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STIFFNESS ANALYSIS OF A CABLE-DRIVEN 
COORDINATELY LIFTING ROBOT 

Xijie WANG1 

The dynamics and stiffness of a cable-driven coordinately lifting robot 
(CDCLR) system is studied in this paper. Firstly, the mechanism composition and 
working principle of the designed CDCLR were introduced. Secondly, the 
kinematics and dynamics model of the CDCLR system were established, and on this 
basis, a cable tension optimization method was given. The analytical expression of 
the stiffness for the CDCLR system was then derived. Finally, the dynamic model of 
CDCLR was verified, by a numerical example, and the stiffness distribution of the 
CDCLR system was discussed. The research results will provide a theoretical basis 
for the stability of the CDCLR and the motion planning control problem of the fixed 
pulleys. 

Keywords: coordinately lifting robot, cable-driven parallel robot, dynamics, 
optimization method, stiffness.  

1. Introduction 

In recent years, the cable-driven parallel robots (CDPR) have been widely 
used in the fields of rehabilitation, port hoisting, ocean engineering, radio 
telescopes, and wind tunnel tests and so on [1-2], mainly because the workspace 
and stiffness of this type of robot can be adjusted, and it has high motion speed, 
good flexibility, strong reconfigurability and ability to complete more complex 
lifting tasks [3], the CDPR has attracted the interest of many engineering 
researchers. 

Because the above-mentioned performance advantages and characteristics 
of the CDPR, the application research of the CDPR system in lifting and 
transportation aspect is of great significance. Prof. Zhao Z-g. studied a multi-robot 
coordinately towing robot system. The motion error of the towing robot system 
and the sensitivity of the error sources to the motion error of the lifted object were 
analyzed using the total differential method of the matrix [4], and the dynamics of 
the system was studied [5-6]. Liu. et al. studied the optimization problem of the 
cable tensions using the adaptive genetic algorithm [7]. Su. et al. proposed an 
optimization method of an Adaptive Multi-Island Genetic Algorithm based on 
Information Entropy of the Population based on the genetic algorithm. The 
optimization solution was carried out to analyze the cable tensions of the CDPR. 
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The research results show that this method effectively improves the ability and 
practicability of global optimization solution [8]. 

The stiffness of the CDPR system is of great significance to the motion 
stability and motion accuracy of the lifted objects [9], so its stiffness problem is 
studied by the scientists. Ma. et al. discussed the static stiffness of the multi-robot 
towing robot system considering the stiffness of each robot, but the stiffness of the 
cables did not considered [10]. Zi. et al. derived the analytical expressions of the 
stiffness for the CDPR along the three coordinate axes [11]. Marc Arsenault 
analyzed the feasible region and stiffness of the cable parallel mechanism 
considering the cable quality [12]. Duan. et al. studied the stiffness of a CDPR 
with a spring. After adding the spring, the fixed stiffness and controllable stiffness 
of the system are increased [13-14], but the elasticity of the cables did not 
considered. Therefore, it is necessary to consider the elasticity of the cables to 
conduct in-depth research on the stiffness of the CDCLR system in order to 
reasonably plan the work task of the lifted object and improve the structure of the 
CDCLR. 

Based on the above research work, a CDCLR is introduced in this paper. 
The CDCLR has three degrees of freedom. It can realize the desired motion 
control of the lifted object through the coordinated control of four groups of cable 
drive units, and its dynamics and stiffness are analyzed. The other parts of this 
paper are arranged as follows: the mechanism model and working principle of the 
CDCLR are described in detail in Section 2. In Section 3, the kinematics and 
dynamics models of the CDCLR are derived, and the optimization method of the 
cable tensions is given through the minimum variance of the cable tensions. The 
analytical expression of the stiffness for the CDCLR is derived in detail in Section 
4. A simulation analysis is carried out through a special example in Section 5. 
Finally, the conclusions of this paper and future work are given. 

2. Mechanical design 

The desired motion control of the lifted object for the CDCLR can be 
realized through the coordinated movement of the cables. In the designed CDCLR 
in this paper, the lifted object has three degrees of freedom. The structure model 
of the CDCLR is shown in Fig. 1, which its mechanical system is mainly 
composed of motors, guide pulleys, cables, lifted object and masts. 

In the CDCLR system, one end of the cables is fixed to the lifted object, 
and the other end is fixed to the winch mounted on the motor through the guide 
pulley. According to the actual requirements, the motion control plan is completed, 
in the control center, and the control command is generated and then sent them to 
the lower computer to control the motion of the motors. The motor drive cable 
motion to realize the elongation and contraction movement of the cable. The 
spatial motion of the lifted object can be realized by the coordinated motion 
control of the four sets of cables. The cable length displacement sensors and the 
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tension sensors can collect the relevant movement data of the system, and then 
transmit them to the control center to participate in the control calculation of the 
CDCLR system. The closed-loop control of the CDCLR system can be realized. 

