particular, introduce a construction of a hypergroup
from a hyperaction. Finally, we assign a generalized state hypergroup to a
nondeterministic automata which can associated from a hyperaction.
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1. Introduction

Hyperstructure theory was born in 1934 at the 8th congress of Scandina-

vian Mathematicians, where Marty [16] introduced the hypergroup notion as

a generalization of groups and proved its utility in solving some problems of

groups, algebraic functions and rational fractions. Surveys of the theory can

be found in the books of Corsini [3], Vougiouklis [17], Corsini and Leoreanu [7].

Hypergroups are studied from the theoretical point of view and for their appli-

cations to many subjects of pure and applied mathematics: geometry, topology,

cryptography and code theory, graphs and hypergraphs, probability theory,

binary and n-ary relations, theory of fuzzy and rough sets, automata theory,

artificial intelligence, etc. See, for example [2, 5, 11, 13, 15, 19, 20]. Some

related recent work which some of them overlap the topic of this paper can be

found in [1, 4, 6, 10, 12, 18]. We recall here some basic notions of hypergroup

theory.
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Let H be a nonempty set and P ∗(H) the set of all nonempty subsets of H.

Let · be a hyperoperation (or join operation) on H, that is, · is a function from

H×H into P ∗(H). If (a, b) ∈ H×H, its image under · in P ∗(H) is denoted by

a·b or ab. The join operation is extended to subsets of H in a natural way, that

is A · B =
S{ab | a ∈ A, b ∈ B}. The notation aA is used for {a}A and Aa

for A{a} . Generally, the singleton {a} is identified with its member a. The

structure (H, ·) is called a semihypergroup if a(bc) = (ab)c for all a, b, c ∈ H

and is called a hypergroup if it is a semihypergroup and aH = Ha = H for all

a ∈ H. A hypergroup (H, ·) is called regular if it has at least an identity, that

is an element e of H, such that for all x ∈ H, x ∈ e ·x∩x ·e and moreover each

element has at least one inverse, that is if x ∈ H, then there exists x′ ∈ H

such that e ∈ x · x′ T x′ · x. The set of all identities of H is denoted by E(H),

if x ∈ H, il(x) = {x′ : e ∈ x′ · x} is the set of all left inverses of x in H (resp.

ir(x)) and i(x) = il(a)
T

ir(x). A regular hypergroup (H, ·) is called reversible

if for all (x, y, a) ∈ H3:

(i) y ∈ a · x, then there exists a′ ∈ i(a) such that x ∈ a′ · y;

(ii) y ∈ x · a, then there exists a′′ ∈ i(a) such that x ∈ y · a′′.
A hypergroup (H, ·) is called feebly quasi canonical if it is regular, reversible

and satisfies the condition

∀x, a ∈ H, ∀{u, v} ⊆ il(x),∀{w, z} ⊆ ir(x), u · a = v · a, a · w = a · z.
Let (H, ∗) is a hypergroup and K ⊂ H, K 6= ∅. We say that (K, ∗) is a

subhypergroup of H if, for any x ∈ K we have K ∗ x = K = x ∗K.

2. Hyperaction

In this section we consider the notion of hyperaction of a hypergroup on

a nonempty set, extending the definition given by Davvaz [9] in the particular

case of polygroups. Some properties such as the generalized orbit-stabilizer

theorem, are found.

Definition 2.1. Let (H, ∗) be a hypergroup, K a nonempty subset of H. We

say that K is invertible to the left if the implication y ∈ K ∗ x ⇒ x ∈ K ∗ y

valid. We say K is invertible if K is invertible to the right and to the left.

Proposition 2.1. If (H, ∗) is a hypergroup such that E(H) 6= ∅ and K is an

invertible subhypergroup of it, then E(H) ⊆ K.

Proof. Suppose that e ∈ E(H). Since K ⊆ e ∗ K, we have e ∈ K ∗ K ⊆ K,

because K is an invertible subhypergroup. ¤

Suppose that H is a hypergroup contain at least one identity element and

K is an invertible subhypergroup of H. For all x, y ∈ H define the relation
K≡

l
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on H as follows:

x
K≡

l
y ⇐⇒ x ∗K = y ∗K.

