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TRANSVERSE VIBRATION OF A VISCOELASTIC EULER-
BERNOULLI BEAM BASED ON EQUIVALENT
VISCOELASTIC SPRING MODELS

Chao FU!, Xiao YANG?

In this paper, the transverse vibration of the viscoelastic Euler-Bernoulli
cracked beam is investigated. By Laplace transform and generalized Dirac delta
functions, the equivalent stiffness of the viscoelastic cracked beam is derived with
considering the transverse crack as a massless viscoelastic torsion spring. Utilizing
the separation of variables method, the frequency equation of the viscoelastic
cracked beam is established. By numerical examples, the effects of the crack
location, crack depth, and number of cracks on the eigenfrequencies of the simple-
supported viscoelastic cracked beam are discussed.
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1. Introduction

Viscoelastic materials [1] are widely used in civil, mechanical, and
aerospace engineering, etc. Up to now, there are a number of approaches to
analyze the vibration characteristics of the viscoelastic beams reported in the
literatures, i.e. complex modal approach [2], Finite element method [3], transfer
matrix method [4], and et al. [5]. Supposing that the deflection mode shape of the
simple-supported beam is w(x,t) =sin(nnx/L)e , Lei et al. [5] presented the

governing equations of motion for the viscoelastic Euler-Bernoulli and
Timoshenko beams with the nonlocal theory models and analyzed the influences
of velocity-dependent external damping on the dynamics characteristics of the
beams. However, there are only a few published papers [6-7] concerned about the
effects of cracks or defects on the vibration properties of the viscoelastic beams
structures so far. Therefore, it is needed to discuss the vibration of a viscoelastic
cracked beam.

With the standard linear solid constitutive equation, the main purpose in
the present paper is to investigate the vibration properties of the viscoelastic
Euler-Bernoulli cracked beam by using the exact analytical method (EAM). At
first, the equivalent stiffness of the viscoelastic cracked beam is derived with
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regarding the transverse crack as a massless viscoelastic torsion spring. Then, the
frequency equation of the viscoelastic cracked beam is established based on the
separation of variables method and Laplace transform, and the exact analytical
expressions are presented to analyze the viscoelastic cracked beam with open
cracks. Finally, the effects of the crack location, crack depth, and number of
cracks on the vibration properties of the viscoelastic cracked beams are
numerically investigated.

2. Formulation of the problem
2.1. Equivalent bending stiffness of a viscoelastic beam

According to the constitutive equation of standard linear solid model, the
relaxation modulus Y(¢) defined in time domain and Laplace domain are given as

t

Y(t)=qo+[ﬂ—qoje"‘, F(s)=-L 5 (1)
| s(L+sp)

Here E, and E, are the elastic modulus of elastic elements, 7, is the viscous
coefficient of a viscous element, v is the Poisson's ratio, and
__™ = E\E, , g = En, ' )
E +E, E +E, E +E,
We consider a viscoelastic rectangular beam with length L (x axis), width
b (y axis) and height 4 (z axis). Here w(x,r) and ¢(x,r) denote the transverse

b

deflection of the axial line and rotation angle of the beam cross section subjected
to the distributed transverse load ¢(x,t), respectively. According to the hypothesis
of the Euler-Bernoulli beam theory, the axial normal strain, rotation angle, and
normal stress of the cross section are given as
sz =y gl =owen/er, oz = YO+ VO . (3)
X
Here v(r) is the first derivative of Y(¢) with respect to the time ¢, and the asterisk

* denotes the convolution, i.e. f(r)*g(t) = I; f(D)g(t-r)dr.

The bending moment M(x,7) of the beam cross section is

M (x,1)= —J[Y(O)%Jr Y(¢) *%}. 4)

Here the moment of inertia of the neutral axis is given as 7= ”A y*dydz . Then, the

Laplace transform of bending moment and axial bending curvature are given as
0p(x,s)  0p(x,5) _ M(x,s)
x ox sY($)[

M (x,s)=-sY (s)]

)


https://fanyi.so.com/?src=onebox#asterisk%20%28%2A%29
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Obviously, sY(s)I is the bending stiffness of the viscoelastic intact beam

in Laplace domain. The superscript — denotes the Laplace transform of the
function with respect to the time ¢, and s is the Laplace transform parameter.

