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SETVALUED CONTRACTION MAPPING PRINCIPLE IN

GENERALIZED METRIC SPACES

P. Maity1, B. S. Choudhury2, K. C. Pati3

In this paper we establish a multivalued contraction mapping principle in a

space which is a generalization of metric spaces in which infinite distance between two

points is admissible. The result is supported with an example. The space is assumed

to have a partial ordering defined on it. We also assume some order conditions in our

theorem with respect to this partial order. A discussion is provided in which we indicate

the difference of our result with the Nadler’s result on multivalued contractions in metric

spaces.
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1. Introduction

The purpose of the paper is to establish a multivalued contraction mapping principle

in a generalized metric space which was defined by Luxemberg [1] by allowing the metric to

take up value from the extended real number system, that is, by incorporating the possibility

of an infinite distance between two points. Such structures appear naturally as, for instance,

in the consideration sets of functions defined on arbitrary domains. We cite an example later.

Banach’s fixed point theorem, which is widely recognized as the starting point of metric fixed

point theory, was successfully extended to generalized metric spaces in the work of Diaz et al

[2]. Like the Banach’s result in metric spaces, the result of Diaz et al is also instrumental in

proving many important results. We note some of its applications in the works [3, 4, 5, 6, 7].

The Banach’s fixed point result was extended to the domain of set valued analysis by

Nadler in 1969 [8]. The multivalued version of the contraction mapping principle proved by

Nadler is also known as Nadler’s theorem and is considered as one of the important results

in setvalued analysis. Today the fixed point theory of mutivalued functions has a large

literature of which references [9, 10, 11, 12] are some recent instances.
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Fixed point theory has deveoped in partially ordered metric spaces in recent time

through a good number of papers. An early reference in this area is the work of Turinici

[13] in which partial ordering was considered in uniform spaces. Later, Nieto et al [14] and

Ran et al [15] worked with such structures which was followed by more recent works like

[16, 17, 18, 19, 20, 21, 22]. A remarkable feature of this deveopment is a blending of analytic

and order theoretic approaches in the methodology.

The purpose of the paper is to establish a multivalued contraction mapping principle

in a generalized metric space which has additionally a partial ordering defined on it. Both

analytic and order theoretic conditions are used in the theorem. There is an illustrative

example. A comparison with Nadler’s result is given in the conclusion.

The followings are the essential mathematical preliminaries for our discussion in this

paper.

We recall the definition of generalized metric space by Luxemberg [1].

Definition 1.1 (Generalized metric space[1]). Let X be a nonempty set. A function

e : X ×X → [0,∞] is called a generalized metric on X if e satisfies the following properties

(1) e(x, y) = 0 if and only if x = y;

(2) e(x, y) = e(y, x) for all x, y ∈ X;

(3) e(x, z) ≤ e(x, y) + e(y, z) for all x, y, z ∈ X;

Then the pair (X, e) is called a generalized metric space.

A sequence {xn} converges to x if e(xn, x) → 0 as n → ∞. A sequence {xn} in X is

a e-Cauchy sequence if lim
n,m→∞

e(xn, xm) = 0. A generalized metric space (X, e) is said to

be complete if every e-Cauchy sequence in X is e-convergent, that is, lim
n,m→∞

e(xn, xm) = 0

for a sequence xn ∈ X implies the existence of an element x ∈ X with lim
n→∞

e(x, xn) = 0 [2].

By (1) and (3) in the above definition, the limit of the sequence {xn} is uniquely determined.

Definition 1.2. For any generalized metric space (X, e), for x ∈ X and A(̸= ϕ) ⊂ X, we

write e(x, A) as

e(x, A) = inf{e(x, y) : y ∈ A, e(x, y) < ∞} whenever the set {y : y ∈ A and e(x, y) <

∞ is non-empty},
e(x, A) = ∞, otherwise.

Definition 1.3 (Generalized Hausdorff distance). Let (X, e) be a generalized metric

space. Then the generalized Hausdorff metric E introduce by e is defined as follows.