 

Motor 1

Motor 2

Motor 4

Motor 3

Guide 
pulley 1

Guide 
pulley 2

Guide 
pulley 3

Guide 
pulley 4Cable 

Lifted 
object

CDCLR Center controller 

 

Control signal 
lines

 
Fig. 1. The structure model of the CDCLR 

In this study, it is assumed that all connection points are ideal. Due to the 
mass and radius of the guide pulley used are small, the friction between the cable 
and the guide pulley can be ignored. In addition, assuming that the cable is an 
ideal straight line, the mass of the cable and the deflection deformation caused by 
the cable mass are ignored. 

3. Kinematics and dynamics analysis 

The schematic diagram of the CDCLR is shown in Fig. 2. The global 
coordinate system O-xyz is established. pi (i =1,2,3,4) represents the position of 
the guide pulley, denoted as pi (xi, yi, zi). P denotes the lifted object, denoted as P 
(x, y, z). li denotes the length of the cable between the guide pulley pi and the 
lifted object P, ti represents the cable tension. mg represents the gravity of the 
lifted object. 

The inverse kinematics problem is that when the expected position of the 
lifted object in the global coordinate system are given, solving the motion 
variables of the corresponding cables. Therefore, the inverse kinematics of the 
CDCLR can be expressed as: 

i i= −l Op OP       (1) 

i il = −Op OP        (2) 
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Where il  denotes the length vector of the cables. iOp and OP  represent the 
position vector of the guide pulley pi and the lifted object P in the global 
coordinate system, respectively. 

The relationship between speed of the cables and the lifted object can be 
expressed as: 

           (3) 
Where  denotes the speed vector of the cable. P  denotes the speed of the 

lifted object. J  denotes the Jacobian matrix of the CDCLR. 
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Fig. 2.  Kinematic model of CDCLR for the logistics warehouse 

The inverse dynamics problem of the CDCLR is that when the expected 
motion trajectory of the lifted object is given, solving all cable tensions. 
According to Newton-Euler equation, the dynamic model of the CDCLR can be 
obtained, which can be expressed as: 

4

1
( )i i

i
t m m

=

+ =∑ u g P            (4) 

Where P  denotes the acceleration of the lifted object. g  denotes the 
acceleration of gravitation. iu  denotes the unit vector of the ith cable, which can 
be specifically expressed as: 

i
i

i

−
=

−
Op OPu
Op OP

           (5) 

The dynamical model of the CDCLR can be further organized as: 
=JT F             (6) 

Where T
1 2 3 4[ , , , ]t t t t=T  is vector of the cable tensions. m m= −F P g . 
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According to the configuration of the CDCLR, the matrix J is a non-
square matrix. Therefore, the cable tensions need to be solved by the pseudo-
inverse of the matrix. The cable tensions can be expressed as: 

( )T+= + ⋅T J F α N J       (7) 
Where T T 1( )+ −=J J JJ  denotes the pseudo-inverse matrix of J . α is an 

arbitrary vector. T( )N J  denotes the zero space vector of J . 
Taking into account the load capacity of the motor and the stability of the 

system, the cable tensions should meet the condition: Tmin≤T≤Tmax. Tmin is the 
pretension of the cable to prevent the pseudo-drag problem of the cables. Tmax is 
the maximum allowable cable tension determined by the cable material and the 
load capacity of the motor, at this time, α satisfies the following conditions: 

min , max , min , max ,
T T T T1 4 1 41 4 1 4

max min , min max ,
( ) ( ) ( ) ( )

s i s i s i s i
l hi ii i

i i i i

t t t t t t t t
α α α

   − − − −      ≤ ≤ =     
         N J N J N J N J≤ ≤ ≤ ≤≤ ≤ ≤ ≤

=  (8) 

Where hα and lα represent the upper and lower bounds of α , respectively, 
,s it  is the elements of the special solution vector of equation (6). 

The CDCLR is a fully constrained mechanism, and there is a problem that 
the cable tension is not unique. In order to meet the requirements of practical 
applications, it is necessary to obtain the determined value of the cable tensions in 
real-time. Therefore, further research on the optimization of the cable tensions is 
required. The change of cable tensions and the uniformity of its distribution are of 
great significance to the safe operation of the CDCLR. Therefore, the minimum 
variance of cable tensions is chosen as the optimization objective function of 
cable tensions in this paper. At this time, the optimization mathematical model of 
cable tensions can be described as: 
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≤ ≤
           (9) 

Where ( )E t is the average value of cable tensions at the current moment. 
 