In this paper, we suppose that the transverse crack j(j=1,2,---,N) is
always open, which means the crack can be equivalent as a massless viscoelastic
torsion spring [8]. Let us denote the bending moment and equivalent viscoelastic
torsion spring of the crack j at the location x=x; by M;(f) and ki(¢), respectively,
and the rotation angle 4 ,(¢) of the equivalent torsion spring in time domain and
Laplace domain can be expressed as
M () == k,(0A () +k,()*A,(1)], A, ()= MO 6

=715 E5,; j A A A s,;j(s)' (6)

Based on the crack effect and Laplace transform, the rotation angle of the
cracked beam in time domain and Laplace domain can be expressed as,
respectively

d(x,1) = p(x,1) + ZA_,. (OH(x-x,), $(x,5)=p(x,s)+ ZZ J(H (x—x,)). (7)

Here H(x) is the Heaviside function [9].

Denote the equivalent bending stiffness of a viscoelastic beam with open
cracks by (EI),(x,t), the bending moment of the cracked beam in time domain and
Laplace domain are given as, respectively

M(x,t)=~ [(Ez)( 0)a¢(x 9D | By (x t)*a¢( )} 1 (x,5) = —5(ED), (. )6¢( %) ()

Utilizing the first derivative of the second equation of Eq. (7) with respect
to the coordinate x, and then combining the second equation of Eq. (6) and Eq.
(8), the equivalent bending stiffness of the viscoelastic cracked beam in Laplace
domain can be written as

: DY ©)

(ED),(x.5) nw p
Here §(x) is the Dirac delta function [9].

2.2. Vibration of a viscoelastic cracked beam

According to the expression for the rectangular cross section beams by
references [10-12], the equivalent stiffness of crack j (j=1,--,N) in time domain

and Laplace domain are given as, respectively,
ko (6)= Y (), K (s)=p,IY (s). (10)

Here the parameter 4, = (0.9/m)[(d, /h) - 1]2 / {(d_,. Im[2-, /h)]}.
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By substituting Egs. (9), (10) and the second equation of Eq. (1) into the
second equation of Eq. (8), and using the inverse Laplace transform,

1
0 0 )0 w(x,t
(1+p18)M(x t)__[|:1+,21:,u/ o(x— x)} (%WL%EJ%' (11)
The free vibration equation of the Euler-Bernoulli beam [13] is
w(x,t) M (x,1)
- >~ =0. 12

o’ o’ (12)

Introduce the following dimensionless variables and parameters

W X X; . I § « A x pL2 «
w=—, =, P T P = 'L; 1 =" A =" e t ="
L L J AR r 2 r ET’ T (13)
.M . E . 7, . K .o
m =—-:", E :_25 5 - 2 ) = 2 ) = : P
EL’ 7 E = ET pi= 1+E, %o 1+E, g 1+ E,

Combining the dimensionless forms of Egs. (11) and (12)

Iw(EL) . o) o W (&)
pA(l+p16*j P 1(% q jag ﬂn; _6(5 é)} o }(14)

3. Solutions

Based on the separation of variables method [13], the vibration solutions
can be assumed as

w (&) =W (ETE), m (&)=M (ET(). (15)
Here W' (¢) and M°(&) are the dimensionless mode functions of the transverse
displacement and bending moment for the cracked beam, T(¢) is the function

dependent with time ¢ .
Eq. (14) can be rewritten as

2 . d? d’w’ (&)
(1+p g jdig) 1 i HH; ]5(5 f)} 4z }
—_ . (16)
(wq, < ]T(t)

p AW (E)
The left side and right side of Eq. (16) are independent with the
dimensionless coordinate & and time ¢, respectively, so the above equation is

equal to a constant [13], which can be defined as -y*, and

L ANETE) ( - d
1 — =-Y T
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g =y d¢g’

Considering free vibration of the viscoelastic beam, the time function [4]
can be expressed as

& {[HZ 8- 5)} dW@}—Y“” W (&), (18)

T()=e" . (19)
Here i=+/-1, o is the complex eigenfrequency, and the real part and imaginary
part of » are the natural frequency and decrement coefficient [2.4,14],
respectively.
Substituting Eqgs. (15) and (19) into Egs. (17) , (18) and the dimensionless
form of Eq. (11), respectively

