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OPTIMAL OPERATION OF A 30kW NATURAL GAS
MICROTURBINE CLUSTER

Adrian-Valentin BOICEA!, Gianfranco CHICCQ?, Pierluigi MANCARELLA®

Aceasta lucrare pune in discutie diferite strategii pentru optimizarea
regimului de functionare a unui grup de microturbine pe gaz natural avand o putere
nominala de 30kW, in cazul unor aplicatii de tip” load-following”.Operarea
microturbinelor in grup asigurd o buna flexibilitate insa ridica si problema
Sfunctionarii la nivele intermediare de incarcare. Aceasta presupune emisii foarte
mari de NOx si CO. In aceste conditii, a fost folosit Algoritmul Evolutiv pentru a
optimiza operarea acestui grup din punct de vedere al emisiilor poluante si al
consumul de combustibil.

This paper discusses optimal operation strategies of a 30 kW natural gas
microturbine (MT) cluster for electrical load-following applications. The cluster
operation assures a good operational flexibility, but, at the same time, also the
aspect of the partial-load MT characteristics, in terms of energy efficiency and
pollutant emissions has to be taken into consideration. In particular, the
experimental results show that the NOx and CO emissions are higher when the MT
is operated below its rated capacity. Under these circumstances, the Evolutionary
Algorithm has been employed in order to optimize the operation of this cluster from
the point of view of the pollutant emissions and fuel consumption.

Keywords: natural gas microturbine, distributed generation, evolutionary
algorithms, multi-objective optimization, environmental impact

1. Introduction

Natural gas microturbines (MTs) have been employed more and more in
the last few years, especially in urban areas, where severe local air quality
requirements impose serious constraints not only to the machine operation but
also to the technology selection [1]. On the other hand, experimental results show
that at full load, MTs show relatively low emissions of hazardous pollutants like
NOx and CO [2,3] but these tend to worsen consistently at partial load (see for
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example [4,5]), and even to exhibit non-monotonic variations with respect to the
loading level. An important aspect related to the MTs, is the possibility to be
operated in clusters. This permits the setup of optimal dispatch strategies of the
different units with the goal of minimizing specified objective functions [18]. In
case of load-following applications, the development of different control
strategies could prove effective to limit not only the emissions from the MT
cluster but also the fuel consumption.

This paper discusses the formulation and solution of an optimization
problem with the aim of minimizing the NOx and CO emissions and also the fuel
consumption for a cluster of 4 natural gas MTs of 30 kW each (this is important,
for instance, in microgrid applications) [17, 18]. In other words, this optimization
procedure takes into account at the same time the optimization of CO2 emissions,
energy efficiency and fuel costs (which are closely related to the minimization of
the fuel consumption objective), the local environmental impact from the MT
cluster being minimized with respect to NOx and CO emissions.

2. Microturbine energy and emission performance

Generally, the energy performance of a MT unit is expressed by the ratio of its
electrical energy output W [kWhe] to its fuel energy input F [kWht],
n,, =W/F[17, 18]. Another key aspect is the fact that MTs can cogenerate heat

with high overall efficiency [11]; however, this work concentrates only on
electrical applications, namely, under the electrical load-following operation
mode, implicitly assuming that the heat production covers part of the thermal
load, with backup boilers available to supply the remaining heating load.

Another important fact is that the electrical efficiency decreases at partial loads
due to the changes in the thermodynamic cycle. In addition, the incomplete
combustion process which occurs at partial loads causes also an increase in
pollutant emissions [12, 17, 18]. That is why, in some cases, when the MTs are
operated below 50% of their rated output, the emissions become so high that the
manufacturers themselves advice to switch the units off [18].

On the other hand, the emission performance is characterized through an
emission factor model [2]. According to this, the mass of a given pollutant p
emitted while producing the electrical energy output W is expressed as
m? = pu” - W, with p” representing the emission factor (specific emissions) of
the same pollutant p, in [mg/kWhe]). The emission factor depends on the
technology, size of the unit and also on the operating conditions [2-4,13, 18].
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3. Multi-objective operational optimization of the emissions and
energy efficiency for a cluster of 4 MTs

Let us consider a given hourly electrical load energy Weor [kWhe] to be

supplied by a cluster of 4 MT units operating in electrical load-following mode. In
this respect, the objectives which have to be minimized are:

e NOx emissions, the most dangerous pollutant in case of equipments fed by
natural gas [13, 18], especially in urban areas which are often subject to
severe regulatory air quality constraints.

e CO emissions, usually very low at full load, but severely increasing at
partial loads due to the incomplete combustion process which occurs in
such conditions, due to the aging of the components or inaccurate
maintenance.

e Fuel consumption which represents the energy efficiency goal. This
practically corresponds in economic terms to the minimization of the costs
to purchase the fuel. Apart from this, assuming that all MT units will adopt
the same fuel (in our case, natural gas), the fuel consumption minimization
coincides approximately to the CO2 emission minimization, according to
the concepts discussed in [1,12, 18].

