

**G-DUALS OF CONTINUOUS FRAMES
AND THEIR PERTURBATIONS IN HILBERT SPACES**

Sayyed Mehrab Ramezani¹

In this article we are going to define the concept of g-dual continuous frame. We actually extend the concept of g-duals from frame to continuous frame and show some of their properties. Also a perturbation result for g-dual continuous frames is investigated.

Keywords: Continuous frames, dual frames, g-dual frames, g-dual continuous frames.
MSC2000 : 42C15; 42C99.

1. Introduction

Frames for Hilbert space were formally defined by Duffin and Schaeffer [4] in 1952 for studying some problems in non harmonic Fourier series. Recall that for a Hilbert space \mathcal{H} and a countable index set J , a collection $\{f_j\}_{j \in J} \subset \mathcal{H}$ is called a frame for the Hilbert space \mathcal{H} , if there exist two positive constants c, d , such that for all $f \in \mathcal{H}$

$$c\|f\|^2 \leq \sum_{j \in J} |\langle f, f_j \rangle|^2 \leq d\|f\|^2; \quad (1)$$

c and d are called the lower and upper frame bounds, respectively. If only the right-hand inequality in (1) is satisfied, we call $\{f_j\}_{j \in J}$ a Bessel sequence for \mathcal{H} with Bessel bound d . For more information about frames see [2].

Two Bessel sequences $\{f_j\}_{j \in J}$ and $\{g_j\}_{j \in J}$ are said to be duals for \mathcal{H} if the following equalities hold

$$f = \sum_{j \in J} \langle f, f_j \rangle g_j = \sum_{j \in J} \langle f, g_j \rangle f_j, \text{ for all } f \in \mathcal{H}.$$

Dual frames are important in reconstructing vectors (or signals) in terms of the frame elements. Dehghan and Hasankhani Fard [3] introduced and characterized g-duals of a frame in a separable Hilbert space and Ramezani and Nazari [7] extended this concept for generalized frame.

A frame $\{g_j\}_{j \in J}$ is called a g-dual frame of the frame $\{f_j\}_{j \in J}$ for \mathcal{H} if there exists an invertible operator $A \in \mathcal{B}(\mathcal{H})$ such that, for all $f \in \mathcal{H}$

$$f = \sum_{j \in J} \langle Af, g_j \rangle f_j,$$

where $\mathcal{B}(\mathcal{H})$ denotes the set of all bounded operators on \mathcal{H} . They showed that by applying g-duals as well, one can deduce further reconstruction formulas to obtain signals. Continuous frames were proposed by G. Kaiser [6] and independently by Ali, Antoine and Gazeau [1] to a family indexed by some locally compact space endowed with a Radon measure. Gabardo and Han [5] refer to these frames as frames associated with measurable spaces.

¹Faculty of Technology and Mining, Yasouj University, Choram, Iran, e-mail: m.ramezani@yu.ac.ir

2. Preliminaries

In this section, we briefly recall some definitions and basic properties of continuous frames in Hilbert spaces. See [1, 5] for details. Throughout this paper, (Ω, μ) is a measure space.

Definition 2.1. *A weakly-measurable mapping $F : \Omega \rightarrow \mathcal{H}$ is called a continuous frame for \mathcal{H} with respect to (μ, Ω) if there are two constants $0 < A \leq B < \infty$ such that*

$$A\|f\|^2 \leq \int_{\Omega} |\langle f, F(\omega) \rangle|^2 d\mu(\omega) \leq B\|f\|^2, \text{ for all } f \in \mathcal{H}. \quad (2)$$

A and B are called the lower and upper continuous frame bounds, respectively. If only the right-hand inequality of (2) is satisfied, F is called a continuous Bessel frame for \mathcal{H} with respect to (μ, Ω) with continuous Bessel bound B . If $A = B = \lambda$, F is called a λ -tight continuous frame. Moreover, if $\lambda = 1$, F is called a Parseval continuous frame.