Proposition 2.2. The relation
K≡

l
is an equivalence relation and for all x ∈ H

the equivalence class of x which is denoted by [x]
l
, is x ∗ K and is called the

left generalized generalized coset of K.

Proof. It is easy to see that
K≡

l
is an equivalence relation. Suppose that y ∈ [x]

l

is given, so x ∗K = y ∗K. Since ∅ 6= E(H) ⊆ K, y ∗ E(H) ⊆ y ∗K = x ∗K.

Therefore y ∈ x ∗K and hence [x]
l
⊆ x ∗K. Now suppose that y ∈ x ∗K is

given, so x ∈ y∗K because of invertibility of K. Thus x∗K ⊆ y∗K∗K ⊆ y∗K.

By y ∈ x ∗ K we have y ∗ K ⊆ x ∗ K. Therefore x ∗ K = y ∗ K and hence

x
K≡

l
y. So y ∈ [x]

l
. ¤

Remark 2.1. If K is an invertible subhypergroup of H as the above we can

define the equivalence relation
K≡r on H as follows:

x
K≡r y ⇐⇒ K ∗ x = K ∗ y.

In this way for all x ∈ H the equivalence class off x that denoted by [x]r is

K ∗ x and it is called the right generalized coset of K. From now on we will

consider the hypergroups which have at least one identity element.

Notation 2.1. Suppose that K is an invertible subhypergroup of H. The

number of all left generalized cosets of K in H is denoted by [H : K]
l
and the

number of all right generalized cosets of K in H is denoted by [H : K]r . If

[H : K]
l
= [H : K]r = n, then we say n is the index of K in H and denoted

by [H : K].

Theorem 2.2. Suppose that H is a feebly quasi canonical hypergroup and K

is an invertible subhypergroup of H, then

[H : K]
l
= [H : K]r .

Proof. Define ϕ : {x ∗K | x ∈ H} // {K ∗ x | x ∈ H} by ϕ(x∗K) = K∗x′
for some x′ ∈ i(x). We show that ϕ is well define. Suppose that x∗K = y ∗K,

so y ∈ x ∗ K and therefore there exists a ∈ K such that y ∈ x ∗ a. By

reversibility of H we have a ∈ x′ ∗ y for some x′ ∈ i(x) and hence x′ ∈ a ∗ y′

for some y′ ∈ i(y) thus K ∗ x′ = K ∗ y′. Therefore ϕ is a well-defined.

As the above we can prove the following implication:

∀x′ ∈ i(x) and ∀y′ ∈ i(y), K ∗ x′ = K ∗ y′ =⇒ x ∗K = y ∗K.

So ϕ is one-to-one. It is easy to see that ϕ is onto and hence ϕ is an invertible

map. Thus [H : K]
l
= [H : K]r . ¤
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Definition 2.2. Let X be a nonempty set and (H, ∗) be a hypergroup such that

E(H) 6= ∅. A left hyperaction of H on X is a map ¦ : H ×X // P ∗(X)

such that:

(HA1) for all (a, b) ∈ H2 and for all x ∈ X, a ¦ (b ¦ x) = (a ∗ b) ¦ x

such that A ¦ Y :
def
=

S
a∈A,y∈Y

a ¦ y for all nonempty subsets A and Y of H and X

respectively.

(HA2) for all x ∈ X and e ∈ E(H), x ∈ e ¦ x.

We say X is a hyper H-set and the left hyperaction of H on X is denoted

by (H | X). Similarly the right hyperaction H on X is defined and is denoted

by (X | H).

Example 2.1. Suppose that (G, ·) is a group and H is the subgroup of G.

Consider G �H as the set of all left generalized cosets of H in G. Define the

hyperoperation ¦ on G�H by xH¦yH :
def
= {zH |z ∈ xHy} for all xH and yH in

G�H. The mapping ¦ : G �H ×G // P ∗(G) defined by ¦(gH, x) :
def
= gHx

is a left hyperaction G �H on G.

