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In this paper we obtain a Tauberian condition in terms of the weighted

classical control modulo for the weighted mean method of summability. Some ad-
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1. Introduction

Let p = (pn) be a sequence of nonnegative real numbers with

p0 > 0 and Pn :=

n∑
k=0

pk → ∞ (n → ∞). (1)

The n-th weighted mean of u = (un) are defined by

σ(1)
n,p(u) :=

1

Pn

n∑
k=0

pkuk.

A sequence (un) is said to be summable by the weighted mean method (N, p) to ℓ,

written as un → ℓ (N, p), if

lim
n→∞

σ(1)
n,p(u) = ℓ. (2)

Let X and Y be two sequence spaces and A = (ank) be an infinite matrix.

If for each x ∈ X the series An(x) =
∑∞

k=0 ankxk converges for each n and the

sequence Ax = (Anx) ∈ Y we say that the matrix A maps X into Y . By (X,Y ) we

denote the set of all matrices which map X into Y . Let c be the set of all convergent

sequences. A matrix A is called regular if A ∈ (c, c) and limn→∞Anx = limk→∞ xk
for all x ∈ c.

The matrix representation of weighted mean method (N, p) is denoted by

W = (wnk), where wnk is defined by wnk = pk
Pn

if k ≤ n and wnk = 0 otherwise.

It is known that (N, p) summability method is regular, i. e, W ∈ (c, c)reg if

and only if (1) holds.
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The Silverman-Toeplitz theorem states that A = (ank) is regular if and only

if

(R1) ||A|| = supn
∑

k |ank| < ∞,

(R2) limn→∞ ank = 0 for each k,

(R3) limn→∞
∑∞

k=0 ank = 1.

If the limit

lim
n→∞

un = ℓ (3)

exists, then (2) is satisfied. However, the converse is not always true. Notice that (2)

implies (3) under certain condition(s), which is called a Tauberian condition. Any

theorem which states that convergence of sequences follows from (N, p) summability

method and some Tauberian condition is said to be a Tauberian theorem for (N, p)

summability method. If pn = 1 for all nonnegative n, then (N, p) summability

method reduces to Cesàro summability method. The backward difference of (un)

is defined by ∆un = un − un−1 for all nonnegative n, where u−1 = 0. The differ-

ence between un and its n-th weighted mean σ
(1)
n,p(u), which is called the weighted

Kronecker identity [2] is given by the identity

un − σ(1)
n,p(u) = V (0)

n,p (∆u), (4)

where

V (0)
n,p (∆u) :=

1

Pn

n∑
k=1

Pk−1∆uk.

The weighted classical control modulo of (un) is denoted by ω
(0)
n,p(u) =

Pn−1

pn
∆un and

the weighted general control modulo of integer order m ≥ 1 of (un) is defined in [2]

by

ω(m)
n,p (u) = ω(m−1)

n,p (u)− 1

Pn

n∑
k=0

pkω
(m−1)
k,p (u).

For each integer m ≥ 0, we define σ
(m)
n,p (u) by

σ(m)
n,p (u) =


1

Pn

n∑
k=0

pkσ
(m−1)
k,p (u) ,m ≥ 1

un ,m = 0

A sequence (un) is said to be slowly oscillating [5] if

lim
1≤m

n
→1,n→∞

(xm − xn) = 0.

In terms of ϵ > 0 and δ, this definition is equivalent to the following: for any given

ϵ > 0, there exist δ = δ(ϵ) > 0 and the positive integer N = N(ϵ) such that

|xm − xn| < ϵ if n ≥ N(ϵ) and n ≤ m ≤ (1 + δ)n.

Our aim in this paper is to obtain a Tauberian condition in terms of the

weighted classical control modulo for (N, p) summability method. Some additional

results are also given.
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2. The Result

We prove the following Tauberian theorem for (N, p) summability method.

Theorem 2.1. Let (pn) be a sequence of nonnegative numbers such that p0 > 0,

Pn−1

pn
= O(n), n → ∞, (5)

lim inf
n→∞

P[λn]

Pn
> 1 for every λ > 1, (6)

where [λn] denotes the integral part of the product λn, and let un → ℓ (N, p). Then

(un) converges to ℓ if for some t > 1

(λ− 1)t−1 lim sup
n→∞

[λn]∑
j=n+1

jt−1|ω(0)
j,p (u)|

t = o(1), λ → 1+. (7)

Note that the condition (6) imposed on the sequence (pn) was used in [4].

Remark 2.1. We note that if
n∑

j=1

jt−1|ω(0)
j,p (u)|

t = log vn, t > 1 (8)

for some O-Regularly varying sequence (vn), then (8) is equivalent to (see [6])

1

n

n∑
j=1

jt|ω(0)
j,p (u)|

t = O(1), n → ∞ t > 1.