The synthesis operator for a continuous Bessel frame F is defined as follows

$$\langle T_F \varphi, f \rangle = \int_{\Omega} \varphi(\omega) \langle F(\omega), f \rangle d\mu(\omega), \quad (\varphi \in L^2(\mu, \Omega), f \in \mathcal{H}).$$

The operator T_F is well-defined and bounded, therefore, the operator T_F^* defined as

$$T_F^* : \mathcal{H} \rightarrow L^2(\mu, \Omega), \quad T_F^*(f)(\omega) = \langle f, F(\omega) \rangle,$$

is the adjoint of T_F and is called the analysis operator. The bounded linear operator S_F defined by $S_F = T_F T_F^*$, that is

$$S_F : \mathcal{H} \rightarrow \mathcal{H}, \quad \langle S_F f, g \rangle = \int_{\Omega} \langle f, F(\omega) \rangle \langle F(\omega), g \rangle d\mu(\omega), \quad \text{for all } f, g \in \mathcal{H},$$

is called the continuous frame operator of F . Clearly, S_F is self-adjoint. Moreover S_F is invertible. Indeed, using (2) we have

$$\|I - \frac{1}{B} S_F\| = \sup_{\|f\|=1} |\langle I - \frac{1}{B} S_F, f \rangle| \leq \frac{B-A}{B} < 1,$$

which shows that S_F is invertible.

Definition 2.2. *Let F and G be two Bessel mappings. We call G a dual of F if the following equality holds*

$$\langle f, g \rangle = \int_{\Omega} \langle f, F(\omega) \rangle \langle G(\omega), g \rangle d\mu(\omega).$$

In this case, (F, G) is called a dual pair for \mathcal{H} . For the continuous frame F , the mapping $S_F^{-1}F$ is a dual of F , since

$$\begin{aligned} \langle f, g \rangle &= \langle S_F^{-1} S_F f, g \rangle \\ &= \langle S_F f, S_F^{-1} g \rangle \\ &= \int_{\Omega} \langle f, F(\omega) \rangle \langle F(\omega), S_F^{-1} g \rangle d\mu(\omega) \\ &= \int_{\Omega} \langle f, F(\omega) \rangle \langle S_F^{-1} F(\omega), g \rangle d\mu(\omega). \end{aligned}$$

It is called the standard dual of F . It is certainly possible for a continuous frame F to have only one dual.

3. G-dual continuous frame

In this section we define the concept of g-dual continuous frame by extending the concept of g-dual from frames to continuous frames. Then we show some properties of the g-dual continuous frames.

Definition 3.1. *Let F be a continuous frame for \mathcal{H} . A continuous frame G is called a generalized dual continuous frame or g-dual continuous frame of F for \mathcal{H} if there exists an invertible operator $A \in \mathcal{B}(\mathcal{H})$ such that for all $f, g \in \mathcal{H}$*

$$\langle f, g \rangle = \int_{\Omega} \langle f, F(\omega) \rangle \langle G(\omega), Ag \rangle d\mu(\omega). \quad (3)$$

When $A = I$, G is an ordinary dual continuous frame of F . If S_F is the continuous frame operator of the continuous frame F , then for all $f, g \in \mathcal{H}$ we have

$$\langle f, g \rangle = \int_{\Omega} \langle f, F(\omega) \rangle \langle S_F^{-1}F(\omega), g \rangle d\mu(\omega) = \int_{\Omega} \langle f, F(\omega) \rangle \langle F(\omega), S_F^{-1}g \rangle d\mu(\omega),$$

and hence each continuous frame is a g-dual frame for itself. The operator A in equation (3) is unique, since for all $f, g \in \mathcal{H}$

$$\langle f, A^{-1}g \rangle = \int_{\Omega} \langle f, F(\omega) \rangle \langle G(\omega), g \rangle d\mu(\omega),$$

and hence $A^{-1} = T_F T_G^*$.