The constraints of this optimization problem refer to the energy balance
between the power generated by the MT cluster and the total load which has to be
covered, as well as the operational limits of each MT in the cluster. The
parametric analyses effectuated in this work are associated to the useful electrical
output from the MTs. Thus, the reference power of each MT unit is obtained by
subtracting from the rated power the power needed to serve the auxiliary services
of the unit (the gas compressor, in particular).

In mathematical terms, we shall consider a cluster of i = 1,..., N MTs, each

of which has a reference power Pf” [kWe]. The loading level «, of the i-th MT
unit, for i = 1,..., N, is expressed in relative values with respect to the reference
power and varies in the range [0;1]. Considering the minimum power R(mi”) of the
i-th unit, the constraint on the minimum loading of the MT unit is reflected on
limiting the loading level within the range [ai(mi”);l], where
o™ = pimn) [ plr) 117, 18]

When is operated at the loading level «,, each unit i in the cluster is
characterized by its electrical efficiency 7, , specific NOx emissions

[mg/kWhe], and specific CO emissions x° [mg/kWhe], for i = 1,..., N.
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Considering a period z = 1 hour and a given hourly energy W,,, supplied by the

cluster of MTs to the load (which is valued at 120 kWhe), the optimizations of the
individual objectives are expressed as [6,18]:

a) minimization of the overall NOx emissions:

min 7 (Wop )= Y 1% @, PVx ®
b) minimization of the overall CO emiss};nS'
min £ <° (W,,, ) Z“CO a, PY) 2
¢) minimization of the fuel consumption:
i 7 )= 32 jj‘”f ®

The constraints are given by the energy balance
N
Z a; Pi(r)z- ~Wior =0 (4)
=1

and by the loading level limits, fori=1,..., N [8,18]:
a, € {Ou [ai(mi");l]} ()

For each objective Z={NO F,CO}, the above formulation is

transformed into a penalized objective function, by considering the penalty factor
7 applied to the energy balance constraint [7,8,9,10]:

T Wror)= 1* Wror y|2( POT) W | (6)

s.t. (5).

The variables to be optimized are the loading levels «,, fori=1,..., N.

The main challenges which appear when computing the optimal solution
depend not only on the non-linearity of the energy efficiency, but also on the
emission characteristics, in the latter case with possible non-monotonic emission
profiles at variable MT loading. These non-monotonic emission characteristics
generate a non-convex search space.

The optimization of the objective functions formulated above is carried out
in this paper by using an Evolutionary Algorithm (EA) [14, 17, 18]. The MT unit
data (power, efficiency and emissions) are coded by using a discrete number of
points, representing the switch-off condition and at the same time a predefined
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number of discrete loading levels in the range [a}m‘”);l]. As an example of EA

convergence, Fig. 1 shows the reduction of the objective function (1) for two
sampled values of total hourly energy, namely, W,,, = 70 and 100 kWhe. More

details on the EA formulation and application are provided in Section 4.
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Fig. 1. Convergence of the evolutionary algorithm for a cluster of 4 units.

4. Problem solution through the Evolutionary Algorithm

The multi-objective optimization problem introduced in the previous
section has been solved through specific EA programming tools.
The input data at partial load are the NO and CO emission characteristics and the
MT efficiencies. Both emission characteristics and efficiencies are coded as
matrices [17,18]. As far as the algorithm implementation regards, the
chromosome structure is formed by a number N of genes equal to the number of
MTs. Each of these genes is defined by D discrete states, representing a specific
operating level. The level #1 is synonym with the switch-off condition. The other

D-1 levels are defined in the range |o™;1], for i = 1,..., N. To form the initial

population of K chromosomes, the authors have assigned random levels to the
genes.

All the objective functions are positive-valued. Due to the fact that the EA
solves a maximization problem while here the objectives have to be minimized,
each chromosome is associated to a fitness (to be maximized) defined by using
the inverse of the objective function; considering the m-th chromosome for the
objective Z, its fitness can be formulated as [17, 18]:

l//,i — M]/fm (WTOT) (7)

;]/fvz (WTOT )
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Then, the classical genetic operators (selection, crossover and mutation) are
applied in order to form a new population. The chromosome selection is carried out
by using the mechanism of the biased roulette wheel, in which the chromosomes of
the new population are randomly selected taking into account the value of their
fitness. Crossover is applied to pairs of chromosomes of the population, if a
randomly extracted number from a uniform probability distribution in the range
[0;1] is lower than the user-defined crossover probability pc. For the pairs of
chromosomes satisfying the condition » < p¢, crossover is performed in a single
position which is randomly chosen. Finally, the mutation is performed on a single
gene, but the decision whether the mutation has to be performed or not is taken
using a two-step mechanism [17, 18]. This mechanism is based on a user-defined
mutation probability p,, referred to a chromosome. Given a random number »’
extracted from a uniform probability distribution in the range [0;1], if for a
chromosome the condition r’ < py, is satisfied, then a randomly chosen gene inside
the chromosome becomes subject to mutation [17, 18]. In such conditions, the
discrete loading level in this gene is changed into a different loading level randomly
chosen within the domain of definition of the D loading levels. The mutation and
the crossover alike have the role of improving the diversity of the chromosome
population and thus to avoid a situation when the algorithm remains blocked in a
local minimum of the search space.