Proof. For all aH, bH ∈ G �H and x ∈ G we have:

¦(aH, ¦(bH, x)) = ¦(aH, bHx) =
[

y∈bHx

aHy = aHbHx;

on the other side,

¦(aH ¦ bH, x) =
[

c∈aHb

¦(cH, x) = aHbHx.

Consequently the condition (HA1) holds.

For proving the condition (HA2), first we need to find the identities of

G � H. If eH ∈ E(G � H), then xH ∈ eH ¦ xH
T

xH ¦ eH, which means

xH = zH = z′H, for some z, z′ in eHx and xHe, respectively. Thus we

conclude that e ∈ H and therefore E(G�H) = {H}. Thus x ∈ ¦(H, x) = Hx,

for all x ∈ G. 2 ¤

Example 2.2. Suppose that G is a graph and H the set of all vertices of G.

For all h1 and h2 in H, consider path(h1, h2) the set of all paths contain h1

and h2 and 〈h1, h2〉 the set of all vertices of G lie in the paths contain h1 and

h2. Define the hyperoperation ∗ on H by h1 ∗h2 :
def
= {h1, h2} for all h1, h2 ∈ H.

Thus (H, ∗) is a hypergroup. The mapping ¦ : H ×H // P ∗(H) defined by:

h ¦ v :
def
=

8<:〈h, v〉 if path(h, v) 6= ∅,

{v} otherwise,

is a left hyperaction of H on H.
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Proof. We can easily see that E(H) = {H} and ¦(a, ¦(b, x)) = ¦(a, x)
S ¦(b, x) =

¦(a ∗ b, x), for all (a, b, x) ∈ H3 and thus the conditions (HA1) and (HA2)

hold. ¤

Example 2.3. Suppose (H, ∗) is a hypergroup such that E(H) 6= ∅. The

mapping ¦ : H ×H // P ∗(H) defined by h ¦ x :
def
= C(h ∗ x), where C(h ∗ x)

is the complete closure of h ∗ x is a left hyperaction of H on H.

Proof. It is well known that C(h ∗ x) = h ∗ x ∗ ωH , for all (h, x) ∈ H2, where

ωH is the core of the canonical projection ϕ
H
, and therefore ¦(a, ¦(b, x)) =

¦(a, b∗x∗ωH) = a∗ b∗x∗ωH ∗ωH = a∗ b∗x∗ωH = (a∗ b)∗x∗ωH = ¦(a∗ b, x),

for all (a, b, x) ∈ H3.

Now let e ∈ E(H). Since x ∈ e ∗ x, it follows that x ∈ C(x) ⊆ C(e ∗ x) =

¦(e, x). ¤

Definition 2.3. Suppose that (H | X) and x ∈ X. A generalized orbit of x is

denoted by Hx and defined Hx :
def
=

S
h∈H

h ¦ x.

Definition 2.4. Suppose that X is a nonempty set, (H, ∗) is a reversible hy-

pergroup and ¦ : H ×X // P ∗(X) is a left hyperaction of H on X.

(i) We say ¦ is a quasi strong left hyperaction and denoted by (H |qs X)

whenever, for all (a, b) ∈ H2 and (x, y) ∈ X2 if a¦x∩b¦y 6= ∅, then x ∈ (a′∗b)¦y
and y ∈ (b′ ∗ a) ¦ x for all a′ ∈ i(a) and b′ ∈ i(b).

(ii) We say ¦ is a strong left hyperaction and denoted by (H |s X) when-

ever, ¦ is a quasi strong left hyperaction and for all a ∈ H, e ∈ E(H) and

x ∈ X if x ∈ (a ∗ e) ¦ x, then (a ∗ e) ¦ x ⊆ e ¦ x.

Proposition 2.3. Suppose that (H |qs X) and there exist x, y ∈ H such that

Hx ∩Hy 6= ∅. Then Hx = Hy.

Proof. Since Hx∩Hy 6= ∅, then there exist a, b ∈ H such that a ¦x∩ b ¦y 6= ∅.

Thus we have x ∈ (a′ ∗ b) ¦ y and y ∈ (b′ ∗ a) ¦ x for all a′ ∈ i(a) and b′ ∈ i(b).