The following equivalent conditions for the Bessel mappings F and G may be useful. They can be proved straightforwardly from Definition 3.1.

Lemma 3.1. *For the Bessel mappings $F : \Omega \rightarrow \mathcal{H}$ and $G : \Omega \rightarrow \mathcal{H}$ the following statements are equivalent:*

(i) *There exists an invertible operator $A \in \mathcal{B}(\mathcal{H})$ such that*

$$\langle f, g \rangle = \int_{\Omega} \langle f, F(\omega) \rangle \langle G(\omega), Ag \rangle d\mu(\omega);$$

(ii) *There exists an invertible operator $A \in \mathcal{B}(\mathcal{H})$ such that*

$$\langle f, g \rangle = \int_{\Omega} \langle A^*f, F(\omega) \rangle \langle G(\omega), g \rangle d\mu(\omega).$$

In case that the equivalent conditions are satisfied, F and G are g-dual continuous frames.

Proof. Let (i) be satisfied and $f, g \in \mathcal{H}$. Then there exists $h \in \mathcal{H}$, such that $g = Ah$ and $\langle f, h \rangle = \int_{\Omega} \langle f, F(\omega) \rangle \langle G(\omega), Ah \rangle d\mu(\omega)$, so we have

$$\begin{aligned} \langle f, g \rangle &= \langle f, Ah \rangle = \langle A^*f, h \rangle = \int_{\Omega} \langle A^*f, F(\omega) \rangle \langle G(\omega), Ah \rangle d\mu(\omega) \\ &= \int_{\Omega} \langle A^*f, F(\omega) \rangle \langle G(\omega), g \rangle d\mu(\omega), \end{aligned}$$

and hence (ii) holds. A similar argument shows that (ii) implies (i). Next, if the conditions (i), (ii) are satisfied for F and G , then

$$\begin{aligned} \|f\|^4 &= |\langle f, f \rangle|^2 = \left| \int_{\Omega} \langle f, F(\omega) \rangle \langle G(\omega), Af \rangle d\mu(\omega) \right|^2 \\ &\leq \int_{\Omega} |\langle f, F(\omega) \rangle|^2 d\mu(\omega) \int_{\Omega} |\langle G(\omega), Af \rangle|^2 d\mu(\omega) \\ &\leq D \|f\|^2 \|A\|^2 \int_{\Omega} |\langle f, F(\omega) \rangle|^2 d\mu(\omega), \end{aligned}$$

where D is the upper continuous frame bound for G . Accordingly

$$\frac{1}{D\|A\|^2}\|f\|^2 \leq \int_{\Omega} |\langle f, F(\omega) \rangle|^2 d\mu(\omega),$$

which shows that F is a continuous frame. Since (i) and (ii) are equivalent, G is also a continuous frame. \square

Example 3.1. Consider $\mathcal{H} = \mathbb{R}$ and let $\Omega := [0, 1]$ and $\mu := \lambda$ be the Lebesgue measure. Define $F : [0, 1] \rightarrow \mathbb{R}$ and $G : [0, 1] \rightarrow \mathbb{R}$ such that

$$F(\omega) = \begin{cases} 2 & \omega \in [0, \frac{1}{4}) \\ 0 & \omega \in [\frac{1}{4}, 1] \end{cases},$$

and

$$G(\omega) = \begin{cases} 1 & \omega \in [0, \frac{1}{4}) \\ \frac{\sqrt{3}}{3} & \omega \in [\frac{1}{4}, 1] \end{cases}.$$

F is a Parseval continuous frame and G is a $\frac{1}{2}$ -tight continuous frame for \mathbb{R} with respect to $([0, 1], \lambda)$. Taking $A := 2x$, A is an invertible operator on \mathbb{R} and for each $x, y \in \mathbb{R}$, we have

$$\begin{aligned} \int_{\Omega} \langle x, F(\omega) \rangle \langle G(\omega), Ay \rangle d\lambda(\omega) &= \int_0^1 \langle x, F(\omega) \rangle \langle G(\omega), 2y \rangle d\omega \\ &= \int_0^{\frac{1}{4}} \langle x, 2 \rangle \langle 1, 2y \rangle d\omega + \int_{\frac{1}{4}}^1 \langle x, 0 \rangle \langle \frac{\sqrt{3}}{3}, 2y \rangle d\omega \\ &= xy + 0 \\ &= \langle x, y \rangle, \end{aligned}$$

i.e., F and G are g-dual continuous frames for \mathbb{R} with the invertible operator A .