For each pair of nonempty subsets A and B of X,

E(A, B) = max{sup
x∈A

d(x, B), sup
y∈B

d(y, A)}.

We take, E(∅, ∅) = 0 and E(A, ∅) = E(∅, A) = ∞ for nonempty A.

Lemma 1.1. Let (X, e) be a generalized metric space. E : 2X×2X → [0,∞) is an extended

real-valued function such that for all A,B,C ∈ 2X , the following properties are satisfied:

E(A, B) = 0 if and only if A = B,



Setvalued Contraction Mapping Principle in Generalized Metric Spaces 111

E(A, B) = E(B, A),

E(A, B) ≤ E(A, C) + E(C, B).

Proof. Except for the triangle inequality, these properties follow from the definition. If any

of A,B,C are empty, then the triangular inequality trivially follows. We assume that all

A,B,Cs are non-empty.

For a ∈ A, b ∈ B, and c ∈ C, we have e(a, B) ≤ e(a, b) ≤ e(a, c) + e(c, b),

so, e(a, B) ≤ e(a, c) + e(c, B) ≤ e(a, c) + E(C, B).

Taking the infimum on the rightside with respect to c ∈ C, we get

e(a, B) ≤ e(a, C) + E(C, B) ≤ E(A, C) + E(C, B).

So sup
a∈A

e(a, B) ≤ E(A, C) + E(C, B).

Similarly, sup
b∈B

e(b, A) ≤ E(A, C) + E(C, B).

Therefore, E(A, B) ≤ E(A, C) + E(C, B).

If we take E(A, B) = ∞, then all the above properties also satisfied.

This completes the proof of the lemma. �

Remark 1.1. It is noted that the generalized Hausdorff metric is defined for any two non-

empty subsets of X, whereas a Hausdorff metric on a metric space is only defined on the

set of closed and bounded subsets of the metric space. It gives more generality to the

generalized Hausdorff metric. For a non-trivial example of the generalized metric space and

the generalized Hausdorff metric we refer to example 3.1.

The following lemma is direct consequence of the definition of generalized Hausdorff

metric.

Lemma 1.2. Let (X, e) be a generalized metric space and A,B be two non-empty subsets

of X. Then for any a ∈ A and ϵ > 0, there exists b ∈ B such that e(a, b) ≤ E(A, B) + ϵ.

Definition 1.4. In a partially ordered set (X, ≼), for x ∈ X and A( ̸= ϕ) ⊂ X, we define

x ≼ A as x ≼ y for all y ∈ A.

Definition 1.5. A mapping T : X → 2X − {ϕ} is said to be monotone increasing if for all

x ∈ X, x ≼ Tx implies y ≼ Ty for all y ∈ Tx.

Remark 1.2. It is noted that there are several other notions of monotonicity associated

with multivalued mappings as, for instance, those discussed in [23, 24, 25].

A point z ∈ X is a fixed point of a mapping T : X → 2X if z ∈ Tz.

Definition 1.6. Let T : X → 2X be a multivalued mapping from a non-empty set X to 2X .

A point z ∈ X is an approximate fixed point of T if e(z, Tz) = inf{e(z, y) : y ∈ Tz} = 0.

The following are some features of the present work.

• We define generalized Hausdorff metric between two arbitrary subsets of a generalized

metric space.

• We assume a partial order on the generalized metric space.
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• The contraction we define in a setvalued mapping which can assume any non empty

subset of X.

• Under certain circumstances it is shown that there is an approximate fixed point of

the mapping.

• Our result is an extension of the result of [2] in generalized metric space with a partial

order. On the other hand, it is also an extension of Nadler’s theorem [8] in partially

ordered generalized metric spaces.

• The result is illustrated with an example.

2. Main Result

Theorem 2.1. Let (X, e) be a complete generalized metric space with an additional struc-

ture of partial order ≼ defined on it. Suppose T : X → 2X − {ϕ} is a multivalued mapping

which satisfies

E(Tx, Ty) ≤ ke(x, y) where 0 < k < 1, (2.1)

whenever x ≼ y and x, y ∈ X.