Let ¦ be the left hyperaction of H on X so for all h ∈ H, we have the map

¦
h

: X // P ∗(X) defined by ¦
h
(x) :

def
= h ¦x. Therefore for all h ∈ H we have

h ¦x ⊆ (h∗a′ ∗b) ¦y and h ¦y ⊆ (h∗b′ ∗a) ¦x and hence Hx ⊆ Hy and Hy ⊆ Hx

and the proof is complete. ¤

Corollary 2.1. Suppose that (H |qs X). The relation ` on X defined by:

x ` y if and only if x and y lie at the same generalized orbit

is an equivalence relation on X.

Proof. It is clear from the Proposition 2.3. ¤
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Definition 2.5. Suppose that (H |qs X) and x ∈ X. The generalized stabilizer

of x is denoted by Hx and defined:

Hx :
def
= {h ∈ H | (h∗e)¦x∪(h′∗e)¦x ⊆ e¦x for all e ∈ E(H) and h′ ∈ i(h)}

Remark 2.2. Suppose that X is nonempty set and (H | X). It is easy to see

that for all (h1, h2, h3) ∈ H3 we have (h1 ∗ h2 ∗ h3∗) ¦ x = h1 ¦ [(h2 ∗ h3) ¦ x].

Theorem 2.3. Suppose that H is a feebly quasi canonical hypergroup and

(H |qs X) and x ∈ X. Then we have:

(i) for all h1, h2 ∈ Hx, h1 ∗ h2 ⊆ Hx;

(ii) for all h ∈ Hx and h′ ∈ i(h), h′ ∈ Hx;

(iii) if Hx is a nonempty set, then Hx is invertible and reversible subhy-

pergroup of H.

Proof. (i) Suppose that h1, h2 ∈ Hx and h ∈ h1 ∗ h2. So h ∗ e ⊆ h1 ∗ h2 ∗ e and

hence by Remark 2.2, we have (h ∗ e) ¦x ⊆ h1 ¦ [(h2 ∗ e) ¦x] ⊆ (h1 ∗ e) ¦x ⊆ e ¦x.

So (h ∗ e) ¦ x ⊆ e ¦ x.

By h ∈ h1 ∗ h2 and H is a feebly quasi canonical we have h′ ∈ h′2 ∗ h′1,
where h′ ∈ i(h), h′1 ∈ i(h1) and h′2 ∈ i(h2). Thus h′ ∗ e ⊆ h′2 ∗ h′1 ∗ e. Therefor

(h′ ∗ e) ¦ x ⊆ h′2 ∗ [(h′1 ∗ e) ¦ x] and hence (h ∗ e) ¦ x ⊆ e ¦ x. So h1 ∗ h2 ⊆ Hx.

(ii) The proof is obvious because h′′ ∗ e = h ∗ e for all h′′, h′ ∈ i(h′).
(iii) Suppose that a, b ∈ H such that a ∈ Hx ∗ b. So there exists h ∈ Hx

such that a ∈ h ∗ b. Since H is reversible, there exists h′ ∈ i(h) such that

b ∈ h′ ∗ a. By (ii) we have h′ ∈ Hx, so b ∈ Hx ∗ a and hence Hx is invertible

to right. Similarly Hx is invertible to left. Reversibility of Hx follows from (ii)

and the fact that H is reversible. For the proof Hx is a subhypergroup of H,

by (i) it is enough to show that for all h ∈ Hx, Hx ⊆ h ∗Hx and Hx ⊆ Hx ∗ h.

Suppose that h1 ∈ Hx is given, thus there exists h2 ∈ H such that h1 ∈ h ∗ h2.

Since Hx is invertible, we have Hx is close and hence h2 ∈ Hx. Therefore

Hx ⊆ h ∗Hx and the proof is complete. ¤
Remark 2.3. If H is a feebly quasi canonical hypergroup and Hx 6= ∅, then

by Theorems 2.2 and 2.3, we have [H : Hx]l = [H : Hx]r .

Theorem 2.4. (generalized orbit-stabilizer theorem) Suppose that H is a feebly

quasi canonical hypergroup and (H |s X) and x ∈ X. We have:

(i) card({h ¦ x | h ∈ H}) > [H : Hx] where card(A) is the cardinal

number of the set A;

(ii) if H has scalar identity e and for all x ∈ X, e ¦ x = {x}, then

card({h ¦ x | h ∈ H}) = [H : Hx].