The following propositions give a method to construct new g-dual continuous frames from given g-dual continuous frames.

Proposition 3.1. Assume that G is a g-dual continuous frame of F for \mathcal{H} with the invertible operator $A \in \mathcal{B}(\mathcal{H})$ and let α be a complex number. Then the mapping K defined by $K = \alpha G + (1 - \alpha)(A^{-1})^* S_F^{-1} F$ is a g-dual continuous frame of F for \mathcal{H} with the invertible operator A .

Proof. For all $f, g \in \mathcal{H}$, we have

$$\begin{aligned} &\int_{\Omega} \langle f, F(\omega) \rangle \langle \alpha G(\omega) + (1 - \alpha)(A^{-1})^* S_F^{-1} F(\omega), Ag \rangle d\mu(\omega) \\ &= \alpha \int_{\Omega} \langle f, F(\omega) \rangle \langle G(\omega), Ag \rangle d\mu(\omega) + (1 - \alpha) \int_{\Omega} \langle f, F(\omega) \rangle \langle S_F^{-1} F(\omega), g \rangle d\mu(\omega) \\ &= \alpha \langle f, g \rangle + (1 - \alpha) \langle f, g \rangle = \langle f, g \rangle, \end{aligned}$$

as asserted. \square

Proposition 3.2. Assume that G and K are g-dual continuous frames for F with the invertible operators A and B , respectively. Then for any $\alpha \in \mathbb{C}$, $\alpha A^* G + (1 - \alpha) B^* K$ is an ordinary dual for the continuous frame F .

Proof. By Lemma 3.1 we have

$$\begin{aligned}
& \int_{\Omega} \langle f, F(\omega) \rangle \langle \alpha A^* G(\omega) + (1 - \alpha) B^* K(\omega), g \rangle d\mu(\omega) \\
&= \alpha \int_{\Omega} \langle f, F(\omega) \rangle \langle A^* G(\omega), g \rangle d\mu(\omega) \\
&+ (1 - \alpha) \int_{\Omega} \langle f, F(\omega) \rangle \langle B^* K(\omega), g \rangle d\mu(\omega) \\
&= \alpha \int_{\Omega} \langle f, F(\omega) \rangle \langle G(\omega), Ag \rangle d\mu(\omega) \\
&+ (1 - \alpha) \int_{\Omega} \langle f, F(\omega) \rangle \langle K(\omega), Bg \rangle d\mu(\omega) \\
&= \alpha \langle f, g \rangle + (1 - \alpha) \langle f, g \rangle \\
&= \langle f, g \rangle.
\end{aligned}$$

□

Proposition 3.3. *Let F be a continuous frame for \mathcal{H} with the continuous frame operator S_F and let G be a g -dual continuous frame of F for $\mathcal{V} = \overline{\text{Range } G}$ with the invertible operator $B \in \mathcal{B}(\mathcal{V})$. Then the mapping $K = B^* G + S^{-1} F$ is a g -dual frame of F for \mathcal{H} .*