We remind the reader that a positive sequence (un) is O-Regularly varying [1]

if

lim sup
n→∞

u[λn]

un
< ∞, forλ > 1.

3. Lemmas

We need the following Lemmas for the proof of Theorem 2.1.

Lemma 3.1. ([2]) Let u = (un) be a sequence of real numbers.

For λ > 1 and sufficiently large n,

un − σ(1)
n,p(u) =

P[λn]

P[λn] − Pn

(
σ
(1)
[λn],p(u)− σ(1)

n,p(u)
)
− 1

P[λn] − Pn

[λn]∑
k=n+1

pk

k∑
j=n+1

∆uj ,

where [λn] denotes the integer part of λn.

Lemma 3.2. ([2]) For a sequence (un),

Pn−1

pn
∆σ(1)

n,p(u) = V (0)
n,p (∆u).
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For a sequence u = (un), we define(
Pn−1

pn
∆

)
m

un =

(
Pn−1

pn
∆

)
m−1

(
Pn−1

pn
∆un

)
=

Pn−1

pn
∆

((
Pn−1

pn
∆

)
m−1

un

)
,

where (
Pn−1

pn
∆

)
0

un = un

, and (
Pn−1

pn
∆

)
1

un =
Pn−1

pn
∆un.

Lemma 3.3. ([3]) For a sequence (un) and any integer m ≥ 1,

ω(m)
n,p (u) =

(
Pn−1

pn
∆

)
m

V (m−1)
n,p (∆u). (9)

4. Proof of Theorem 2.1

By Lemma 3.1,∣∣∣un − σ(1)
n,p(u)

∣∣∣ ≤ P[λn]

P[λn] − Pn

∣∣∣σ(1)
[λn],p(u)− σ(1)

n,p(u)
∣∣∣+ [λn]∑

j=n+1

|∆uj |. (10)

By (6), we have

lim sup
n→∞

P[λn]

P[λn] − Pn
=

1− 1

lim inf
n→∞

P[λn]

Pn


−1

< ∞. (11)

Hence, we have

lim sup
n→∞

P[λn]

P[λn] − Pn

∣∣∣σ(1)
[λn],p(u)− σ(1)

n,p(u)
∣∣∣

≤ lim sup
n→∞

P[λn]

P[λn] − Pn
lim sup
n→∞

∣∣∣σ(1)
[λn],p(u)− ℓ

∣∣∣
+ lim sup

n→∞

P[λn]

P[λn] − Pn
lim sup
n→∞

∣∣∣σ(1)
n,p(u)− ℓ

∣∣∣ .
Since (un) is (N, p) summable to ℓ, both the limits

lim
n→∞

σ
(1)
[λn],p

(u) = ℓ

and

lim
n→∞

σ(1)
n,p(u) = ℓ

exist. Therefore, we have, by (11),

lim sup
n→∞

P[λn]

P[λn] − Pn

∣∣∣σ(1)
[λn],p(u)− σ(1)

n,p(u)
∣∣∣ = 0. (12)
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For the second term on the right-hand side of (10) we obtain

[λn]∑
j=n+1

|∆uj | ≤
[λn]∑

j=n+1

pj
Pj−1

Pj−1

pj
|∆uj |

=

[λn]∑
j=n+1

pj
Pj−1

|ω(0)
j,p (u)|

≤

 [λn]∑
j=n+1

(
pj

Pj−1

)s
 1

s
 [λn]∑

j=n+1

|ω(0)
j,p (u)|

t

 1
t

,where 1
s +

1
t = 1

≤ ([λn]− n)
1
s

 [λn]∑
j=n+1

jt−1|ω(0)
j,p (u)|t

jt−1

 1
t

≤
(
[λn]− n

n

) 1
s

 [λn]∑
j=n+1

jt−1|ω(0)
j,p (u)|

t

 1
t

(13)

From (13), we have

lim sup
n→∞

[λn]∑
j=n+1

|∆uj | ≤ (λ− 1)
1
s lim sup

n→∞

 [λn]∑
j=n+1

jt−1|ω(0)
j,p (u)|

t

 1
t

. (14)

From (12) and (14), we have

lim sup
n→∞

∣∣∣un − σ(1)
n,p(u)

∣∣∣ ≤ (λ− 1)
1
s lim sup

n→∞

 [λn]∑
j=n+1

jt−1|ω(0)
j,p (u)|

t

 1
t

= 0. (15)

Letting λ → 1+ in (15) and taking (7) into account, we conclude that

lim sup
n→∞

∣∣∣un − σ(1)
n,p(u)

∣∣∣ = 0. (16)

This completes the proof of Theorem 2.1.

5. Some additional results

If we replace the (N, p) summability of (un) in Theorem 2.1 by the summability

of (σ
(1)
n,p(u)) and (V

(0)
n,p (∆u)), we have the following theorems.