Proof. Define ψ : {h ¦ x | h ∈ H} // {a ∗Hx | a ∈ H} by ψ(h ¦ x) = h ∗
Hx. First we show that ψ is a well define map. For this reason suppose
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that h1 ¦ x = h2 ¦ x. Since (H |s X), we have x ∈ (h′2 ∗ h1) ¦ x where h′2 ∈
i(h2) . Therefore there exists l ∈ h′2 ∗ h1 such that x ∈ l ¦ x and hence

(l ∗ e) ¦ x ⊆ e ¦ x because l ¦ x ⊆ (l ∗ e) ¦ x and (H |s X). Also from x ∈ l ¦ x

we have e ¦ x ∩ l ¦ x 6= ∅ and so x ∈ (l′ ∗ e) ¦ x for all l′ ∈ i(l) and hence

(l′ ∗ e) ¦ x ⊆ e ¦ x. (1)

Suppose that a ∈ h1 ∗Hx , so there exists k ∈ Hx such that a ∈ h1 ∗ k. Since

l ∈ h′2∗h1, there exists h′′2 ∈ i(h′2) such that h ∈ h′′2∗l and so h1 ∈ h2∗l, because

H is a feebly quasi canonical and h2 ∈ i(h′2). Therefore h1 ∗ k ⊆ h2 ∗ l ∗ k and

hence a ∈ h2 ∗ (l ∗ k). Now we show that l ∗ k ⊆ Hx and so a ∈ h2 ∗ Hx as

desired. Suppose that s ∈ l ∗ k is given. By Remark 2.2, and k ∈ Hx we have

(s ∗ e) ¦ x ⊆ (l ∗ e) ¦ x ⊆ e ¦ x. Let s′ ∈ i(s) since s ∈ l ∗ k and H is a feebly

quasi canonical, we have s′ ∈ k′ ∗ l′ where s′ ∈ i(s), k′ ∈ i(k) and l′ ∈ i(l).

Thus we have

(s′ ∗ e) ¦ x ⊆ [(k′ ∗ l′) ∗ e] ¦ x

⊆ k′ ¦ [(l′ ∗ e) ¦ x] by Remark 2.2.

⊆ (k′ ∗ e) ¦ x by equation (1)

⊆ e ¦ x. by Theorem 2.3(ii) and k ∈ Hx

Thus h1∗Hx ⊆ h2∗Hx. Similarly we can show that h2∗Hx ⊆ h1∗Hx. Therefore

h1 ∗Hx = h2 ∗Hx and hence ψ is a well define map. It is easy to see that ψ is

onto and so card({h ¦ x | h ∈ H}) > [H : Hx].

(ii) By part (i) it is enough to show that ψ is one-to-one. Suppose that

h1 ∗ Hx = h2 ∗ Hx since e is an scalar identity, we have e ∈ Hx and hence

h2 ∈ h1 ∗ Hx. Thus there exists k ∈ Hx such that h2 ∈ h1 ∗ k and hence

e ∈ (h′2∗h1)∗k, where h′2 ∈ i(h2). By Remark 2.2, we have e ¦ x ⊆ (h′2∗h1) ¦ x

and so x ∈ (h′2 ∗ h1) ¦ x. Therefore there exists r ∈ h′2 ∗ h1 such that x ∈ r ¦ x.

Since (H |qs X), r ¦ x ⊆ e ¦ x = {x} and hence

r ¦ x = {x}. (2)

From r ∈ h′2h1 we have h1 ∈ h′′2 ∗ r where h′′2 ∈ i(h′2) and since h2 ∈ i(h′2)
and H is feebly quasi canonical, then h′′2 ∗ r = h2 ∗ r and so h1 ∈ h2 ∗ r, thus

by Remark 2.2 and (2) we have h1 ¦ x ⊆ h2 ¦ x. From the equation (2) we

have r′ ¦ x = (r′ ∗ r) ¦ x for all r′ ∈ i(r). So x ∈ r′ ¦ x and similarly we have

r′ ¦ x = {x} for all r′ ∈ i(r). Since r ∈ h′2 ∗ h1 and H is feebly quasi canonical

we have h2 ∈ h1 ∗ r′ and as above h2 ¦ x ⊆ h1 ¦ x. Therefore h1 ¦ x = h2 ¦ x

and hence ψ is a one-to-one map. ¤
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3. A construction of hypergroups from hyperactions

In this section, we give a hyperstructure on the nonempty set X derived

from the strongly hyperaction of some hypergroups H on X.