(1+iwp; )(w) =-Y*(q, +ing, ). (20)
&F(&)
7 - W& =0. (21)
M () =1 BH ) (22)
l+iwp,
Here
N P P I A ey
F(é)—{l+;#;5(§ e“,)} e p =Y T (23)

By the Laplace transformation of Eq. (21) and the first equation of Eq.
(23), one obtain

§°F'(s)=sC, —C, = B*W’(s). (24)
F*(s)+ii*F*(§j)e“ff =s"W'(s)—sC, - C,. (25)
= H

Here C,(m=1,2,3,4) are the undetermined functions, and

C, =F'(0), czzw , C,=W(0), C, LA
¢ |, g |,

Combining Egs. (24) and (25), and utilizing the inverse Laplace transform,
we obtain

W*(eg):cosh(ﬂf)—cos(ﬂé) s1nh(ﬂ§)—sm(ﬁ§) cosh(ﬁ§)+cos(ﬂ§) C.

(26)

23° 23 G+ 2 @7
sinh (&) +sin ,35 i F( )s1nh[ﬂ(§—§j)]+sin[ﬂ(§—§,)]H( ~¢)
28 = 23 74)
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cosh (&) +cos(BE) C . sinh (B&) +sin( BE) C. cosh( &) —cos(BE)

F(§)= 5 1 28 2 2 s G+
inh —si F sinh| f(&—¢; ) |—sin| (& -¢;
S (4) ) 5 f) [A( ‘)]2 LG
(28)
If 0<& <-<é <-<g, <l,and £=¢ , Eq. (28) can be rewritten as
F'(¢)=X,C +11,C,+A,C,+T,C,. (m=1,2,3,---,N) (29)
Here
= Q ait T
Xm:QS(SEm)"_ﬂZ_ZQz(é:m_gj)a Hm: 1(ﬁ§M)+ﬂz_igz(§m_§j):
Jj=1 :ile Jj=1 /u] (30)
Aw =@ (8)B + L= (6, —¢)). T = 2, ﬁ+ﬁZ} L0,(6,-¢)
0, (£)- sinh (8¢ +sin( B¢) 0, (&) - smh(,&f)—sm(ﬂf)
1 - 2 s 2 - ) )
(31
_ cosh (&) +cos(BE) _ cosh(fB&)—cos(BS)
Q3 (6)_ 2 ’ Q4 (5)_ 2 .

Substituting Eq. (29) into Egs. (27) and (28), respectively, the
dimensionless functions of w"(¢) and F'(¢) are expressed as

F*(a:c{ )+ pYta(6-¢ )1 (é—rf_,-)} {Ql(; ) SN R (f‘f.f)}”

/1/ /1/

ﬂ+ﬂz LQ,(é-¢)H (é—é,)} { ﬂ+ﬂ2 cQ,(¢-¢)H (f—ei)}-

/l J /1/

(32)
* Q4 = Xj Ql 5 QZ NH]. Ql -G,
(&= (f)+z o ¢ "E)H(é—éj) o2, el G "E)H(é—;’,.) +
j=1 j ﬂ ﬂ Jj=1 :uj ﬂ (
Qfs-¢), Q(8), 3T, (-4
] H(&-&)]
{ +,Z, ] I Y S
33)
Utilizing the first derivative of Eq. (33) with respect to the variable &,
Q ( Q,(
vi-c| U5 X0 (e g u(e-g)| oo 2 Fn - (o5 |-

c3{mz<¢>+i—ms<¢—§,>ﬂ<«:—a>}+{ i o(e-5)n(e-5)|

=1 Ky
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Then, by substituting Eq. (32) into Eq. (22), and applying the first
derivative with respect to the variable &, the dimensionless mode functions of the

bending moment and shearing force can be derived (due to the space limitation,
the exact expressions are not given at all).

By the boundary conditions, the set of linear equations is derived to
determine the functions {C}

[A]{C} =o. (33)
Here [A] is a 4x4 coefficient vector, and {C} ={C,,C,,C,,C,} .
If there exists a nonzero solution of {C} , the determinant of the
coefficients vector is zero, i.e.
det[4]=0. (36)
By utilizing Matlab programs, the complex eigenfrequency @ can be
obtained with the different boundary conditions.

