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G-DUALS OF CONTINUOUS FRAMES
AND THEIR PERTURBATIONS IN HILBERT SPACES

Sayyed Mehrab Ramezani®

In this article we are going to define the concept of g-dual continuous frame.
We actually extend the concept of g-duals from frame to continuous frame and show
some of their properties. Also a perturbation result for g-dual continuous frames is
investigated.
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1. Introduction

Frames for Hilbert space were formally defined by Duffin and Schaeffer [4] in 1952 for
studying some problems in non harmonic Fourier series. Recall that for a Hilbert space H
and a countable index set J, a collection {f;},;c; C H is called a frame for the Hilbert space
H, if there exist two positive constants ¢, d, such that for all f € H

1P < ST £ < dIFIPs (1)
jeJ
c and d are called the lower and upper frame bounds, respectively. If only the right-hand
inequality in (1) is satisfied, we call {f;},;cs a Bessel sequence for H with Bessel bound d.
For more information about frames see [2].
Two Bessel sequences {f;};ecs and {g,},cs are said to be duals for I if the following
equalities hold

F=Y (g5 = (f.g5) 1), forall f € H.
jeJ jeJ

Dual frames are important in reconstructing vectors (or signals) in terms of the frame
elements. Dehghan and Hasankhani Fard [3] introduced and characterized g-duals of a
frame in a separable Hilbert space and Ramezani and Nazari [7] extended this concept for
generalized frame.

A frame {g;};jes is called a g-dual frame of the frame {f;};cs for H if there exists an
invertible operator A € B(H) such that, for all f € H

f=) (Af:99);,
JjeJ

where B(JH) denotes the set of all bounded operators on H. They showed that by applying
g-duals as well, one can deduce further reconstruction formulas to obtain signals. Continuous
frames were proposed by G. Kaiser [6] and independently by Ali, Antoine and Gazeau [1] to
a family indexed by some locally compact space endowed with a Radon measure. Gabardo
and Han [5] refer to these frames as frames associated with measurable spaces.
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2. Preliminaries

In this section, we briefly recall some definitions and basic properties of continuous
frames in Hilbert spaces. See [1, 5] for details. Throughout this paper, (€, 1) is a measure
space.

Definition 2.1. A weakly-measurable mapping F : Q — H is called a continuous frame
for H with respect to (u, ) if there are two constants 0 < A < B < 0o such that

A2 < / (s F(w)) Pdp(w) < BIFI2 for all f € 9. 2)

A and B are called the lower and upper continuous frame bounds, respectively. If
only the right-hand inequality of (2) is satisfied, F is called a continuous Bessel frame for H
with respect to (u, Q) with continuous Bessel bound B. If A= B = A, F is called a A-tight
continuous frame. Moreover, if A = 1, F' is called a Parseval continuous frame.

The synthesis operator for a continuous Bessel frame F' is defined as follows

(Top. ) = [ olw)(Ple). aue) (p € L2(1,), f € ).
The operator T is well-defined and bounded, therefore, the operator T defined as
T 30— L (1, ), Tp(f)(w) = (f, F(w)),

is the adjoint of T and is called the analysis operator. The bounded linear operator Sg
defined by Sy = TrT}, that is

SpiH K, (Srfg) = / (f, F@){F(w),g)du(w), forall f.ge %,

is called the continuous frame operator of F'. Clearly, S is self-adjoint. Moreover Sp is
invertible. Indeed, using (2) we have

B—-A

1 1
II — =Sp||= sup [(I - =Sp, f)] <
B IF1=1 B

<1,
which shows that S is invertible.

Definition 2.2. Let F' and G be two Bessel mappings. We call G a dual of F' if the following
equality holds

(f.q) = / (f, F@)(G(w), g)dp(w).

In this case, (F,G) is called a dual pair for H. For the continuous frame F, the mapping
Sp~F is a dual of F, since

(f.g9) = (Sp 'Sk f,9)
= (Srf,Sr'g)

B /Q<f, F(w))(F(w), Sr~ g)dp(w)
:/Q<f,F(w)><SF*1F(w),g>d/~L(w)-

It is called the standard dual of F'. It is certainly possible for a continuous frame F to have
only one dual.
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3. G-dual continuous frame

In this section we define the concept of g-dual continuous frame by extending the
concept of g-dual from frames to continuous frames. Then we show some properties of the
g-dual continuous frames.

Definition 3.1. Let F' be a continuous frame for H. A continuous frame G is called a
generalized dual continuous frame or g-dual continuous frame of F for H if there exists an
invertible operator A € B(H) such that for all f,g € H

(f.9) = / (f, F (@) (G(w), Ag)du(w). 3)

When A = I, G is an ordinary dual continuous frame of F. If Sg is the continuous
frame operator of the continuous frame F, then for all f, g € H we have

(fq) = / (f, F(@))(Sp~ F(w), g)dp(w) = / (f, F@))(F(w), Sr~g)du(w),

and hence each continuous frame is a g-dual frame for itself. The operator A in equation
(3) is unique, since for all f, g € H

(f.Alg) = / (. F@){C(w), g)du(w),

and hence A~ = TpTe*.
The following equivalent conditions for the Bessel mappings I’ and G may be useful.
They can be proved straightforwardly from Definition 3.1.