Let (H | X) and Orb(X) :
def
= {Hx | x ∈ X} is the set of all orbits

in X and C be a choice function on Orb(X), that is, C : Orb(X) // X

such that cx :
def
= C(Hx) ∈ Hx. Then we denote the image of C by CX and

call it a class mark of X. For all x ∈ X the subset s
C
(x) of H is defined by

s
C
(x) :

def
= {h ∈ H | e ¦ x ∩ h ¦ cx 6= ∅ for all e ∈ E(H)}.

Theorem 3.1. Suppose that (H, ∗) is a feebly quasi canonical hypergroup with

scalar identity e . If (H |qs X), then for all x ∈ X and h ∈ H, s
C
(h ¦ x) =

h ∗ s
C
(x) where s

C
(h ¦ x) =

S
t∈h¦x

s
C
(t).

Proof. let a ∈ s
C
(h ¦ x) so there exists t ∈ h ¦ x such that a ∈ s

C
(t) and hence

e ¦ t ∩ a ¦ ct 6= ∅. (3)

also we have:

t ∈ h ¦ x ⇒ e ¦ t ⊆ (e ∗ h) ¦ x

⇒ a ¦ ct ∩ (e ∗ h) ¦ x 6= ∅ , by (3)

⇒ a ¦ ct ∩ h ¦ x 6= ∅ (3.1.1)

⇒ Hct = Hx , by Proposition 2.3

⇒ ct = cx (3.1.2)

⇒ a ¦ cx ∩ h ¦ x 6= ∅ , by (3.1.1) & (3.1.2))

⇒ x ∈ (h′ ∗ a) ¦ cx where h′ ∈ i(h)

⇒ x ∈ h1 ¦ cx for some h1 ∈ h′ ∗ a

⇒ e ¦ x ∩ h1 ¦ cx 6= ∅ , because x ∈ e ¦ x

⇒ h1 ∈ s
C
(x). (3.1.3)

Since h1 ∈ h′ ∗ a and H is a feebly quasi canonical, a ∈ h ∗ h1 and by (3.1.3)

we have a ∈ h ∗ s
C
(x) and hence s

C
(h ¦ x) ⊆ h ∗ s

C
(x). Now suppose that

a ∈ h ∗ s
C
(x) so there exists b ∈ s

C
(x) such that a ∈ h ∗ b. Thus b ∈ h′ ∗ a and

hence,

b ¦ cx ⊆ (h′ ∗ a) ¦ cx. (4)
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also we have:

b ∈ s
C
(x) ⇒ e ¦ x ∩ b ¦ cx 6= ∅

⇒ e ¦ x ∩ (h′ ∗ a) ¦ cx 6= ∅ , by (4)

⇒ e ¦ x ∩ h′ ¦ (a ¦ cx) 6= ∅
⇒ e ¦ x ∩ h′ ¦ s 6= ∅ for some s ∈ a ¦ cx (3.1.4)

⇒ Hx = Hs , by Proposition 2.3

⇒ cx = cs.

From (3.1.4) we have:

e ¦ x ∩ h′ ¦ s 6= ∅⇒ s ∈ (h′′ ∗ e) ¦ x h′′ ∈ i(h′)

⇒ s ∈ (h ∗ e) ¦ x because h ∈ i(h′)

⇒ s ∈ (e ∗ h) ¦ x because h ∗ e = e ∗ h = {h}
⇒ s ∈ e ¦ (h ¦ x)

⇒ s ∈ e ¦ t for some t ∈ h ¦ x (3.1.5)

⇒ e ¦ s ∩ e ¦ t 6= ∅ , because s ∈ e ¦ s

⇒ Hs = Hx , by Proposition 2.3

⇒ cs = ct.