The calculation diagram of optimization algorithm of the cable tensions 

for the CDLR is shown in Fig.3. 
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Fig. 3 Calculation diagram of optimization algorithm of the cable tensions for the CDLR 

 

4. Stiffness analysis 

The stiffness of the CDCLR mechanism refers to the amount of the 
applied force required to cause the change of unit displacement of the lifted object. 
The stiffness has a significant impact on the stability of the CDCLR system and 
the position accuracy of the lifted object when the interference force is acted on. 
The current research did not consider the elasticity of the cables. Therefore, the 
cable model in this paper needs to be modified before analyzing the stiffness of 
the CDCLR. In other words, in this study, the cables have a certain degree of 
elasticity, which means that when the cable is under an external force, the elastic 
deformation will occur. 

According to the definition of mechanism stiffness, the stiffness of the 
CDCLR can be expressed as: 

c f
δ δ δ
δ δ δ

 = = + = + 
 

F J TK T J K K
P P P

           (10) 

Where the stiffness K  represents the relationship between the interference 
force δF and spatial displacementδ P . cK  is related to the cable tension and the 
system structure, which can be controlled by the cable tension. Therefore, it is 
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called the controllable stiffness of the CDCLR. fK is related to the system 
structure and the position of the lifted object. Hence, it can be called the fixed 
stiffness of the CDCLR. 

Although the fixed stiffness of the CDCLR is not controlled by the cable 
tension, it still has a greater impact on the system stiffness of the CDCLR. It can 
be seen from equation (10) that the fixed stiffness of the CDCLR can be further 
written as: 

T
f

δ δ δ
δ δ δ

= = −
T l TK J J J
l P l

            (11) 

Based on the cable model, one can obtain: 

0

i i i

i i

t E A
l l

δ
δ

=               (12) 

Where iE , iA  and 0il respectively represent the elastic modulus, cross-
sectional area and static length of the cable. 

Substituting Eq. (12) into Eq. (11) yields: 
1 1 4 4

10 40

( , , ) T
f

E A E Adiag
l l

= − ⋅ ⋅K J J            (13) 

Assuming that when the position of the lifted object has a small deviation 
δ P , the unit vector of the cable changes from e  to 'e , and the length vector of the 
cable changes from l to 'l , then the change of the unit vector of the cables can be 
derived as: 
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Where [ , , ]T
i xi yi zie e e=e . 

Therefore, the controllable stiffness of the CDCLR can be written as: 
2
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Substituting Eqs. (11) and (15) into Eq. (10), one can obtain the stiffness 
of the CDCLR system, which can be expressed as: 
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5. Numerical example 

In order to analyze the rationality of the kinematics, dynamics and 
stiffness models, a numerical example is carried out with the MATLAB software 
for verification and analysis in this paper. The parameters of the example are 
shown in Table 1. 

Table 1. Parameters of the CDCLR 
Parameters                         Value                 Parameters                                          Value 
Position of the point p1      (10, 0, 5) m     Cross-section of cable A                   2.54 mm2 

Position of the point p2      (0, 0, 5) m       Elastic modulus of steel cable E      194.02 GPa 
Position of the point p3      (0, 10, 5) m     Tension range of cables [tmin, tmax]    [10, 3500]N 
Position of the point p4      (10, 10, 5) m   Mass of the lifted object m               30 kg 

The movement trajectory shown in equation (17) is selected as the 
expectation of the lifted object, and the cable tensions are solved using the 
minimum variance optimization method. In equation (17), r is the radius of the 
spiral line. a is the frequency of the spiral line. b and c are the velocity at which 
the spiral line moves in the x and z directions, respectively. Let r=0.3, a=0.3, 
b=0.1, c=0.05, (x0, y0, z0)=(2.5, 3, 2)m. The expectation of the lifted object can be 
written as: 

0

0

0

cos(2 )
sin(2 )

x r a t bt x
y r a t y
z ct z

π
π

= + +
 = +
 = +

            (17) 

According to the above parameters and dynamical equation, the obtained 
trajectory of the lifted object and the optimized cable tensions are shown in Fig. 4. 
It can be seen that the trajectory of the lifted object is a spiral inclined in the 
positive x direction. The corresponding change of the cable tensions is smoothly, 
which has a positive meaning for the stability of the lifted object during the 
movement. 