Lemma 3.1. For the Bessel mappings F : Q@ — H and G : Q — H the following
statements are equivalent:
(i) There exists an invertible operator A € B(H) such that

(o) = [ (. P@){G), Ag)d(e)
(i1) There exists an invertible operator A € B(H) such that
(f.9) = /ﬂ(A*f,F(w)><G(W),9>du(w)-
In case that the equivalent conditions are satisfied, F' and G are g-dual continuous frames.

Proof. Let (i) be satisfied and f,g € H. Then there exists h € H, such that g = Ah and
h) = [o(f, F(w))(G(w), Ah)dpu(w), so we have

(f.9) = (f, Ah) = (A" f,h) = /Q (A £, F(w)) (G(w), A)dpu(w)
- /Q (A f, F())(G(w), g)dp(w),

and hence (i7) holds. A similar argument shows that (i¢) implies (7). Next, if the conditions
(4), (i) are satisfied for F' and G, then

17114 = -y / f.F(@))(C(w), Af)dp(w)?

/Iﬁ R /| ), Af) 2dp(w)

< D|If|? HAIIQ/ (. F(w)) (),
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where D is the upper continuous frame bound for G. Accordingly

1 2 w 2 w
STATEIIE < [ 10 P Pdute),

which shows that F' is a continuous frame. Since (i) and (i) are equivalent, G is also a
continuous frame. O

Example 3.1. Consider H = R and let Q := [0,1] and u := X be the Lebesgue measure.
Define F : [0,1] — R and G : [0,1] — R such that

[ 2 welo,1)
reo={ 5SS
and
1 welo,1)
G(w)_{ B oweli)

F is a Parseval continuous frame and G is a %-tight continuous frame for R with respect to

([0,1], X). Taking A := 2z, A is an invertible operator on R and for each x,y € R, we have

/Q (o, F())(C(w), Ay)dA(w) = / (2, F(@)) (G(w), 2)dw

i ! V3
:/0 (gc,2><1,2y>dw+/l <x,0><?,2y>dw

4
=zy+0
=(z,y),

i.e., F' and G are g-dual continuous frames for R with the invertible operator A.

The following propositions give a method to construct new g-dual continuous frames
from given g-dual continuous frames.

Proposition 3.1. Assume that G is a g-dual continuous frame of F' for H with the invertible
operator A € B(H) and let « be a complex number. Then the mapping K defined by K =

aG—i—(l—a)(A_l)*S;lF s a g-dual continuous frame of F' for H with the invertible operator
A.

Proof. For all f, g € H, we have
| P@)aG) + (1= a) (A7) SF Flw). Ag)du(e)

- c/ (f, F@))(G(w), Agydp(w) + (1 — % (f, F@)(SF F(w), g)dp(w)
= a<fag> + (1 - a)<fvg> = <f7g>a

as asserted. O

Proposition 3.2. Assume that G and K are g-dual continuous frames for F with the
invertible operators A and B, respectively. Then for any a € C, aA*G + (1 — «)B*K is an
ordinary dual for the continuous frame F.
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Proof. By Lemma 3.1 we have

/Q (f, F@)){aA* G@)+(1 - a) B*K (@), g)du(w)
—a / (f, F@)){A*G(w), g)dpu(w)
+(1-a) / (f, F(@)) (B K (@), g)dpu(w)
Q
—a / (f, F@))(G(w), Agdp(w)

+(1-a) /Q (f, F@)){(K (w), Bg)du(w)

= a<fvg> + (1 - a)<fag>
=(f.9)-

O

Proposition 3.3. Let F' be a continuous frame for H with the continuous frame operator
Sr and let G be a g-dual continuous frame of F' for V = Range G with the invertible operator
B € B(V). Then the mapping K = B*G + S™'F is a g-dual frame of F for 3.

Proof. The operator B can be extended to the operator B; on H defined by By = BP + Q,
where P and @ are the orthogonal projections onto V and V*, respectively, of 7. By
Proposition 2.3 from [3], By (V+) C V* and Bf = B*. Now let A =1 — P, where I denotes
the identity operator on H. Since ||I — A|| < 1, the operator A is invertible. Then, for
g € H, there exist unique vectors u € V and v € V* such that ¢ = u + v. So, with f € 7,
we have

JU @) ), Ag)dnt)= [ (F, F@) B Gw) + S Fw), gu + v)dute)
Q Q

_ /Q (f, F@){(G(w), B1 (v))dp(w)

1

+ [ P@) G Bu)du(e)

+ [ (£ P@)STF@), gu-t o)duw)
1 1

=<f,0+ §U+ §U+1}>

=(f,9),

and this marks the end of the proof. O

Corollary 3.1. Let F be a continuous frame for H with the continuous frame operator
Sk and let G be a dual continuous frame of F' for V = RangeG. Then the mapping K =
G+ S7'F is a g-dual continuous frame of F.