Thus cx = ct and by (3.1.4) and (3.1.5) we have e ¦ t ∩ a ¦ ct 6= ∅ and hence

a ∈ s
C
(t) where t ∈ h ¦ x. Therefore h ∗ s

C
(x) ⊆ s

C
(h ¦ x) and the proof is

complete. ¤
Theorem 3.2. Suppose that (H, ∗) is a feebly quasi canonical hypergroup with

scalar identity e(i.e., e ∗ x = x = x ∗ e for all x ∈ H). If (H |qs X), then the

mapping ◦c : X ×X // P ∗(X) defined by x ◦c y :
def
= s

C
(x) ¦ cx

S
s

C
(y) ¦ cy is

a hyperoperation on X and (X, ◦c) is a hypergroup.

Proof. First we show that for all x ∈ X, x ∈ s
C
(x) ¦cx. For this reason suppose

that x ∈ X is given. Since cx ∈ Hx, then by Proposition 2.3, Hx = Hcx and

hence there exists h ∈ H such that x ∈ h ¦ cx. Thus e ¦ x ∩ h ¦ cx 6= ∅ and so

h ∈ s
C
(x). Therefore we have x ∈ s

C
(x) ¦ cx. Thus {x, y} ⊆ x◦c y. It is easy to

see that ”◦c” is a well define map now we prove ”◦c” is associative. Suppose

that x , y and z in X are given so (x ◦c y) ◦c z =
S

t∈x◦cy
(s

C
(t) ¦ ct)

S
s

C
(z) ¦ cz

and x ◦c (y ◦c z) = s
C
(x) ¦ cx

S S
s∈y◦cz

(s
C
(s) ¦ cs). Let w ∈ (x ◦c y) ◦c z be given

if w ∈ S
t∈x◦cy

s
C
(t) ¦ ct, then there exists t ∈ x ◦c y such that

w ∈ s
C
(t) ¦ ct. (5)



126 Jianming Zhan, S.Sh. Mousavi, M. Jafarpour

By t ∈ x ◦c y we have t ∈ s
C
(x) ¦ cx or t ∈ s

C
(y) ¦ cy. Let t ∈ s

C
(x) ¦ cx, so

t ∈ s
C
(x) ¦ cx ⇒ s

C
(t) ⊆ s

C
(x) ∗ s

C
(cx) , by Theorem 3.1

⇒ s
C
(t) ¦ ct ⊆ s

C
(x) ∗ s

C
(cx) ¦ cx , because by (5) , ct = cx

⇒ s
C
(t) ¦ ct ⊆ s

C
(x) ¦ (s

C
(cx) ¦ cx)

⇒ s
C
(t) ¦ ct ⊆ s

C
(x) ¦ (e ¦ cx)

⇒ s
C
(t) ¦ ct ⊆ (s

C
(x) ∗ e) ¦ cx

⇒ s
C
(t) ¦ ct ⊆ s

C
(x) ¦ cx.

Thus by (5), w ∈ s
C
(x) ¦ cx and hence w ∈ x ◦c (y ◦c z). Let t ∈ s

C
(y) ¦ cy

similarly we have s
C
(t) ¦ ct ⊆ s

C
(y) ¦ cy and hence by (5), w ∈ s

C
(y) ¦ cy.

Since w ∈ s
C
(w) ¦ cw, then w ∈ S

s∈s
C

(y)¦cy

s
C
(s) ¦ cs ⊆ S

s∈y◦cz
s

C
(s) ¦ cs and so

w ∈ x ◦c (y ◦c z). If w ∈ s
C
(z) ¦ cz, then w ∈ S

s∈s
C

(z)¦cz

s
C
(s) ¦ cs ⊆ S

s∈y◦cz
s

C
(s) ¦ cs

and hence w ∈ x ◦c (y ◦c z). Therefore (x ◦c y) ◦c z ⊆ x ◦c (y ◦c z) and similarly

by above we can prove x ◦c (y ◦c z) ⊆ (x ◦c y) ◦c z. Thus ”◦c” is associative and

since for all x ∈ X, X ◦c x = x ◦c X = X, then (X, ∗) is a hypergroup. ¤

Example 3.1. Let the hyperaction Z2 = {[0], [1]} (the cyclic group of order 2)

on X = {a, b, c, d, f} be as follows:

[0] ¦ a = [1] ¦ b = {a}, [0] ¦ b = [1] ¦ a = {b}
[0] ¦ c = [0] ¦ d = [1] ¦ f = {c, d}, [0] ¦ f = [1] ¦ c = [1] ¦ d = {f}.