The dimensionless boundary conditions of a simply-supported viscoelastic
beam with an arbitrary number of cracks are given as

W' (0)=0, W' (1)=0, M (0)=0, M (1)=0. (37)
Then, one obtain
a, a, || G 10
¢-c, -0, { HCHO} (38)
Here
> Ho )+ 3 2o, (1-¢)
a, * — 1 e\ LTS5 ) )
ﬂ j=1 H; IB =1 K ‘
. g, +iog Y
_ 0 1 39
0= i ﬂ[ Sl a)} )
*%‘Hw% i, _
i o i)

4. Numerical results and discussion
4.1. Validation

To verify the correctness and applicability of the present exact analytical
method (EAM), the numerical example for comparisons have been provided. Let
E, - and d, >0, the present model is degenerated into the Kelvin-Voigt intact
model. Lee and Oh [3] analyzed vibration of the simple-supported Kelvin-Voigt
intact beam based on the spectral finite element method. The geometric and
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physical parameters are L=I1m , b=02m , h=0.0015m , p=7800 kg/m’ ,
E,=2x10" N/m’ , E/E,=9999 and 7,=68x10"E, . The first five

eigenfrequencies are shown in table 1. It is noticed that the results of the present
method are in excellent agreement with those of reference [3].

Table 1
First five eigenfrequencies of the simply-supported Kelvin-Voigt beam
EAM Ref.[3]

1st 3.4439+0.02531 3.444+0.0251

2nd 13.7702+0.40541 13.771+0.4051
3rd 30.9283+2.05231 30.930+2.0521
4th 54.7215+6.48621 54.724+6.4861
5th 84.6325+15.83561 84.636+15.8361

4.2. Vibration characteristic of a viscoelastic cracked beam

For a standard linear solid beam under the simple-supported boundary
conditions, we suppose that the geometric parameters are L=1m, p=>500 kg/m’

and L/h=20. According to the fitting results of the Douglas fir beams by Yahyaei-
Moayyed and Taheri [15], the material parameters are E, =14 GPa, E, =39.68 GPa
and 7,=6.9x10° GPa-h . Additionally, in order to analyze the effect of viscous

coefficient on the vibration properties of the viscoelastic beam, the viscous
coefficient is taken as 7, € 6.9x[10%,10"*] according to the references [4,7,14].

At first, the effect of viscous coefficient on the vibration properties of the
simply-supported viscoelastic intact beam is considered. Based on the standard
linear solid model (SLS) and Kelvin-Voigt model (KV), the first three
eigenfrequencies are obtained by the present EAM in tables 2 and 3, respectively.
Let E, — o, the present solutions are degenerated into the results of the KV intact

beam. For the sake of simplicity, the real part (natural frequency) and imaginary
part (decrement coefficient) of the k-th eigenfrequency w, are defined by Re(w,)

and Im(w,) , respectively. With the viscous coefficient 7, increasing, it is seen that
the first three decrement coefficients Im(w,) (k=1,2,3) first increase, and then
decrease. In addition, when 7, € 6.9x[10%,10"], Im(w,) increases with the order of
mode function increasing. While 7, €6.9x[10°,10”], the decrement coefficient

seems to be a constant. A similar conclusion had been presented by Peng [16]
based on the results of the Euler-Bernoulli elastic beam resting on the viscoelastic
foundation.

Besides, for SLS intact beam, the natural frequency Re(w,) increases with

the viscous coefficient 7, increasing, and then it remains a constant when
17, >6.9x10°. While for KV intact beam, Re(w,) decreases with 7, increasing, and
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it reduces to zero when n, =6.9x10’. The above conclusion is consistent with the

results of the KV Timoshenko beam presented by Chen [14] to some degree.
While 7, >6.9x10°, the natural frequencies of SLS beam and KV beam remain

some certain constants.