Example 3.2. Let G1,G2,G3, -G, be m dual continuous frames of F in H, so there
are g-dual continuous frames with the invertible operator I and put K = 2111 G;. Then
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Af = %f defines a bounded invertible operator on H and

m

1
| PN @), Aghdn(e) = [ (P Giw). meghdu(e)

= (mlf,9)

=(f,9),

and therefore K is a g-dual continuous frame for F with the invertible operator Af = %f

This example shows that the sum of many dual continuous frames can be a g-dual con-
tinuous frame. The following proposition states that the sum of some two g-dual continuous
frames is a g-dual continuous frame.

Proposition 3.4. Let G and K be two g-dual continuous frames of F with corresponding
invertible operators A and B, respectively. If A=Y + B~! is an invertible operator, then
G + K is a g-dual continuous frame for F.

Proof. Let T € B(H) be the inverse operator of A~ + B~!. We have
J U F@NG + K) @), Toldutw) = [ (7)) (G, Ta)d(e)

+ [ (P @), To)due)
=(f,A"'Tg) +(f,B™'Tg)
=(f.(A"' + B ")Ty)
=(f.9),
for all f,g € J. |
Proposition 3.5. Let F, G : Q — H and let U,V € B(H) be two invertible operators on

H. Then F and G are g-dual continuous frames for H if and only if UF and VG are g-dual
continuous frames for H.

Proof. Let F' and G be g-dual continuous frames for H. Then there exists an invertible
operator A € B(H) such that (f,g) = [,(f, F(w))(G(w), Ag)du(w) for all f,g € H and
hence

(f,9) = (£, UU ) =(U*f, U 'g)
- / (U 1, F@)){G(w), AU g)du(w)

- / (f UF @)V G (), (V=) AU Lg)dp(w).

This shows that UF and VG are g-dual continuous frames for H with the invertible operator
(V=H)*AU~! € B(H). The converse is obtained by applying the operators U ! and V! to
the g-dual continuous frames UF and VG. ]

4. Perturbations of g-dual continuous frames

The stability of frames is of great importance in frame theory, and it is studied widely
by many authors [2, 8]. In this section we show that, under some conditions, approximately
g-dual continuous frames are stable under some perturbations. Moreover, a perturbation
result for g-dual continuous frames is investigated.
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Theorem 4.1. Let G be a g-dual continuous frame of K for H with the invertible operator
A € B(K) and let F : Q@ — H be a p-measurable mapping. Assume that there exist
constants A,y > 0, such that

[ o€ = F@dute) <A1 [ olr K@)aut) +7 [ lol)Pdue).
for all o € L2(2, ).
(1) If \+~C||A|| < 1, where C' is an upper continuous frame bound for G, then F and G
are g-dual continuous frames for H.

(2) If \+~D||Si'|| < 1, where D is an upper continuous frame bound for K, then F and
K are g-dual continuous frames for H.

Proof.
() = [ (5 P@NGE) ARt = [ (£.K(w)(G). ATdu
— [ £ P G), Andu(w)
=145, ( = PY@))G(w), AT du(w)
N [ (G AN K @) dute)

+v/"\ ), Af)Pdu(w)
<N, Y +vC(Af, Af)
—(A A AR ]2
<IIfIP.

So ||[I — A*TeTr*|| <1 and therefore T¢Tr" is invertible and we have

<f7 g> :<f7 TGTF*(TGTF*>_1Q>
=(TrTc" f,(TcTr*) ' g)

5@@G@Mﬂmw%ﬂm*www»

Hence F' and G are g-dual continuous frames for H. If A 4 ’yD||S;(1|| < 1, then by using a
similar argument we can show that

(1) = [ PG, 5™ P)dute)] < I,
and hence F' and K are g-dual continuous frames for H. i.e., (2) holds. |

Corollary 4.1. Let G and K be g-dual continuous frames for H and let F : Q@ — H be
measurable. If there exists a constant X € [0, 1), such that

/ o(f, (K = F)(w))dp(w) < /\I/ p(f, K(w))dp(w)l,
Q Q

for all o € L2(Q, ), then F and G are g-dual continuous frames for H. The same is true
for F and K.
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Corollary 4.2. Let G be a continuous frame for H with the upper continuous frame bound

C.

for

(8]

Given F : Q — H, assume that there exist constants \,~y > 0, such that

/Q<p<f, (F = G)(w))du(w) < /\I/Qw<f,0(w)>du(u))|+7/Q\<P(W)I2du(w)7

all o € L2 p). If N\+~C|SE'|| < 1, then F and K are g-dual continuous frames for
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