Now let CX = {b, d} be a classes mark of X, then we have:

S(a) = S(f) = {[1]}, S(b) = S(c) = S(d) = {[0]} and the commutative

hypergroup (X, ◦c) associated from the hyperaction is as the following figure:

◦c a b c d f

a {a} {a, b} {a, c, d} {a, c, d} {a, f}
b {b} {b, c, d} {b, c, d} {b, f}
c {c, d} {c, d} {c, d, f}
d {c, d} {c, d, f}
f {f}

Figure 1. The hyperoperation of X

4. Generalized state hypergroups

In the papers [15], [8] there are described construction of some hyperstructure

on sets of words formed the given input alphabets and on the state sets of
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corresponding automata. In this section, we assign a commutative hypergroup

to any nondeterministic automaton with out inputs. In accordance with [14]

and other publications, by an nondeterministic automata we mean a third

A = (S, A, δ), where S, A are arbitrary sets (A 6= ∅), which are called set

of states (or a state set), a set of input symbols ( or input alphabet) and

δ : S×A∗ → P (S) is a mapping which satisfies these two conditions: δ(s, e) = s

for any state s ∈ S and δ(s, ab) = δ(δ(s, a), b) for any state s ∈ S and any pair

of words a, b ∈ A∗.

Proposition 4.1. Suppose that S is a nonempty set, (H, ∗) is a hypergroup

with the scalar identity e and ¦ : S ×H // P ∗(S) is a right hyperaction of

H on S such that s ¦ e = s for all s ∈ S. Then the third H = (S, H, δ) is a

nondeterministic automata, where δ(s, h1h2...hk) = s ¦ (h1 ∗ h2 ∗ ... ∗ hk) for all

(h1, h2, ..., hk) ∈ Hk and k ≥ 1.

Theorem 4.1. Let H = (S, H, α) be a nondeterministic automata. For any

(x, y) ∈ S2, we define

x • y = α(x,H∗) ∪ α(y, H∗),

where α(z, H∗) =
S{α(z, h)|h ∈ H∗}. Then (S, •) is a commutative hyper-

group, called the generalized state hypergroup of H.

Proof. It is obvious that x • y = y • x, for any x, y ∈ X. Now we prove the

associativity: (x • y) • z = x • (y • z), for any x, y, z ∈ X. Let u ∈ (x • y) • z;

there exists t ∈ α(x,H∗) ∪ α(y, H∗) such that u ∈ α(t,H∗) ∪ α(z, H∗). If

u ∈ α(z, H∗), then u ∈ S{α(v, H∗) | v ∈ α(y, H∗) ∪ α(z, H∗)} ⊂ x • (y • z).

If u ∈ α(t,H∗), with t ∈ α(x,H∗) for example, then there exist ht, hu ∈ H

such that t ∈ α(x, ht) and u ∈ α(t, hu). It follows that u ∈ α(α(x, ht), hu) =

α(x, hthu) ⊂ α(x,H∗) ⊂ x • (y • z). Thus we obtain the first inclusion and

similarly we obtain also the second inclusion.

It remains to prove the reproducibility: x•S = S = S •x, for any x ∈ S.

Indeed, for any x, y ∈ S, there exists z = y ∈ S such that y ∈ x • z and

therefore we can conclude that (S, •) is a commutative hypergroup. ¤
Remark 4.1. If H = (S, H, α) is a nondeterministic automata such that

|α(s, h)| = 1, then the hypergroup (S, •) is called the state hypergroup of H.

Proposition 4.2. Every generalized state hypergroup (S, •) is a quasi-ordering

hypergroup ( i.e., x ∈ x • x = x • x • x for any x ∈ S).
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