Proof. The operator B can be extended to the operator B_1 on \mathcal{H} defined by $B_1 = BP + Q$, where P and Q are the orthogonal projections onto \mathcal{V} and \mathcal{V}^\perp , respectively, of \mathcal{H} . By Proposition 2.3 from [3], $B_1(\mathcal{V}^\perp) \subseteq \mathcal{V}^\perp$ and $B_1^* = B^*$. Now let $A = I - \frac{1}{2}P$, where I denotes the identity operator on \mathcal{H} . Since $\|I - A\| \leq 1$, the operator A is invertible. Then, for $g \in \mathcal{H}$, there exist unique vectors $u \in \mathcal{V}$ and $v \in \mathcal{V}^\perp$ such that $g = u + v$. So, with $f \in \mathcal{H}$, we have

$$\begin{aligned}
\int_{\Omega} \langle f, F(\omega) \rangle \langle K(\omega), Ag \rangle d\mu(\omega) &= \int_{\Omega} \langle f, F(\omega) \rangle \langle B^* G(\omega) + S^{-1} F(\omega), \frac{1}{2}u + v \rangle d\mu(\omega) \\
&= \int_{\Omega} \langle f, F(\omega) \rangle \langle G(\omega), B_1(v) \rangle d\mu(\omega) \\
&+ \int_{\Omega} \langle f, F(\omega) \rangle \langle G(\omega), B(\frac{1}{2}u) \rangle d\mu(\omega) \\
&+ \int_{\Omega} \langle f, F(\omega) \rangle \langle S^{-1} F(\omega), \frac{1}{2}u + v \rangle d\mu(\omega) \\
&= \langle f, 0 + \frac{1}{2}u + \frac{1}{2}u + v \rangle \\
&= \langle f, g \rangle,
\end{aligned}$$

and this marks the end of the proof. □

Corollary 3.1. *Let F be a continuous frame for \mathcal{H} with the continuous frame operator S_F and let G be a dual continuous frame of F for $\mathcal{V} = \overline{\text{Range } G}$. Then the mapping $K = G + S^{-1} F$ is a g -dual continuous frame of F .*

Example 3.2. *Let $G_1, G_2, G_3, \dots, G_m$ be m dual continuous frames of F in \mathcal{H} , so there are g -dual continuous frames with the invertible operator I and put $K := \sum_{i=1}^m G_i$. Then*

$Af = \frac{1}{m}f$ defines a bounded invertible operator on \mathcal{H} and

$$\begin{aligned} \int_{\Omega} \langle f, F(\omega) \rangle \langle K(\omega), Ag \rangle d\mu(\omega) &= \int_{\Omega} \langle f, F(\omega) \rangle \left\langle \sum_{i=1}^m G_i(\omega), \frac{1}{m}g \right\rangle d\mu(\omega) \\ &= \frac{1}{m} (m \langle f, g \rangle) \\ &= \langle f, g \rangle, \end{aligned}$$

and therefore K is a g-dual continuous frame for F with the invertible operator $Af = \frac{1}{m}f$.

This example shows that the sum of many dual continuous frames can be a g-dual continuous frame. The following proposition states that the sum of some two g-dual continuous frames is a g-dual continuous frame.

Proposition 3.4. *Let G and K be two g-dual continuous frames of F with corresponding invertible operators A and B , respectively. If $A^{-1} + B^{-1}$ is an invertible operator, then $G + K$ is a g-dual continuous frame for F .*

Proof. Let $T \in \mathcal{B}(\mathcal{H})$ be the inverse operator of $A^{-1} + B^{-1}$. We have

$$\begin{aligned} \int_{\Omega} \langle f, F(\omega) \rangle \langle (G + K)(\omega), Tg \rangle d\mu(\omega) &= \int_{\Omega} \langle f, F(\omega) \rangle \langle G(\omega), Tg \rangle d\mu(\omega) \\ &\quad + \int_{\Omega} \langle f, F(\omega) \rangle \langle K(\omega), Tg \rangle d\mu(\omega) \\ &= \langle f, A^{-1}Tg \rangle + \langle f, B^{-1}Tg \rangle \\ &= \langle f, (A^{-1} + B^{-1})Tg \rangle \\ &= \langle f, g \rangle, \end{aligned}$$

for all $f, g \in \mathcal{H}$. □

Proposition 3.5. *Let $F, G : \Omega \rightarrow \mathcal{H}$ and let $U, V \in \mathcal{B}(\mathcal{H})$ be two invertible operators on \mathcal{H} . Then F and G are g-dual continuous frames for \mathcal{H} if and only if UF and VG are g-dual continuous frames for \mathcal{H} .*