                 
(a) 3D motion trajectory             (b) Projection of motion trajectory on plane O-xz 
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(c) Projection of motion trajectory on plane O-yz              (d) Cable tensions 

 Fig. 4. Change curves of motion trajectory and cable tensions  

When the position of the lifted object is (5, 4, 2.5) m, the cable tensions 
are [242.51,  242.51,  192.88,  192.88]N=T  calculated by the dynamical model and 
optimization algorithm. The fixed stiffness matrix, controllable stiffness matrix 
and system stiffness matrix of the CDCLR are as follows: 

8

1.208 0 0
10 0 1.131 0.0355

0 0.0355 0.3019
f

 
 = × − 
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K  

14 15

14

15
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22 23
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23 2

1.208 1.243 10 6.217 10
10 1.243 10 1.131 3.55 10
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− −

− −

− −

 × − ×
 = × × − × 
 − × − × 

K  

The expression and calculation results of the fixed stiffness fK  show that 
the fixed stiffness matrix is a symmetric matrix. The controllable stiffness is 
significantly smaller than the fixed stiffness, which indicates that the stiffness of 
the driving motion branch chain has a greater impact on the stiffness of the 
CDCLR system. The diagonal elements K (1, 1), K (2, 2) and K (3, 3) in the 
system stiffness matrix K  represent the stiffness K x, K y and K z of the robot 
along the x, y and z axes, respectively. In addition, other elements in the matrix K  
characterize the coupling stiffness of the mechanism in the corresponding 
direction. It can be seen from the calculation results that the absolute values of 
diagonal elements K (1, 1), K (2, 2) and K (3, 3) decrease in order, which shows 
that when the lifted object is at the position (5, 4, 2.5)m, the stiffness of 
movement along the x direction is the largest, and the stiffness of movement along 
the z direction is the smallest. 

In order to further analyze the stiffness of the CDCLR system in the entire 
workspace, combined with the structure scheme of the CDCLR system and 
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structural parameters, the stiffness value K x, K y and K z of the CDCLR system 
along the x, y and z axes were calculated, respectively. The distributions in 
different sections are shown in Fig. 5-6. 

 
(a) K x                                     (b) K y                                          (c) K z 

Fig. 5. Stiffness distribution in different axis on the section x=2.5m 

When the lifted object moves in the horizontal section x=2.5 m, the 
stiffness distribution in different directions is shown in Fig. 5. In the horizontal 
section, K x, K y and K z are all symmetrically distributed about the center line of 
the section, and there is an inverse growth phenomenon in the boundary area of 
the section, which is caused by the correction of the cable tensions in the 
boundary area. On the whole, the stiffness value K x is the largest and the 
stiffness value K z is the smallest. In Fig. 6(c), the stiffness value K z is obviously 
increased near the guide pulleys. This is caused by correcting the cable tension 
through the optimization algorithm to prevent the pseudo-drag of the cables. 

When the lifted object moves in the vertical section y=5 m, the stiffness 
distribution in different directions is shown in Fig. 6. In the vertical section, K x, 
K y and K z are all symmetrically distributed about the straight line x=5 m. On 
the whole, the stiffness value K x is the largest and the stiffness value K z is the 
smallest. In Fig. 6(a) and (b), both K x and K y gradually increase as increase of 
the value z, and K z gradually decreases as increase of the value z. Because the 
structure of the CDCLR is symmetrically distributed, the stiffness distribution in 
the x-vertical section is the same as the stiffness distribution in the y-vertical 
section, so this paper will not repeat it. 

 
(a) K x                                        (b) K y                                           (c) K z 

Fig. 6. Stiffness distribution in different axis on the section y=5m 
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In summary, it can be seen that the overall stiffness of the CDCLR system 
is larger in the upper and central areas of the workspace than in the lower and 
boundary areas, which means that when the lifted object moves in the upper and 
central areas of the workspace, the stability and positioning accuracy of the 
system are better. Therefore, in practical applications, the height of the guide 
pulleys can be appropriately reduced to improve its stability and positioning 
accuracy based on actual needs and on the basis of meeting the motion planning 
of the lifted object. 

6. Conclusions 

A CDCLR is introduced in this paper, and the dynamics and system 
stiffness of the CDCLR are studied. The research results show that in the 
workspace, the stiffness of the CDCLR system is larger in the upper and center 
areas of the workspace than in the lower and boundary areas. In addition, at the 
same position, the stiffness of the CDCLR system in the x-direction is the largest, 
and the stiffness of the CDCLR in the z-direction is smallest. The research results 
provide a basis for further research on key issues such as the stability of the 
CDCLR system and impedance control strategy. For example, when the expected 
trajectory of motion is given, the change law of cables lengths and cable tensions 
will be obtained by the kinematic and dynamic models of the CDCLR system, and 
a double closed-loop impedance controller that meets certain compliance 
performance will be then designed in combination with the system stiffness model. 
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