Let T be a monotone increasing operator. It is assumed that there exists an element

x0 ∈ X such that x0 ≼ Tx0. Further, we assume that for any sequence {xn}, xn → x and

xn ≼ xn+1 for all n jointly imply that xn ≼ x for all n ≥ 1.

Then corresponding to x0, there exists a sequence {xn} such that either of the following

two holds:

(1) E(Txn, Txn+1) = ∞, for all n ≥ 0,

(2) {xn} converges to an approximate fixed point of T .

Proof. Let x1 ∈ Tx0 be arbitrary. By the conditions of the theorem that x0 ≼ Tx0, and T

is monotone increasing we have, x0 ≼ x1. By virtue of lemma 1.2 we next choose x2 ∈ Tx1

such that

e(x1, x2) ≤ E(Tx0, Tx1) + k. (2.2)

Since x0 ≼ Tx0 and x1 ∈ Tx0 by the monotone increasing property of T , we have x1 ≼ Tx1.

Since x2 ∈ Tx1, we have x1 ≼ x2. Again, by lemma 1.2, we choose x3 ∈ Tx2 such that

e(x2, x3) ≤ E(Tx1, Tx2) + k2. (2.3)

Since x1 ≼ Tx1, and since x2 ∈ Tx1, it follows from the monotone increasing property of T

that x2 ≼ Tx2. It then follows that x2 ≼ x3 since x3 ∈ Tx2.

Proceeding in the above manner we have a sequence {xn} for which

xn+1 ∈ Txn, xn ≼ xn+1 for all n ≥ 0 (2.4)

and that

e(xn, xn+1) ≤ E(Txn−1, Txn) + kn for all n ≥ 1. (2.5)

We have the following two cases.

E(Txn, Txn+1) = ∞, for all n which is one of the two alternative conclusions of the

theorem.
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Alternatively, we can have that E(TxN , TxN+1) < ∞ for some N .

Then, by (2.1) and (2.5), we have

e(xN+1, xN+2) ≤ E(TxN , TxN+1) + kN+1 < ∞ (2.6)

and

E(TxN , TxN+1) ≤ ke(xN , xN+1) < ∞. (2.7)

It follows from (2.6) and (2.7) that

e(xN+1, xN+2) ≤ E(TxN , TxN+1) + kN+1 ≤ ke(xN , xN+1) + kN+1 < ∞. (2.8)

Again it follows from (2.1) and (2.5) that

e(xN+2, xN+3) ≤ E(TxN+1, TxN+2) + kN+2 ≤ ke(xN+1, xN+2) + kN+2 < ∞.

Proceeding as in the above, we have that for all i ≥ 1,

e(xN+i+1, xN+i+2) ≤ E(TxN+i, TxN+i+1)+kN+i+1 ≤ ke(xN+i, xN+i+1)+kN+i+1. (2.9)

By the following successive applications of (2.9), we obtain, for all i ≥ 1,

e(xN+i+1, xN+i+2) ≤ ke(xN+i, xN+i+1) + kN+i+1

≤ k[ke(xN+i−1, xN+i) + kN+i] + kN+i+1

≤ k2e(xN+i−1, xN+i) + 2kN+i+1

......

≤ kie(xN+1, xN+2) + ikN+i+1.

Let q > p > N . Then p = N + i+ 1 and q = N + j + 1. Then

e(xp, xq) = e(xN+i+1, xN+j+1)

≤ e(xN+i+1, xN+i+2) + e(xN+i+2, xN+i+3) + ...+ e(xN+j , xN+j+1)

= e(xN+i+1, xN+i+2) + e(xN+(i+1)+1, xN+(i+1)+2) + ...+ e(xN+(j−1)+1, xN+(j−1)+2)

≤ (kie(xN+1, xN+2) + ikN+i+1) + (ki+1e(xN+1, xN+2) + (i+ 1)kN+(i+1)+1) + ...