Theorem 5.1. Let (pn) be a sequence of nonnegative numbers such that p0 > 0, the

conditions (5) and (6) are satisfied and let σ
(1)
n,p(u) → ℓ (N, p). Then un → ℓ (N, p)

if for some t > 1

(λ− 1)t−1 lim sup
n→∞

[λn]∑
j=n+1

jt−1|V (0)
j,p (∆u)|t = o(1), λ → 1+. (17)
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Proof. If we replace u = (un) by σ(u) = (σ
(1)
n,p(u)) in ω

(0)
n,p(u) =

Pn−1

pn
∆un, we obtain

that ω
(0)
n,p(σ(u)) =

Pn−1

pn
∆σ

(1)
n,p(u). By Lemma 3.2,

Pn−1

pn
∆σ(1)

n,p(u) = V (0)
n,p (∆u).

All the conditions of Theorem 2.1 are satisfied and the condition (7) becomes (17).

This completes the proof of Theorem 5.1. �

Theorem 5.2. Let (pn) be a sequence of nonnegative numbers such that p0 > 0, the

conditions (5) and (6) are satisfied and and let V
(0)
n,p (∆u) → ℓ (N, p). Then (un) is

slowly oscillating if for some t > 1

(λ− 1)t−1 lim sup
n→∞

[λn]∑
j=n+1

jt−1|ω(1)
j,p (u)|

t = o(1), λ → 1+. (18)

Proof. If we replace u = (un) by V (0)(∆u) = (V
(0)
n,p (∆u)) in ω

(0)
n,p(u) =

Pn−1

pn
∆un, we

obtain that ω
(0)
n,p(V (0)(∆u)) = Pn−1

pn
∆V

(0)
n,p (∆u). By Lemma 3.3,

Pn−1

pn
∆V (0)

n,p (u) = ω(1)
n,p(u).

All the conditions of Theorem 2.1 are satisfied and the condition (7) becomes (18).

So, we have convergence of (V
(0)
n,p (∆u)) to ℓ.

It follows from Lemma 3.2 that

σ(1)
n,p(u)− σ(1)

m,p(u) =

n∑
k=m+1

pk
Pk−1

V
(0)
k,p (∆u)

for n > m. By the condition (5) and the boundedness of (V
(0)
n,p (∆u)), we have

|σ(1)
n,p(u)− σ(1)

m,p(u)| ≤ C

n∑
k=m+1

1

k
≤ C(

n

m
− 1)

for some constant C > 0. Taking the limit of both sides of the last inequality as
n
m → 1, and m → ∞, we obtain that (σ

(1)
n,p(u)) is slowly oscillating. By Kronecker

identity, (un) is slowly oscillating. This completes the proof of Theorem 5.2. �

6. Examples and an application for Theorem 2.1

If we take pn = 1 for all nonnegative n, then summability by the weighted mean

method (N, p) reduces to the Cesàro summability method. We have the following

examples of Theorem 2.1.

Example 6.1. A Cesàro summable sequence (un) to ℓ converges to ℓ in the ordinary

sense if

(λ− 1)t−1 lim sup
n→∞

[λn]∑
j=n+1

jt−1|ω(0)
j,1 (u)|

t = o(1), λ → 1+. (19)
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If ω
(0)
n,1(u) =

an
n

for some bounded sequence (an) in Example 6.1, then we have

the following example.

Example 6.2. A Cesàro summable sequence (un) to ℓ converges to ℓ in the ordinary

sense if

(λ− 1)t−1 lim sup
n→∞

[λn]∑
j=n+1

|aj |t

j
= o(1), λ → 1+, (20)

where (an) is a bounded sequence.

We have the following result as an application of Theorem 2.1.

An application. Let (pn) be a sequence of nonnegative numbers such that

p0 > 0, the conditions (5) and (6) are satisfied and let un → ℓ (N, p). Then (un)

converges to ℓ if
n∑

j=1

jt−1|ω(0)
j,p (u)|

t = log vn (21)

for some O-Regularly varying sequence (vn) and for some t > 1.

Proof. Let the conditions (5) and (6) be satisfied and let un → ℓ (N, p). If

n∑
j=1

jt−1|ω(0)
j,p (u)|

t = log vn

for some O-Regularly varying sequence (vn) and for some t > 1, then it is easy to

show that the condition (7) is satisfied. Indeed, the left side of the condition (7)

becomes

(λ− 1)t−1 lim sup
n→∞

(log v[λn] − log vn),

which is o(1) as λ → 1+ by the definition of O-Regularly varying sequence. �
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[2] İ. Çanak and Ü. Totur, Some Tauberian theorems for the weighted mean methods od summa-

bility, Comput. Math. Appl., 62(2011), 2609-2615.
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