Proof. Let F and G be g-dual continuous frames for \mathcal{H} . Then there exists an invertible operator $A \in \mathcal{B}(\mathcal{H})$ such that $\langle f, g \rangle = \int_{\Omega} \langle f, F(\omega) \rangle \langle G(\omega), Ag \rangle d\mu(\omega)$ for all $f, g \in \mathcal{H}$ and hence

$$\begin{aligned} \langle f, g \rangle &= \langle f, UU^{-1}g \rangle = \langle U^*f, U^{-1}g \rangle \\ &= \int_{\Omega} \langle U^*f, F(\omega) \rangle \langle G(\omega), AU^{-1}g \rangle d\mu(\omega) \\ &= \int_{\Omega} \langle f, UF(\omega) \rangle \langle VG(\omega), (V^{-1})^*AU^{-1}g \rangle d\mu(\omega). \end{aligned}$$

This shows that UF and VG are g-dual continuous frames for \mathcal{H} with the invertible operator $(V^{-1})^*AU^{-1} \in \mathcal{B}(\mathcal{H})$. The converse is obtained by applying the operators U^{-1} and V^{-1} to the g-dual continuous frames UF and VG . □

4. Perturbations of g-dual continuous frames

The stability of frames is of great importance in frame theory, and it is studied widely by many authors [2, 8]. In this section we show that, under some conditions, approximately g-dual continuous frames are stable under some perturbations. Moreover, a perturbation result for g-dual continuous frames is investigated.

Theorem 4.1. *Let G be a g-dual continuous frame of K for \mathcal{H} with the invertible operator $A \in \mathcal{B}(\mathcal{H})$ and let $F : \Omega \rightarrow \mathcal{H}$ be a μ -measurable mapping. Assume that there exist constants $\lambda, \gamma \geq 0$, such that*

$$\int_{\Omega} \varphi \langle f, (K - F)(\omega) \rangle d\mu(\omega) \leq \lambda \left| \int_{\Omega} \varphi \langle f, K(\omega) \rangle d\mu(\omega) \right| + \gamma \int_{\Omega} |\varphi(\omega)|^2 d\mu(\omega),$$

for all $\varphi \in \mathcal{L}^2(\Omega, \mu)$.

- (1) *If $\lambda + \gamma C \|A\| < 1$, where C is an upper continuous frame bound for G , then F and G are g-dual continuous frames for \mathcal{H} .*
- (2) *If $\lambda + \gamma D \|S_K^{-1}\| < 1$, where D is an upper continuous frame bound for K , then F and K are g-dual continuous frames for \mathcal{H} .*

Proof.

$$\begin{aligned} \left| \langle f, f \rangle - \int_{\Omega} \langle f, F(\omega) \rangle \langle G(\omega), Af \rangle d\mu(\omega) \right| &= \left| \int_{\Omega} \langle f, K(\omega) \rangle \langle G(\omega), Af \rangle d\mu(\omega) \right. \\ &\quad \left. - \int_{\Omega} \langle f, F(\omega) \rangle \langle G(\omega), Af \rangle d\mu(\omega) \right| \\ &= \left| \int_{\Omega} \langle f, (K - F)(\omega) \rangle \langle G(\omega), Af \rangle d\mu(\omega) \right| \\ &\leq \lambda \left| \int_{\Omega} \langle G(\omega), Af \rangle \langle f, K(\omega) \rangle d\mu(\omega) \right| \\ &\quad + \gamma \int_{\Omega} |\langle G(\omega), Af \rangle|^2 d\mu(\omega) \\ &\leq \lambda \langle f, f \rangle + \gamma C \langle Af, Af \rangle \\ &= (\lambda + \gamma C \|A\|^2) \|f\|^2 \\ &\leq \|f\|^2. \end{aligned}$$