+ (kj−1e(xN+1, xN+2) + (j − 1)kN+j)

= e(xN+1, xN+2)

j−1∑
r=i

kr +

j−1∑
r=i

rkN+r+1.

Since 0 < k < 1,
∑∞

r=0 k
r and

∑∞
r=0 rk

r are convergent, it follows that

lim
p,q→∞

e(xp, xq) = 0.

We conclude that {xn} is a Cauchy sequence, which, by virtue of the fact that (X, e) is

a complete generalized metric spaces, converges to some point x̄ ∈ X, that is, xn → x̄ as

n → ∞.

In view of (2.1), by a condition of our theorem, xn ≼ x̄ for all n. Then

E(Txn, T x̄) ≤ ke(xn, x̄) → 0 as n → ∞. (2.10)
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Now,

e(x̄, T x̄) ≤ e(x̄, xn) + e(xn, T x̄) ≤ e(x̄, xn) + E(Txn, T x̄).

Taking n → ∞ in the above inequality, and using (2.10), we have that e(x̄, T x̄) = 0, that

is,

inf{e(x̄, w) : w ∈ T x̄} = 0, that is, x̄ is an approximate fixed point of T .

This completes the proof of the theorem. �

3. Illustration

In this section we illustrate our result with the help of a nontrivial example.

Example 3.1. We consider the set X = {h : h : [0, ∞)2 → [0, ∞)}, that is, the set of all

non-negative real valued functions defined on [0,∞)2. We define a function e : X × X →
[0, ∞) as follows. Let S = {λ ≥ 0 : |f(x, y)− g(x, y)| ≤ λ|x− y| for all x, y ∈ [0, ∞)},

e(f, g) =

{
inf S, if S is non-empty

∞ if S is empty.

Then e is a generalized metric on X. We defined a relation ≼ on X as f ≼ g whenever

f(x, y) ≥ g(x, y) for all x, y ∈ [0, ∞). Then ≼ is a partial ordering on X. The corre-

sponding generalized Hausdorff metric is given by the following:

For every pair of non-empty subsets A,B of X,

E(A, B) =

{
inf W, if W is non-empty

∞, if W is empty,

where

W = {λ ≥ 0 : max{sup
f∈A

inf
g∈B

|f(x, y)− g(x, y)|, sup
g∈B

inf
f∈A

|f(x, y)− g(x, y)|}

≤ λ|x− y|} for all x, y ∈ [0, ∞)}.

Let T : X → 2X be defined as Tg = {h : 0 ≤ h ≤ g
2} for g ∈ X.

Then for g1 ≼ g2, that is, for the case g1(x, y) ≥ g2(x, y) for all x, y ∈ [0, ∞), we

have

E(Tg1, T g2) = inf {λ ≥ 0 :
1

2
|g1(x, y)− g2(x, y)| ≤ λ|x− y| for all x, y ∈ [0, ∞)}

=
1

2
e(g1, g2), provided e(g1, g2) is finite.

If e(g1, g2) = ∞, then (2.1) is satisfied with k = 1
2 . The theorem 2.1 is applicable to this

example.
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4. Conclusions

The present result differs from the result of Nadler’s theorem [8] in the following ways.

Firstly, the Hausdorff metric is defined between two closed and bounded sets in a metric

space. But in our theorem the generalized Hausdorff metric is defined for any two arbitrary

subsets. Secondly, the conclusion in the case (ii) of our theorem is the convergence to an

approximate fixed point. It is a fixed point in Nadler’s theorem since the sets are closed sets

in the metric topology. But the metric topology is not applicable to the generalized metric

space. In fact we have not considered any topology either generated by the generalized

metric or otherwise on the space. Furthermore, there is a partial ordering defined on the

space with respect to which the mapping is monotone increasing. When the generalized

metric is a metric in the special case, and the mapping is from X to closed and bounded

subsets of X, then we have the result of Nadler [8] in partially ordered metric space. The

result is also a extension of the result of Diaz et al [2]. The example 3.1 is not applicable to

either of the two above mentioned cases, that is, the theorem is an actual extension of these

results.
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