Table 2

The first three eigenfrequencies of the simply-supported viscoelastic beam based on SLS
model with different viscous coefficient 72

"2 Re(wl) Im(a)l) Re(wz) Im(a)z) Re(w;) Im(w;)
6.9x10* 648.09 0.09511 2592.38 1.52169 5832.895 7.70332
6.9x10° 648.10 0.95102 2592.84 15.20608 5838.093 76.75614
6.9x10° 648.81 9.46795 2636.86 141.0728 6234.933 508.7931
6.9x107 699.26 57.14699 2994.61 97.93233 6774.891 100.866
6.9x108 752.96 10.10045 3015.00 10.15595 6784.138 10.15892
6.9x10° 753.80 1.01591 3015.21 1.01596 6784.23 1.01596
6.9x101° 753.80 0.10160 3015.21 0.10160 6784.23 0.10160
6.9x10"! 753.80 0.01016 3015.21 0.01016 6784.23 0.01016
6.9x10"? 753.80 0.00102 3015.21 0.00102 6784.23 0.00102

Table 3

The first three eigenfrequencies of the simply-supported viscoelastic beam based on KV
model with different viscous coefficient 7>

n2 Re(wl) Im(a)l) Re(a)z) Im(wz) Re(w3) Im(w3)
6.9x10* 1268.86 1.398 5075.87 223.367 11420.3 113.23
6.9x10° 1268.92 13.979 5071.03 223.67 11364.7 11323
6.9x10° 1261.27 139.795 455.72 2236.89 1472.7 11327.8
6.9x107 0 1986.02 0 44503.7 0 235572
6.9x10% 0 29408.7 417995 287924 1105187 287925
6.9x10° 123588 28792.5 506779 28792.5 1141728 28792.5
6.9x10'° 126866 2879.25 507588 2879.25 1142087 2879.2
6.9x10!! 126898 287.92 507596 287.92 1142091 287.9
6.9x10'2 126899 28.79 507596 28.79 1142091 28.79

Table 4

The first eigenfrequency of the simply-supported SLS beam with a single crack for different
viscous coefficient 7, and crack location &

51:0.1 51:0.2 51:0.3 51:0.4 51:0.5

2 Re(wl) Im(wl) Re(a)l) Im(a)l) Re(wl) Im(wl) Re(a)l) Im(a)l) Re(wl) Im(wl)
6.9x10* 642.02 0.0933 626.75 0.0889 609.46 0.0841 596.71 0.0806 592.12 0.0794
6.9x10° 642.03 0.9333 626.75 0.8894 609.47 0.8410 596.72 0.8062 592.12 0.7938
6.9x10° 64272 9.2921 62740 88571 610.06 83772 597.27 8.0317 592.67 7.9089
6.9x107  692.13 56.592 67422 55166 654.00 53.502 639.12 52.240 633.77 51.778
6.9x10% 74589 10.099 728.10 10.096 707.97 10.923 693.13 10.090 687.78 10.089
6.9x10° 746.73 1.0159 72896 1.0159 708.86 1.0159 694.03 1.0159 688.69 1.0159
6.9x10'" 74674 0.1016 72897 0.1016 708.87 0.1016 694.04 0.1016 688.69 0.1016
6.9x10'" 74674 0.0102 728.97 0.0102 708.87 0.0102 694.04 0.0102 688.69 0.0102
6.9x10'?  746.74 0.0010 728.97 0.0010 708.87 0.0010 694.04 0.0010 688.69 0.0010
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Table 5

The first eigenfrequency of the simply-supported SLS cracked beam for different viscous
coefficient 72 and crack number N

N=0 N=1 N=2 N=4 N=8

12 Re(a)l) Im(a)l) Re(wl) Im(a)l) Re(a)l) Im(wl) Re(a)l) Im(a)l) Re(wl) Im(a)l)

6.9x10*  648.09 0.0951 592.12 0.0794 569.2 0.0734 5303 0.0637 471.6 0.0504
6.9x10° 648.10 0.9510 592.12 0.7938 569.2 0.7336  530.3 0.6367 471.6 0.5035
6.9x10° 648.81 9.4680 592.67 7.9089 569.7 7.3105 530.7 6.3473 471.8 5.0231
6.9x107  699.26 57.1470 633.77 51.778 607.1 49.419 5622 45217 4952 38.503
6.9x10% 75296 10.1005 687.78 10.089 661.1 10.083 615.7 10.071 5473 10.048
6.9x10° 753.80 1.0159 688.69 1.0159 662.0 1.0159 616.7 1.0159 5484 1.0159
6.9x10' 753.80 0.1016 688.69 0.1016 662.0 0.1016 616.7 0.1016 5485 0.1016
6.9x<10'""  753.80 0.0102 688.69 0.0102 662.0 0.0102 616.7 0.0102 5485 0.0102
6.9x10'7  753.80 0.0010 688.69 0.0010 662.0 0.0010 616.7 0.0010 548.5 0.0010