The elitist variant of the EA has been adopted in this implementation,
meaning that one copy of the chromosome corresponding to the best fitness is
reproduced in the successive population without being modified by the selection,
crossover and mutation operators. The stop criterion will be satisfied when no
improvement of the best fitness over a predefined threshold & > 0 is obtained a
certain number / of successive iterations [17, 18].

5. Case study applications and parametrical analysis

The optimizations illustrated in this section are carried out on a cluster of 4
equal MTs. The MTs used have 30 kWe of rated capacity. The emission
characteristics for the NOx and CO pollutants are indicated in Fig. 2, based on a
sampled number of points elaborated from [4], for discrete steps of 1 kWe. The
efficiency values for a 30 kW and 60 kW unit (for comparison purposes), on the
other hand, are indicated in Fig. 3.

Individual optimizations have been run for the NOx, CO emissions and also for
the fuel consumption, considering different values of the total hourly energy W,

delivered to the electrical load [16, 17, 18].

In the EA implementation, the values of the basic parameters related not only to
the crossover and mutation probability but also to the initial population have been
chosen after a number of preliminary tests, in order to find a compromise between
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the solution effectiveness and the computation time. The initial population
contains K = 100 chromosomes, the crossover probability is pC = 0.6, and the
mutation probability pM = 0.1 [15, 17, 18]. This mutation probability has been
chosen relatively high compared to common values used in other similar
applications. This will allow more frequent replacements of the discrete levels in
the genes. The other parameters are the threshold ¢ = 0.1 (in order to test the
effective fitness improvement) and the limit | = 20 used in the stop criterion [17,
18]. Another important aspect is that the EA was not run for cases in which the
loading level was clearly represented by a well-determined and intuitive
combination of MT loading levels (like for a total load which is lower than the
minimum loading level of a single MT or close to the sum of the reference powers
of all MTs).
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Fig. 2. NOx and CO emission characteristics of the 30 kWe MT
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Fig. 3. Electrical efficiency for a 30kWe and a 60 kWe MT
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In the formation of the initial population, an additional criterion has been
introduced in this specific case with limited number of MTs, with the objective of
increasing the number of initial chromosomes subject to null or small penalties in
the penalized objective function (6). In this respect, one half of the initial
chromosomes chosen at random are accepted only if the corresponding total
hourly energy does not differ with more than 1% (in deficit or excess) compared
to W,,, [17,18].

Fig. 4 through Fig. 6 show the NOx emissions, CO emissions and fuel
consumption results, respectively, obtained with the three optimization objectives
for the microturbine cluster of 30 kWe. The bounces in the emission and fuel
consumption trends observed at multiples of the reference power practically
correspond to the moments in which the second, third and fourth MT begin to
function. Comparing the optimal with the non-optimal results, the significant
differences due to the conflicting nature of the NOx and CO emissions in the
intermediate partial-load operation region are obvious. Fig. 6, instead, shows no
significant change in the fuel consumption from the different optimization
strategies [18].

60 § — —with optimal CO emissions
——with optimal NOx emissions

50 | —— with optimal fuel consumption

w B
o o
L L

NO, emissions [g/kWh,]
N
o

10 A

0 20 40 60 80 100 120 140
hourly energy [kWh,]
Fig. 4. NOx emissions with different optimization objectives
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Fig. 5. CO emissions with different optimization objectives
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Fig. 6. Fuel consumption with different optimization objectives

The usage of the MT units at the various hourly energy values is shown in
Fig. 7 for minimum NOXx emissions, in Fig. 8 for the minimum CO emissions and

in Fig. 9 for the minimum fuel consumption.
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Fig. 7. MT usage with optimal NOx emissions.
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Fig. 9. MT usage with optimal fuel consumption

Since the MTs are identical, the attribution of the loading levels to each
unit can be made arbitrarily. In order to obtain a better representation, for each
hourly energy, the loading levels in the optimal cases have been sorted in
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descending order, assigning the highest loading level to the unit MT1, the
successive value in descending order to the unit MT2, and so forth. In reality, the
unit schedule has to be analysed by considering specific load patterns in the time
domain and taking also into consideration further operational constraints (for
example, the number of switch on/off operations during one day, to avoid
maintenance problems) [18].

6. Conclusions

At present, the energy systems are more and more facing a plurality of
objectives to be optimized, calling for adequate multi-objective optimization
techniques. This paper has addressed the issues which appear when considering
the minimization of different objectives (in our case NOy, CO emissions and fuel
consumption) of a cluster of identical MTs functioning in load-following mode.

In particular, the MT usage patterns show that the operation in nearly optimal
conditions is possible without requiring an excessive number of switch on/switch
off operations during one day [18]. At the same time, this algorithm is more
efficient in the case of minimizing the pollutant emissions, while it impacts less
on the fuel consumption. All the concepts illustrated can be applied in a
straightforward manner also to cases with higher number of MTs or different MT
characteristics. In this respect, work in progress is aimed at generalizing this kind
of application in order to discuss not only the emission impact, energy efficiency
and economic assessment of the combined local generation systems but also their
influence on the central energy networks.
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