So $\|I - A^* T_G T_F^*\| \leq 1$ and therefore $T_G T_F^*$ is invertible and we have

$$\begin{aligned} \langle f, g \rangle &= \langle f, T_G T_F^* (T_G T_F^*)^{-1} g \rangle \\ &= \langle T_F T_G^* f, (T_G T_F^*)^{-1} g \rangle \\ &= \int_{\Omega} \langle f, G(\omega) \rangle \langle F(\omega), (T_G T_F^*)^{-1} g \rangle d\mu(\omega). \end{aligned}$$

Hence F and G are g-dual continuous frames for \mathcal{H} . If $\lambda + \gamma D \|S_K^{-1}\| < 1$, then by using a similar argument we can show that

$$\left| \langle f, f \rangle - \int_{\Omega} \langle f, F(\omega) \rangle \langle G(\omega), S^{-1} f \rangle d\mu(\omega) \right| \leq \|f\|^2,$$

and hence F and K are g-dual continuous frames for \mathcal{H} . i.e., (2) holds. \square

Corollary 4.1. *Let G and K be g-dual continuous frames for \mathcal{H} and let $F : \Omega \rightarrow \mathcal{H}$ be measurable. If there exists a constant $\lambda \in [0, 1)$, such that*

$$\int_{\Omega} \varphi \langle f, (K - F)(\omega) \rangle d\mu(\omega) \leq \lambda \left| \int_{\Omega} \varphi \langle f, K(\omega) \rangle d\mu(\omega) \right|,$$

for all $\varphi \in \mathcal{L}^2(\Omega, \mu)$, then F and G are g-dual continuous frames for \mathcal{H} . The same is true for F and K .

Corollary 4.2. *Let G be a continuous frame for \mathcal{H} with the upper continuous frame bound C . Given $F : \Omega \longrightarrow \mathcal{H}$, assume that there exist constants $\lambda, \gamma \geq 0$, such that*

$$\int_{\Omega} \varphi \langle f, (F - G)(\omega) \rangle d\mu(\omega) \leq \lambda \left| \int_{\Omega} \varphi \langle f, G(\omega) \rangle d\mu(\omega) \right| + \gamma \int_{\Omega} |\varphi(\omega)|^2 d\mu(\omega),$$

for all $\varphi \in \mathcal{L}^2(\Omega, \mu)$. If $\lambda + \gamma C \|S_K^{-1}\| < 1$, then F and K are g-dual continuous frames for \mathcal{H} .

REFERENCES

- [1] *S.T. Ali, J.P. Antoine, J.P. Gazeau*, Continuous frames in Hilbert spaces, *Annals of Physics*. **222**, (1993), 137.
- [2] *O. Christensen*, An introduction to frames and Riesz bases, Birkhäuser, Boston. 2003.
- [3] *M.A. Dehghan, M. A. Hasankhani Fard*, g-dual frames in Hilbert spaces, *U.P.B. Sci. Bull.* **75**, (2013), 129-140.
- [4] *R. Duffin, A. Schaeffer*, A class of non-harmonic Fourier series, *Trans. Amer. Math. Soc.* **72**, (1952), 341-366.
- [5] *J.P. Gabardo, D. Han*, Frames associated with measurable spaces, *Adv. Comp. Math.* **18**, (2003), 127-147.
- [6] *G. Kaiser*, A Friendly guide to wavelets, Birkhäuser, 1994.
- [7] *S.M. Ramezani, A. Nazari*, g-orthonormal bases, g-Riesz bases and g-dual of g-frames, *U.P.B. Sci. Bull.* **78**, (2016), 91-98.
- [8] *W. Sun*, Stability of g-frames. *J. Math. Anal. Appl.* 326(2), (2007), 858-868.