Next, to consider the effect of cracks, a simple-supported viscoelastic
beam with the symmetrically distributed cracks N is considered. Here the crack
location is ¢, =j/(N+1) (j=L-+,N), and crack depth is d,/h=0.4. The effects of
the viscous coefficient n, and crack number on the first eigenfrequency w, for
different viscoelastic beam models are analyzed, respectively. In tables 4 and 5, it
is found that the decrement coefficient Im(@,) and natural frequency Re(w,) of the
SLS beam decrease with the crack location (£ <0.5) and crack number increasing
when 7, €6.9x[10%,10"], which indicates that the crack has a significant influence
on the vibration characteristics of the viscoelastic beam. While 7, € 6.9x[10%,10"],
Im(w,) remains a certain constant, that reveals the crack has less effect on the
decrement coefficient for a higher value of n,.

To sum up, for a higher value of 7,, the effects of crack depth and crack
number on the decrement coefficient Im(w,) of the viscoelastic beam are very

limited. Therefore, the following analyses are mainly focused on the effects of
crack depth and crack number on the natural frequency Re(w,) of the viscoelastic

beams.

°
3
T

Dimensionless natural frequency ratio 4,

Dimensionless natural frequency ratio 7,
Dimensionless natural frequency ratio 7,

085

00 o1 02 03 04 05 06 00 o1 02 03 04 05 06 2 el 0z 03 0a o3
Crack depth d/h Crack depth i Crack depth

(a) First frequency ratio (b) Second frequency ratio (¢) Third frequency ratio
Fig. 1. The first three frequencies ratio of the simply-supported beam with two symmetric cracks

0.6
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To consider the effect of crack, we suppose that «,, and @, are the n-th
eigenfrequency of the viscoelastic intact and cracked beam, respectively, then
4, =Re(®,)/Re(w,,) 1s the corresponding n-th natural frequency ratio. In the case of
a viscoelastic beam with two symmetric cracks, the depths of cracks are equal to
each other. Fig. 1 shows the first three natural frequency ratios of the cracked
beam based on the present EAM. It is noticed that, when the cracks are located at
the critical positions, i.e. & =1/3 and &, =2/3, the 3rd natural frequency ratio is

A, =1, which reveals that 4, is independent with the crack depth, in fig. 1(c).

=3
=3

~ &
£ 2
g 09 i 09
&
g 08 0.8
£ £
=
Ry g o7
g g
g g
E 06 E‘ 0.6
S 0.5 A 0.5
0.0 0.2 04 0.6 0.0 0.2 04 0.6
Crack depth d/h Crack depth d/h
(a) First frequency ratio (b) Second frequency ratio

Fig. 2. Variations of the first two frequencies ratio versus crack depth d/h of the simply-supported
cracked beam with different crack number N

In the case of a viscoelastic beam with N symmetric cracks, the crack
depths are equal to each other. The first two natural frequency ratios of the
cracked beam are present in fig. 2. It can be seen that the first two natural
frequency ratios decrease with the crack depth and crack number increasing
generally. In addition, in fig. 2(b), when N =1 that means the crack is located at
the mid-span position, the 2nd natural frequency ratio is 4, =1. The reason is

possibly that the mid-span moment of the 2nd modal functions is null.
5. Conclusions

In this paper, the vibration -characteristics of an Euler-Bernoulli
viscoelastic cracked beams based on the standard linear solid model and Kelvin-
Voigt model are investigated. Some conclusions arising from the numerical
results can be summarized as follows: (1) For the simple- supported viscoelastic
intact beam with SLS and KV models, the viscous coefficient has a significantly
different effect on the first three decrement coefficients. (2) The crack has a
complicated influence on the vibration characteristics of the viscoelastic beams.
And for a higher value of viscous coefficient, the effects of crack depth and crack
number on the decrement coefficient are very limited. (3) For the simple-
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supported cracked beam with SLS model, the first three natural frequencies
decrease with the crack number and crack depth increasing.
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